Дифференциальные уравнения типовых динамических звеньев

Типовые динамические звенья и их характеристики

Типовые динамические звенья- это минимально необходимый набор звеньев для описания системы управления произвольного вида.

Типы звеньев систем управления различаются по виду их передаточной функции (или дифференциального уравнения), определяющей все их динамические свойства и характеристики. Классификация основных типов динамических звеньев приведена на рис.3.9.

Основные типы звеньев делятся на четыре группы: позиционные, интегрирующие, дифференцирующие и неминимально-фазовые [1,2]. Позиционные, интегрирующие и дифференцирующие звенья относятся к минимально-фазовым. Важным свойством минимально-фазовых звеньев является однозначное соответствие амплитудной и фазовой частотных характеристик. Другими словами, по заданной амплитудной характеристике всегда можно определить фазовую и наоборот.

Позиционные звенья

В звеньях позиционного, или статического типа, линейной зависимостью y = kx связаны выходная и входная величины в установившемся режиме. Коэффициент пропорциональности k между выходной и входной величинами представляет собой коэффициент передачи звена. Позиционные звенья обладают свойством самовыравнивания, то есть способностью самостоятельно переходить в новое установившееся состояние при ограниченном изменении входного воздействия.

Рис. 3.9. Классификация типовых динамических звеньев

Безынерционное (идеальное усилительное) звено.Это звено не только в статике, но и в динамике описывается алгебраическим уравнением

Амплитудно-фазовая частотная характеристика:

W(jw) = k, A(w) = k, y(w) = 0. (3.16)

Переходная и импульсная функции:

h(t) = k1(t), w(t) = kd(t). (3.17)

Безынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥.

Примерами таких безынерционных звеньев могут служить жесткая механическая передача, часовой редуктор, электронный усилитель сигналов на низких частотах и др.

Апериодическое (инерционное) звено первого порядка.Уравнение и передаточная функция звена:

(Tp+1) y(t) = x(t), , (3.18)

где T — постоянная времени, характеризует степень инерционности звена, т.е. длительность переходного процесса.

Амплитудно-фазовая частотная характеристика:

W(jw) = , , y(w) = — arctgTw. (3.19)

Таким образом, апериодическое звено первого порядка является фильтром низких частот.

Переходная и импульсная функции:

h(t) = (1 — ), w(t) = . (3.20)

Примерами апериодического звена первого порядка могут служить RC цепочка, нагревательный элемент и др.

Апериодическое (инерционное) звено второго порядка.Дифференциальное уравнение звена имеет вид

, (3.21)

причем предполагается, что 2Т2£ Т1.

В этом случае корни характеристического уравнения вещественные и уравнение (3.21) можно переписать в виде:

где — новые постоянные времени.

Передаточная функция звена

. (3.23)

Из выражения (3.23) следует, что апериодическое звеновторого порядка можно рассматривать как комбинацию двух апериодических звеньев первого порядка.

Примерами апериодического звена второго порядка могут служить двойная RC цепочка, электродвигатель постоянного тока и др.

Колебательное звено.Описывается дифференциальным уравнением

, (3.24)

при Т1 2 p 2 +2xTp+1) y(t) = x(t), (3.25)

где Т — постоянная времени, определяющая угловую частоту свободных колебаний l=1/Т;

x — параметр затухания, лежащий в пределах 0

Амплитудно-фазовая характеристика совпадает с вещественной осью. При 0 1/T — с отрицательной полуосью.

Временные характеристики соответствуют незатухающим колебаниям с угловой частотой 1/T.

Интегрирующие звенья

В звеньях интегрирующего типа линейной зависимостью связаны в установившемся режиме производная выходной величины и входная величина. В этом случае для установившегося режима будет справедливым равенство , откуда и произошло название этого типа звеньев.

Идеальное интегрирующее звено.Уравнение и передаточная функция имеют вид

py(t) = x(t), . (3.28)

Амплитудно-фазовая частотная характеристика:

W(jw) = , A(w) = , y(w) = -90 0 . (3.29)

Переходная и импульсная функции:

h(t) = t, w(t) = 1(t). (3.30)

Такое звено является идеализацией реальных интегрирующих звеньев.

Примерами идеальных интегрирующих звеньев могут служить операционный усилитель в режиме интегрирования, гидравлический двигатель, емкость и др.

Дифференцирующие звенья

В звеньях дифференцирующего типа линейной зависимостью связаны в установившемся режиме выходная величина и производная входной, откуда и произошло название этого типа звеньев.

Идеальное дифференцирующее звено.Уравнение и передаточная функция имеют вид

y(t) = px(t), W(s) = s . (3.31)

Амплитудно-фазовая частотная характеристика:

W(jw) = jw, A(w) = w, y(w) = +90 0 . (3.32)

Переходная и импульсная функции:

h(t) = d(t), w(t) = . (3.33)

Такое звено является идеализацией реальных дифференцирующих звеньев.

Примерами идеальных дифференцирующих звеньев могут служить операционный усилитель в режиме дифференцирования, тахогенератор и др.

Форсирующее (дифференцирующее) звено первого порядка.Дифференциальное уравнение и передаточная функция

y(t) = (tp+1) x(t) , W(s) = ts+1, (3.34)

где t — постоянная времени дифференцирования.

Амплитудно-фазовая частотная характеристика:

W(jw) = (jwt + 1), A(w)= , y(w) = arctg wt . (3.35)

Переходная и импульсная функции:

h(t) = 1(t) + td(t), w(t) = d(t) + t . (3.36)

Форсирующее (дифференцирующее) звено второго порядка.Уравнение и передаточная функция звена:

y(t) = (t 2 p 2 +2xtp+1)x(t), W(s) = t 2 s 2 +2xts+1. (3.37)

Амплитудно-фазовая частотная характеристика:

W(jw) = (1-w 2 t 2 ) + j2xwt,

A(w)= , y(w)=arctg . (3.38)

Переходная и импульсная функции:

h(t) = t 2 +2xtd(t)+1(t), w(t) = t 2 +2xt +d(t). (3.39)

Типовые динамические звенья

Типовым динамическим звеном САУ является составная часть системы, которая описывается дифференциальным уравнением не выше второго порядка. Звено, как правило, имеет один вход и один выход. По динамическим свойствам типовые звенья делятся на следующие разновидности: позиционные, дифференцирующие и интегрирующие.
Позиционными звеньями являются такие звенья, у которых в установившемся режиме наблюдается линейная зависимость между входными и выходными сигналами. При постоянном уровне входного сигнала сигнал на выходе также стремится к постоянному значению.
Дифференцирующими являются такие звенья, у которых в установившемся режиме выходной сигнал пропорционален производной по времени от входного сигнала.
Интегрирующими являются такие звенья, у которых выходной сигнал пропорционален интегралу по времени от входного сигнала.
Звено считается заданным и определенным, если известна его передаточная функция или дифференциальное уравнение. Кроме того, звенья имеют временные и частотные характеристики.
Наличие нулевых корней в числителе или знаменателе ПФ типовых звеньев — это признак для разбиения последних на три группы:

Позиционные звенья: 1, 2, 3, 4, 5, — не имеют нулевых корней, и, следовательно, в области низких частот (т.е. в установившемся режиме), имеют коэффициент передачи равный k.
Интегрирующие звенья: 6, 7, 8, — имеют нулевой корень-полюс, и, следовательно, в области низких частот, имеют коэффициент передачи, стремящийся к бесконечности.
Дифференцирующие звенья: 9, 10 — имеют нулевой корень-ноль, и, следовательно, в области низких частот, имеют коэффициент передачи, стремящийся к нулю.

6.2. Типы объектов и законы регулирования

В зависимости от величины самовыравнивания различают три типа объектов управления: устойчивый (с положительным самовыравниванием); нейтральный (с нулевым самовыравниванием); неустойчивый (с отрицательным самовыравниванием). Признаком отрицательного самовыравнивания является отрицательный знак перед самой выходной величиной в левой части дифференциального уравнения или появление отрицательного знака у свободного члена знаменателя передаточной функции (наличие положительного полюса).

Под законом регулирования (управления) понимается алгоритм или функциональная зависимость, определяющая управляющее воздействие u(t) на объект:
u(t) = F(Δ) , где Δ — ошибка регулирования.
Законы регулирования бывают:
— линейные:
или (3.1)
— нелинейные: .
Кроме того, законы регулирования могут быть реализованы в непрерывном виде или в цифровом. Цифровые законы регулирования реализуются путем построения регуляторов с помощью средств вычислительной техники (микро ЭВМ или микропроцессорных систем).
Наличие в (3.1) чувствительности регулятора к пропорциональной, к интегральным или к дифференциальным составляющим в первичной информации x(t), определяет тип регулятора:
1. P — пропорциональный;
2. I — интегральный;
3. PI — пропорционально интегральный (изодромный);
4. PD — пропорционально дифференциальный;
5. и более сложные варианты — PID, PIID, PIDD, .
Нелинейные законы регулирования подразделяются на:
1. функциональные;
2. логические;
3. оптимизирующие;
4. параметрические.
В составе структуры САУ содержится управляющее устройство, которое называется регулятором и выполняет основные функции управления, путем выработки управляющего воздействия U в зависимости от ошибки (отклонения), т.е. U = f(Δ). Закон регулирования определяет вид этой зависимости без учёта инерционности элементов регулятора. Закон регулирования определяет основные качественные и количественные характеристики систем.

6.4. Временные характеристики звеньев САУ

Важнейшей характеристикой САР и её составных элементов являются переходные и импульсные переходные (импульсные) функции.
Аналитическое определение переходных функций и характеристик основано на следующих положениях. Если задана передаточная функция системы или отдельного звена W(р) и известен входной сигнал X(t), то выходной сигнал Y(t) определяется следующим соотношением:

Таким образом, изображение выходного сигнала представляет собой произведение передаточной функции на изображение входного сигнала . Сигнал y(t) в явном виде получил после перехода от изображения к оригиналу y(t). Для большинства случаев линейных систем и составных элементов разработаны таблицы, позволяющие производить переход от изображений к оригиналу и обратно. В данном разделе представлена таблица 3.1 переходов для наиболее распространенных случаев.
Так как изображение единичного ступенчатого воздействия равно 1/p, то изображение переходной функции определяется соотношением:

Следовательно, для нахождения переходной функции необходимо передаточную функцию разделить на p и выполнять переход от изображения к оригиналу.
Изображение единичного импульса равно 1. Тогда изображение импульсной функции определяется выражением:

Таким образом, передаточная функция является изображением импульсной функции.
Импульсная и переходная функции, как и передаточная функция, являются исчерпывающими характеристиками системы при нулевых начальных условиях. По ним можно определить выходной сигнал при произвольных входных воздействиях.

Таблица 3.1

Изображение по Лапласу и оригиналы

Изображение Оригинал f(t)

Передаточные функции и временные характеристики типовых звеньев приведены в таблице 3.2.

Таблица 3.2

Временные характеристики типовых звеньев

Тип звенаПередаточные функцииВременные функции
Позиционные звенья
Усилительное
Апериодическое 1-го порядка
Апериодическое 2-го порядка T1≥2T2
Колебательное 0 jφ(ω) (3.2)

, где — модуль; — аргумент частотной передаточной функции.

Функция A(ω), представленная при изменении частоты от 0 до получило название амплитудной частотной характеристики (АЧХ).
Функция Φ(ω), представленная при изменении частоты от 0 до называется фазовой частотной характеристикой (ФЧХ).
Таким образом, дифференциальное уравнение движения системы связывает входной и выходной сигналы (т.е. функции времени), ПФ связывает изображения Лапласа тех же сигналов, а частотная ПФ связывает их спектры.
Частотная передаточная функция W(jω) может быть представлена на комплексной плоскости. Графическое отображение для всех частот спектра отношений выходного сигнала САУ к входному, представленных в комплексной форме будет представлять собой амплитудно-фазовую частотную характеристику (АФЧХ) или годограф Найквиста. Величина отрезка от начала координат до каждой точки годографа показывает во сколько раз на данной частоте выходной сигнал больше входного — АЧХ, а сдвиг фазы между сигналами определяется углом до упомянутого отрезка — ФЧХ. При этом отрицательный фазовый сдвиг представляется вращением вектора на комплексной плоскости по часовой стрелке относительно вещественной положительной оси, а положительный фазовый сдвиг представляется вращением против часовой стрелки.
Для упрощения графического представления частотных характеристик, а также для облегчения анализа процессов в частотных областях используются логарифмические частотные характеристики: логарифмическая амплитудная частотная характеристика (л.а.ч.х.) и логарифмическая фазовая частотная характеристика (л.ф.ч.х.). При построении логарифмических характеристик на шкале частот вместо ω откладывается lg(ω) и единицей измерения является декада. Декадой называется интервал частот, соответствующий изменению частоты в 10 раз. При построений л.а.ч.х. на оси ординат единицей измерения является децибел [дБ], который представляет собой соотношение L=20 lg А( ω). Один децибел представляет собой увеличение амплитуды выхода в раз. Верхняя полуплоскость л.а.х. соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость — значениям А 0, r>0, T>0, 0

|следующая лекция ==>
Особенности функционирование сферы услуг|Физические качества. Закономерности развития физических качеств. Характеристика физических качеств.

Дата добавления: 2016-03-20 ; просмотров: 7279 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Апериодическое (инерционное, статическое) звено. Передаточная функция и уравнения

Дифференциальное уравнение, описывающее взаимосвязь входного и выходного сигналов апериодического типового динамического звена (ТДЗ), можно представить в следующем виде:

Где: k – коэффициент передачи, Т0 – постоянная времени.

Дифференциальное уравнение является не самой удобной формой представления математической модели объекта или звена. Это связано с тем, что решения любого дифференциального уравнения довольно сложная вычислительная процедура. Более удобна и, соответственно чаще используемая, математическая модель объекта, записанная в виде передаточной функции.

Передаточная функция – это преобразованное по Лапласу исходное дифференциальное уравнение, то есть уравнение, записанное в виде преобразованных по Лапласу выходного и входного сигналов объекта (звена).

Исходное дифференциальное уравнение в преобразовании Лапласа называют оригиналом, а записанное в операторной форме преобразованное уравнение – его изображением. Суть преобразования Лапласа заключается в замене на функции комплексных переменных Хвых(р) и Хвх(р) функций вещественных переменных Хвых(τ) и Хвх(τ), где р – оператор Лапласа (комплексное число р = ±m±in). Данные функции связываются между собой интегралом Лапласа:

Для большинства используемых в ТДЗ дифференциальных уравнений, чисто формальным условием перехода от оригинала к изображению будут представленные ниже замены:

Использовав приведенное выше условие довольно легко получить изображение, то есть перейти к операторной форме записи дифференциального уравнения апериодического звена.

Оригинал дифференциального уравнения апериодического звена имеет следующий вид:

Операторная форма записи (изображения) уравнения апериодического звена:

Огромным преимуществом данного преобразования является то, что записанное в операторной форме исходное дифференциальное уравнения становится алгебраическим. Но стоит отметить, что если бы все дифференциальные уравнения можно было бы преобразовать по Лапласу, то в математике произошла бы революция, так как решение алгебраических уравнение значительно проще дифференциальных. К сожалению, такое преобразование возможно лишь для ограниченного количества уравнений, в том числе для уравнений типовых динамических звеньев (ТДЗ).

Поскольку уравнение апериодического звена приняло вид алгебраического, то его можно записать следующим образом:

Из полученного выражения достаточно легко выделить отношение Хвых(р) / Хвх(р), которое называется передаточной функцией и для апериодического звена имеет вид:

У каждого типового динамического звена присутствует ряд типовых частотных характеристик: амплитудно-частотную (АЧХ), фазочастотную (ФЧХ), амплитудно-фазовую частотную (АФЧХ или АФХ), логарифмическую амплитудно-частотную (ЛАЧХ), логарифмическую фазочастотную (ЛФЧХ).

На практике чаще всего используется АФЧХ или АФХ.

Амплитудно-фазовая характеристика это вектор, а график АФХ – годограф этого вектора, то есть кривая на комплексной плоскости, которую описывает конец вектора при изменении частоты ω от 0 до ∞. Вектор характеризуется двумя величинами – длина (скаляр или вектор по модулю) и направление (градиент).

Вектор аналитически можно записать в виде двух проекций на действительную и мнимую оси, и выразить эти проекции через угол α:

После использования формулы Эйлера:

Где |W| — длина вектора или вектор по модулю, i – мнимое число:

Аналитическое выражение для любого вектора АФХ любого типичного динамического звена легко получить из передаточной функции, заменив в ней оператор Лапласа р на выражение iω. Где ω – частота колебаний (ω = 2π/Т), Т – период колебаний.

Для апериодического звена амплитудно-фазовая частотная характеристика (АФХ) имеет вид:

Для записи вектора АФХ в виде проекций на действительную и мнимую ось необходимо произвести следующие преобразования:

Изменяя частоту ω от 0 до ∞ можно построить на комплексной плоскости годораф (график вектора АФХ), представляющий из себя полуокружность (рисунок а)), которая располагается в четвертом квадранте комплексной плоскости. Диаметр полуокружности равен коэффициенту k.

На рисунке б) показана типовая переходная функция апериодического звена. Как видно из графика, она изменяется по экспоненциальному закону. У любой экспоненты есть одно прекрасное свойство – если к любой ее точке провести касательную, а затем точку пересечения касательной с асимптотой и точку касания спроецировать на ось времени, то получится один и тот же отрезок времени на оси времени. Эта проекция, которую называют постоянной времени, соответствует значению коэффициента Т0 в АФХ и передаточной функции апериодического звена, а ордината асимптоты, к которой стремится экспонента, соответствует коэффициенту k в передаточной функции. Таким образом, по переходной характеристике апериодического звена довольно легко найти коэффициенты Т0 и k в передаточной функции звена.

Физическим примером апериодического звена может быть конденсатор, при подаче напряжения на который заряд происходит не мгновенно, а с определенной задержкой, или же электродвигатель, который при подаче питания разгоняется не мгновенно, а через какое-то время t. На рисунке в) показан пример установки, которую также можно считать апериодическим звеном (вода – заполняющая бак).

В бак поступает определенное количество воды с расходом Q1. В то же время из бака вытекает вода с расходом Q2. Регулируемый параметр в этой системе Хвых – уровень воды в баке H.

При подаче единичного скачка Q1 (открыли входной вентиль) уровень воды H в баке повышается. При этом растет гиростатическое давление и возрастает Q2. Через некоторое время уровень воды H в баке стабилизируется (экспонента приближается к асимптоте). Способность самостоятельно восстанавливать равновесие, которое присуща объектам, аппроксимируемым апериодическим звеном, за счет стока или притока вещества или энергии называют самовыравниванием. Количество самовыравнивания определяет коэффициент р, равный обратному значению коэффициента k в передаточной функции звена, то есть р = 1/k.

В литературе объекты с передаточной функцией апериодического звена называют статическими.


источники:

http://helpiks.org/7-47680.html

http://elenergi.ru/aperiodicheskoe-zveno.html