Дифференциальные уравнения конвективного теплообмена реферат

Дифференциальные уравнения конвективного теплообмена. Основные понятия конвективного теплообмена

Основные понятия конвективного теплообмена

Понятие конвективного теплообмена охватывает процесс теплообмена при движении жидкости или газа. При этом перенос теплоты осуществляется одновременно конвекцией и теплопроводностью.

Если в единицу времени через единицу контрольной поверхности нормально к ней проходит масса жидкости , кг/(м 2 ·с), где – скорость, – плотность жидкости, то вместе с ней переносится теплота, Вт/м 2 :

Конвекция теплоты всегда сопровождается теплопроводностью, т.к. при движении жидкости или газа происходит сопри­косновение отдельных частиц, имеющих различные температуры. В результате конвективный теплообмен описывают уравнением

При расчетах конвективного теплообмена между текущей жидкостью и твёрдой стенкой используют закон Ньютона – Рихмана

Коэффициент теплоотдачи α зависит от большого количества факто­ров. В общем случае α является функцией

— формы и размеров тела,

— скорости и температуры жидкости,

— физических па­раметров жидкости,

Чтобы привести жидкость в движение, к ней необходимо при­ложить силу. Силы, действующие на какой-либо элемент жидкости, можно разделить на массовые (или объемные) и поверхностные.

Массовыми называют силы, приложенные ко всем частицам жид­кости и обусловленные внешними силовыми полями (например, грави­тационным или электрическим).

Поверхностные силы возникают вслед­ствие действия окружающей жидкости или твердых тел; они приложены к поверхности контрольного объема жидкости. Такими силами являют­ся силы внешнего давления и силы трения.

Различают свободную и вынужденную конвекцию.

В пер­вом случае жидкость с неодно­родным распределением температуры, и, как следствие, с неоднород­ным распределением плотности, находится в поле земного тяготения. Поэтому в ней может возникнуть свободное гравитационное движение.

Вынужденное движение объема жидкости про­исходит под действием внешних поверхностных сил, приложенных на его границах, за счет предварительно сообщенной кинетической энер­гии (например, за счет работы насоса, вентилятора, ветра).

Вынужденное движение в общем случае может сопровождаться свободным движением. Относительное влияние последнего тем больше, чем больше разница температур отдельных частиц среды и чем меньше скорость вынужденного движения.

Дифференциальные уравнения конвективного теплообмена

Из уравнения следует, что плотность теплового потока в любой точке жидкости для каждого момента времени однозначно определяется, если известны поля температур, удельной энтальпии и скорости.

Связь между температурой и энтальпией может быть установлена следующим образом. Для реальной жидкости , и согласно понятию о полном дифференциале

Отсюда

Для многих задач в предположении о несжимаемости жидкости (ρ=const) с достаточной степенью точности можно принять , т.е. пользоваться соотношением, справедливым для термодинамически идеального газа и .

Выведем диф­ференциальное уравнение, описывающее тем­пературное поле в движущейся жидкости.

При выводе будем полагать, что

— её физические параметры постоянны,

— энергия деформации мала по срав­нению с изменением внутренней энергии.

Выделим в потоке жидкости неподвиж­ный относительно координатной системы эле­ментарный параллелепипед с реб­рами dx, dy и dz.

Через грани параллелепипе­да теплота переносится теплопроводностью и конвекцией; в общем случае в рассматривае­мом объеме может выделяться теплота внутренними источниками.

Вывод уравнения энергии, соответствующего принятым здесь усло­виям, был получен ранее:

,

Проекции плотности теплового потока на координатные оси Ох, Оу и Оz равны

, и

Подставляя значения qx,qy и qz в уравнение Фурье, можно получить

Для несжимаемых жидкостей (ρ=const) из закона сохранения массы следует:

Тогда,

или, если ,

Последнее уравнение является уравнением энергии, описывающим распределение температур внутри движущейся жидкости.

Если , уравнение энергии переходит в уравнение теплопроводности.

Как следует из уравнения энергии, темпера­турное поле в движущейся жидкости зависит от составляющих скорости .

Чтобы сде­лать систему уравнений замкнутой, необходимо добавить уравнения, которые бы описывали из­менение скорости во времени и пространстве. Такими уравнениями являются дифференциаль­ные уравнения движения.

Уравнение движения вдоль оси Ох

.

Описание движения жидкости усложняется, если скорость изменя­ется по трем направлениям.

для оси Ох

для оси Оу

для оси Оz

В общем случае составляющие скорости изменяются во времени и в пространстве. Член, стоящий в левой части уравнений, представляет собой полную производную от скорости по времени.

На основании понятия о полной (субстанциальной) производной для оси Ох имеем

Аналогичные уравнения можно записать и для осей Оу, Оz.

Используя векторную форму записи:

Уравнение движения получено без учета зависимости физи­ческих параметров жидкости от температуры. В частности, не учтена зависимость плотности от температуры.

В то же время свободное дви­жение жидкости определяется разностью плотностей холодных и нагре­тых частиц жидкости.

Приближенный учет переменности плотности возможен с введением температурного коэффициента объемного расши­рения β.

Т.к. в уравнение движения, помимо входит еще неизвестная величина р, то система уравнений не является замкнутой. Необходимо добавить еще одно уравнение – уравнение сплошности (неразрывности).

Выде­лим в потоке движущейся жидкости непо­движный элементарный параллелепипед со сторонами dx, dy и dz и подсчитаем массу жидкости, протекающей через него в на­правлении осей Ох, Оу и Oz за время .

В направлении оси Ох в параллелепи­пед втекает масса жидкости

Величина представляет собой ко­личество массы, протекающей в единицу времени через единицу поперечного сече­ния. Из противоположной грани вытекает масса

Ограничиваясь первыми двумя членами разложения в ряд, полу­чаем, что масса dMx+dx, вытекающая из элементарного параллелепида в направлении оси Ох

Излишек массы жидкости, вытекающий из элементарного объема в направлении оси Ох

Аналогичным образом можно получить уравнения для направлений по осям Оу и Оz.

Полный избыток мас­сы жидкости, вытекающей из элементарного объема в направлении всех трех осей обусловливается измене­нием плотности жидкости в объеме и равен изменению массы дан­ного объема во времени .

Произведя сокращение на и и перенеся все члены в левую часть равенства, окончательно получим дифференциальное уравнение сплошности для сжимаемых жидкостей

Для несжимаемых жидкостей, полагая ρ=const, получаем

Уравнение сплошности является уравнением сохранения массы.

|следующая лекция ==>
Пути интенсификации теплопередачи|Критерии подобия и уравнения подобия

Дата добавления: 2016-02-09 ; просмотров: 2747 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Реферат: Конвективный теплообмен 2

Закон Ньютона – Рихмана.

Краткие сведения из теории подобия.

Критериальные уравнения конвективного теплообмена.

Расчетные формулы конвективного теплообмена.

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами:

  • теплопроводностью;
  • конвекцией;
  • излучением (радиацией).

Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии.

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом.

В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-кондуктивным теплообменом.

Совокупность всех трех видов теплообмена называется сложным теплообменом.

Процессы теплообмена могут происходит в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по разному и описывается различными уравнениями.

Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.

Процесс теплообмена между поверхностью тела и средой описывается законом Ньютона – Рихмана, которая гласит, что количество теплоты, передаваемая конвективным теплообменом прямо пропорционально разности температур поверхности тела (t‘ст )и окружающей среды (t‘ж ):

где: коэффициент теплоотдачи [Вт/(м 2 К)], характеризует интенсивность теплообмена между поверхностью тела и окружающей средой.

Факторы, которые влияют на процесс конвективного теплообмена, включают в этот коэффициент теплоотдачи. Тогда коэффициент теплоотдачи является функцией этих параметров и можно записать эту зависимость в виде следующего уравнения:

где: Х – характер движения среды (свободная, вынужденная);

Ф – форма поверхности;

lo – характерный размер поверхности (длина, высота, диаметр и т.д.);

wo – скорость среды (жидкость, газ);

θ = (t‘ст — t‘ж ) – температурный напор;

λ – коэффициент теплопроводности среды;

а – коэффициент температуропроводности среды;

ср –изобарная удельная теплоемкость среды;

ρ –плотность среды;

ν – коэффициент кинематической вязкости среды;

β – температурный коэффициент объемного расширения среды.

Уравнение (3) показывает, что коэффициент теплоотдачи величина сложная и для её определения невозможно дать общую формулу. Поэтому для определения коэффициента теплоотдачи применяют экспериментальный метод исследования.

Достоинством экспериментального метода является: достоверность получаемых результатов; основное внимание можно сосредоточить на изучении величин, представляющих наибольший практический интерес.
Основным недостатком этого метода является, что результаты данного эксперимента не могут быть использованы, применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распространения их на другие явления.

Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения.

Краткие сведения из теории подобия.

При исследовании конвективного теплообмена применяют метод теории подобия .

Теория подобия – это наука о подобных явлениях. Подобными явлениями называются такие физические явления, которые одинаковы качественно по форме и по содержанию, т.е. имеют одну физическую природу, развиваются под действием одинаковых сил и описываются одинаковыми по форме дифференциальными уравнениями и краевыми условиями.
Обязательным условием подобия физических явлений должно быть геометрическое подобие систем, где эти явления протекают. Два физических явления будут подобны лишь в том случае, если будут подобны все величины, которые характеризуют их.

Для всех подобных систем существуют безразмерные комплексы величин, которые называются критериями подобия .

Основные положения теории подобия формулируют в виде 3-х теорем подобия.

1 теорема: Подобные явления имеют одинаковые критерии подобия.

2 теорема: Любая зависимость между переменными, характеризующая какие-либо явления, может быть представлена, в форме зависимости между критериями подобия, составленными из этих переменных, которая будет называться критериальным уравнением .

3 теорема: Два явления подобны, если они имеют подобные условия однозначности и численно одинаковые определяющие критерии подобия.
Условиями однозначности являются:

    наличие геометрического подобия систем;
    наличие одинаковых дифференциальных уравнений;
    существование единственного решения уравнения пр заданных граничных условиях;
    известны численные значения коэффициентов и физических параметров.

Используя теорию подобия из системы дифференциальных уравнений, можно получить уравнение теплоотдачи (3) для конвективного теплообмена в случае отсутствия внутренних источников тепла в следующем критериальной форме :

где: X0 ; Y0 ; Z0 – безразмерные координаты;

Nu = α ·l0 /λ — критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом);

Re = w·l0 /ν — критерий Рейнольдса , характеризует соотношение сил инерции и вязкости и определяет характер течения жидкости (газа);

Gr = (β·g·l0 3 ·Δt)/ν 2 — критерий Грасгофа , характеризует подьемную силу, возникающую в жидкости (газе) вследствие разности плотностей;

Pr = ν/а = (μ·cp )/λ — критерий Прандтля , характеризует физические свойства жидкости (газа);

l0 – определяющий размер (длина, высота, диаметр).

Приведем некоторые основные расчетные формулы конвективного теплообмена (академика М.А.Михеева), которые даны для средних значений коэффициентов теплоотдачи по поверхности стенки.

1. Свободная конвекция в неограниченном пространстве.

а) Горизонтальная труба диаметром d при 10 3 8 .

б) Вертикальная труба и пластина:

ламинарное течение — 10 3 9 :

Здесь значения Grжd и Pr ж берутся при температуре жидкости (газа), а Prст при температуре поверхности стенки.

Для воздуха Pr ж /Prст = 1 и формулы (5-7) упрощаются.

Режим течения определяется по величине Re.

а) Течение жидкости в гладких трубах круглого сечения.
ламинарное течение – Re 0,33 ·Prж 0,33 ·(Grжd ·Prж ) 0,1 ·(Prж /Prст ) 0,25 ·εl , (8)

где εl — коэффициент, учитывающий изменение среднего коэффициента теплоотдачи по длине трубы и зависит от отношения длины трубы к его диаметру (l/d). Значения этого коэффициента представлена в таблице 1.

Таблица 1. Значение εl при ламинарном режиме.

Название: Конвективный теплообмен 2
Раздел: Промышленность, производство
Тип: реферат Добавлен 13:29:20 16 июля 2011 Похожие работы
Просмотров: 3450 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
l/d125101520304050
εl1,91,71,441,281,181,131,051,021,0

переходной режим – 2100 4

Коэффициент К0 зависит от критерия Рейнольдса Re и представлена в таблице 2.

Re?10 42,12,22,32,42,53456810
К01,92,23,33,84,46,010,315,519,527,033,3

турбулентное течение – Re = 10 4

Таблица 3. Значение εl при турбулентном режиме.

l/d
Re = 2·10 3Re = 2·10 4Re = 2·10 5
11,91,511,28
21,701,401,22
51,441,271,15
101,281,181,10
151,181,131,08
201,131,111,06
301,051,051,03
401,021,021,02
501,001,001,00

б) Обтекание горизонтальной поверхности.

ламинарное течение – Re 4

в)Поперечное обтекание одиночной трубы (угол атаки j = 90 0 ).
при Reжd = 5 — 10 3

Основными факторами, влияющими на процесс теплоотдачи являются следующие:

1). Природа возникновения движения жидкости вдоль поверхности стенки.

Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция) .

Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция) .

2). Режим движения жидкости.

Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным .

Беспорядочное, хаотическое, вихревое движение называется турбулентным .

3). Физические свойства жидкостей и газов.

Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (l), удельная теплоемкость (с), плотность (ρ), κоэффициент температуропроводности (а = λ/cр ·ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), температурный коэффициент объемного расширения (β = 1/Т).

4). Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная).

1. Лариков Н.Н. Теплотехника: Учебник для вузов. -3-е изд., перераб. и дополн.-М.; Стройиздат, 1985 -432 с.ил.

2. Нащокин В.В. Техническая термодинамика и теплопередача. -М.; Высшая школа, 1969 -560с.

3. Михеев М.А., Михеева И.М. Основы теплопередачи. -М.; Энергия, 1977.

4. Теплотехника /Хазен М.М., Матвеев Г.А. и др. -М.; 1981.

5. Панкратов Г.П. Сборник задач по теплотехнике. М.; Высш. шк., 1986. -248с.

Реферат Конвективный теплообмен 2

Работа добавлена на сайт bukvasha.ru: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой — мы готовы помочь.

Закон Ньютона – Рихмана.

Краткие сведения из теории подобия.

Критериальные уравнения конвективного теплообмена.

Расчетные формулы конвективного теплообмена.

Теория теплообмена изучает процессы распространения теплоты в твердых, жидких и газообразных телах. Перенос теплоты может передаваться тремя способами:

  • теплопроводностью;
  • конвекцией;
  • излучением (радиацией).


Процесс передачи теплоты теплопроводностью происходит при непосредственном контакте тел или частицами тел с различными температурами и представляет собой молекулярный процесс передачи теплоты. При нагревании тела, кинетическая энергия его молекул возрастает и частицы более нагретой части тела, сталкиваясь с соседними молекулами, сообщают им часть своей кинетической энергии.

Конвекция – это перенос теплоты при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. При этом, перенос теплоты зависит от скорости движения жидкости или газа прямо пропорционально. Этот вид передачи теплоты сопровождается всегда теплопроводностью. Одновременный перенос теплоты конвекцией и теплопроводностью называется конвективным теплообменом.

В инженерных расчетах часто определяют конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела. Этот процесс конвективного теплообмена называют конвективной теплоотдачей или просто теплоотдачей.

Процесс передачи теплоты внутренней энергии тела в виде электромагнитных волн называется излучением (радиацией). Этот процесс происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение э/м волн в пространстве, поглощение энергии излучения другим телом. Совместный теплообмен излучением и теплопроводностью называют радиационно-кондуктивным теплообменом.

Совокупность всех трех видов теплообмена называется сложным теплообменом.

Процессы теплообмена могут происходит в различных средах: чистых веществах и разных смесях, при изменении и без изменения агрегатного состояния рабочих сред и т.д. В зависимости от этого теплообмен протекает по разному и описывается различными уравнениями.

Процесс переноса теплоты может сопровождаться переносом вещества (массообмен). Например испарение воды в воздух, движение жидкостей или газов в трубопроводах и.т.п. и.т.д. Тогда процесс теплообмена усложняется, так как теплота дополнительно переносится с массой движущегося вещества.
Закон Ньютона – Рихмана.

Процесс теплообмена между поверхностью тела и средой описывается законом Ньютона – Рихмана, которая гласит, что количество теплоты, передаваемая конвективным теплообменом прямо пропорционально разности температур поверхности тела (t ‘ст ) и окружающей среды (t ‘ж ):

Q = α · (t ‘ст — t ‘ж )·F , (1)

q = α · (t ‘ст — t ‘ж ) . (2)

где: коэффициент теплоотдачи [Вт/(м 2 К)], характеризует интенсивность теплообмена между поверхностью тела и окружающей средой.

Факторы, которые влияют на процесс конвективного теплообмена, включают в этот коэффициент теплоотдачи. Тогда коэффициент теплоотдачи является функцией этих параметров и можно записать эту зависимость в виде следующего уравнения:

α = f 1 (Х; Ф; l o ; x c ; y c ; z c ; w o ; θ; λ; а ; с р ; ρ; ν; β) . (3)

где: Х – характер движения среды (свободная, вынужденная);

Ф – форма поверхности;

l o – характерный размер поверхности (длина, высота, диаметр и т.д.);

x c ; y c ; z c – координаты;

w o – скорость среды (жидкость, газ);

θ = (t ‘ст — t ‘ж ) – температурный напор;

λ – коэффициент теплопроводности среды;

а – коэффициент температуропроводности среды;

с р –изобарная удельная теплоемкость среды;

ρ –плотность среды;

ν – коэффициент кинематической вязкости среды;

β – температурный коэффициент объемного расширения среды.

Уравнение (3) показывает, что коэффициент теплоотдачи величина сложная и для её определения невозможно дать общую формулу. Поэтому для определения коэффициента теплоотдачи применяют экспериментальный метод исследования.

Достоинством экспериментального метода является: достоверность получаемых результатов; основное внимание можно сосредоточить на изучении величин, представляющих наибольший практический интерес.
Основным недостатком этого метода является, что результаты данного эксперимента не могут быть использованы, применительно к другому явлению, которое в деталях отличается от изученного. Поэтому выводы, сделанные на основании анализа результатов данного экспериментального исследования, не допускают распространения их на другие явления.

Следовательно, при экспериментальном методе исследования каждый конкретный случай должен служить самостоятельным объектом изучения.

Краткие сведения из теории подобия.

При исследовании конвективного теплообмена применяют метод теории подобия .

Теория подобия – это наука о подобных явлениях. Подобными явлениями называются такие физические явления, которые одинаковы качественно по форме и по содержанию, т.е. имеют одну физическую природу, развиваются под действием одинаковых сил и описываются одинаковыми по форме дифференциальными уравнениями и краевыми условиями.
Обязательным условием подобия физических явлений должно быть геометрическое подобие систем, где эти явления протекают. Два физических явления будут подобны лишь в том случае, если будут подобны все величины, которые характеризуют их.

Для всех подобных систем существуют безразмерные комплексы величин, которые называются критериями подобия .

Основные положения теории подобия формулируют в виде 3-х теорем подобия.

1 теорема: Подобные явления имеют одинаковые критерии подобия.

2 теорема: Любая зависимость между переменными, характеризующая какие-либо явления, может быть представлена, в форме зависимости между критериями подобия, составленными из этих переменных, которая будет называться критериальным уравнением .

3 теорема: Два явления подобны, если они имеют подобные условия однозначности и численно одинаковые определяющие критерии подобия.
Условиями однозначности являются:

  • наличие геометрического подобия систем;


  • наличие одинаковых дифференциальных уравнений;


  • существование единственного решения уравнения пр заданных граничных условиях;


  • известны численные значения коэффициентов и физических параметров.


Критериальные уравнения конвективного теплообмена.

Используя теорию подобия из системы дифференциальных уравнений, можно получить уравнение теплоотдачи (3) для конвективного теплообмена в случае отсутствия внутренних источников тепла в следующем критериальной форме :

Nu = f 2 ( Х ; Ф ; X 0 ; Y 0 ; Z 0 ; Re; Gr; Pr) , (4)

где: X 0 ; Y 0 ; Z 0 – безразмерные координаты;

Nu = α ·l 0 /λ — критерий Нуссельта (безразмерный коэффициент теплоотдачи), характеризует теплообмен между поверхностью стенки и жидкостью (газом);

Re = w·l 0 /ν — критерий Рейнольдса , характеризует соотношение сил инерции и вязкости и определяет характер течения жидкости (газа);

Gr = (β·g·l 0 3 ·Δt)/ν 2 — критерий Грасгофа , характеризует подьемную силу, возникающую в жидкости (газе) вследствие разности плотностей;

Pr = ν/ а = (μ·c p )/λ — критерий Прандтля , характеризует физические свойства жидкости (газа);

l 0 – определяющий размер (длина, высота, диаметр).

Расчетные формулы конвективного теплообмена.

Приведем некоторые основные расчетные формулы конвективного теплообмена (академика М.А.Михеева), которые даны для средних значений коэффициентов теплоотдачи по поверхности стенки.

  1. Свободная конвекция в неограниченном пространстве.


а) Горизонтальная труба диаметром d при 10 3 · Pr) жd 8 .

Nu жdср. = 0,5·(Gr жd ·Pr ж ) 0,25 (Pr ж /Pr ст ) 0,25 . (5)

б) Вертикальная труба и пластина:

ламинарное течение — 10 3 · Pr) ж 9 :

Nu жdср. = 0,75· (Gr жd ·Pr ж ) 0,25 ·(Pr ж /Pr ст ) 0,25 . (6)

турбулентное течение — (Gr · Pr) ж > 10 9 :

Nu жdср. = 0,15· (Gr жd ·Pr ж ) 0,33 ·(Pr ж /Pr ст ) 0,25 . (7)

Здесь значения Gr жd и Pr ж берутся при температуре жидкости (газа), а Pr ст при температуре поверхности стенки.

Для воздуха Pr ж /Pr ст = 1 и формулы (5-7) упрощаются.

  1. Вынужденная конвекция.


Режим течения определяется по величине Re.

а) Течение жидкости в гладких трубах круглого сечения.

ламинарное течение – Re

Nu жdср. = 0,15·Re жd 0,33 ·Pr ж 0,33 ·(Gr жd ·Pr ж ) 0,1 ·(Pr ж /Pr ст ) 0,25 ·ε l , (8)

где ε l — коэффициент, учитывающий изменение среднего коэффициента теплоотдачи по длине трубы и зависит от отношения длины трубы к его диаметру (l/d). Значения этого коэффициента представлена в таблице 1.

Таблица 1. Значение ε l при ламинарном режиме.


l / d

1

2

5

10

15

20

30

40

50

ε l

1,9

1,7

1,44

1,28

1,18

1,13

1,05

1,02

1,0

переходной режим – 2100 4

Nu жdср. = К 0 ·Pr ж 0,43 ·(Pr ж /Pr ст ) 0,25 ·ε l . (9)

Коэффициент К 0 зависит от критерия Рейнольдса Re и представлена в таблице 2.

Таблица 2. Значение К 0 .


Re?10 4

2,1

2,2

2,3

2,4

2,5

3

4

5

6

8

10

К 0

1,9

2,2

3,3

3,8

4,4

6,0

10,3

15,5

19,5

27,0

33,3

турбулентное течение – Re = 10 4

Nu жdср. = 0,021· Re жd 0,8 ·Pr ж 0,43 · (Pr ж /Pr ст ) 0,25 ·ε l . (10)
Таблица 3. Значение ε l при турбулентном режиме.


l/d

Re = 2·10 3

Re = 2·10 4

Re = 2·10 5

1

1,9

1,51

1,28

2

1,70

1,40

1,22

5

1,44

1,27

1,15

10

1,28

1,18

1,10

15

1,18

1,13

1,08

20

1,13

1,11

1,06

30

1,05

1,05

1,03

40

1,02

1,02

1,02

50

1,00

1,00

1,00

б) Обтекание горизонтальной поверхности.

ламинарное течение – Re · 10 4

Nu жdср. = 0,66·Re жd 0,5 ·Pr ж 0,33 ·(Pr ж /Pr ст ) 0,25 . (11)

турбулентное течение – Re > 4 · 10 4

Nu жdср. = 0,037·Re жd 0,5 ·Pr ж 0,33 ·(Pr ж /Pr ст ) 0,25 . (12)
в)Поперечное обтекание одиночной трубы (угол атаки

= 90 0 ).
при Re жd = 5 — 10 3

Nu жdср. = 0,57·Re ж 0,5 ·Pr ж 0,38 ·(Pr ж /Pr ст ) 0,25 . (13)

при Re жd = 10 3 — 2 · 10 5

Nu жdср. = 0,25 ·Re ж 0,6 ·Pr ж 0,38 ·(Pr ж /Pr ст ) 0,25 . (14)

Основными факторами, влияющими на процесс теплоотдачи являются следующие:

1). Природа возникновения движения жидкости вдоль поверхности стенки.

Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция) .

Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция) .

2). Режим движения жидкости.

Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным .

Беспорядочное, хаотическое, вихревое движение называется турбулентным .

3). Физические свойства жидкостей и газов.

Большое влияние на конвективный теплообмен оказывают следующие физические параметры: коэффициент теплопроводности (), удельная теплоемкость (с), плотность (ρ), κоэффициент температуропроводности ( а = λ/c р ·ρ), коэффициент динамической вязкости (μ) или кинематической вязкости (ν = μ/ρ), температурный коэффициент объемного расширения (β = 1/Т).

4). Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная).
Литература

  1. Лариков Н.Н. Теплотехника: Учебник для вузов. -3-е изд., перераб. и дополн.-М.; Стройиздат, 1985 -432 с.ил.
  2. Нащокин В.В. Техническая термодинамика и теплопередача. -М.; Высшая школа, 1969 -560с.
  3. Михеев М.А., Михеева И.М. Основы теплопередачи. -М.; Энергия, 1977.
  4. Теплотехника /Хазен М.М., Матвеев Г.А. и др. -М.; 1981.
  5. Панкратов Г.П. Сборник задач по теплотехнике. М.; Высш. шк., 1986. -248с.


источники:

http://www.bestreferat.ru/referat-286932.html

http://bukvasha.ru/referat/412939