Дифференциальные уравнения типовых звеньев тау

Электронный учебник по ТАУ (теория автоматического управления)

ТАУ ЛИНЕЙНЫЕ НЕПРЕРЫВНЫЕ МОДЕЛИ И ХАРАКТЕРИСТИКИ СИСТЕМ УПРАВЛЕНИЯ: Модели «вход-выход»

1) Дифференциальные уравнения типовых звеньев и систем

Постановка задачи математического описания линейной САУ

Понятие динамического звена

Дифференциальное уравнение динамического звена

В общем случае ДЗ описывают следующим ОДУ

где x(t) и y(t) – входная и выходная величины ДЗ;

a 2 – a 0 ; b 1 – b 0 – коэффициенты (постоянные) уравнения.

Более употребительны в ТАУ иные формы записи этого ДУ. Обычно уравнение (2.1) записывают в символическом виде

Для решения типовых задач ТАУ дифференциальное уравнение ДЗ (2.1) преобразуют по Лапласу (или Карсону-Хевисайду) заменой оператора дифференцирования p комплексной величиной преобразования Лапласа s = j w . Целью названного преобразования является замена операций дифференцирования и интегрирования оригиналов функций y(t) и x(t) алгебраическими действиями над их изображениями Y(s) и X(s), поскольку уравнение (2.1) преобразуется в алгебраическое

При нулевых начальных условиях p º s.

Если свободные члены a 0 = 1 и b 0 = 1, уравнение (2.3) приобретает нормированный вид .

Такую форму записи ДЗ или САУ называют первой стандартной символической (операторной) формой записи. Уравнения (2.1) — (2.4) относят к уравнениям типа «вход — выход«.

Дифференциальное уравнение САУ

В общем случае замкнутую САУ описывают неоднородным ДУ n-го порядка:

где x(t) – входная (управляющая или возмущаю­щая) величина;

y(t) – выходная (управляемая) величина;

К дифференцирующим звеньям (Д-звено) относят:

– идеальное Д-звено с ПФ

– реальное Д-звено с ПФ .

В таблице 2.1 представлены дифференциальные уравнения и переда­точные функции типовых ДЗ.

Типовые соединения динамических звеньев

Сложные элементы и САУ состоят из нескольких соединенных между собой звеньев. Наиболее простыми и часто встречающимися (типовыми) соединениями звеньев являются:

– встречно-параллельное (охват звена обратной связью).

При последовательном соединении ДЗ (рисунок 2.4) выходная величина каждого из звеньев y 1 и y 2 , кроме последнего звена, является входной величиной последующего звена.

Эквивалентная передаточная функция последовательно соединенных l звеньев равна произведению ПФ этих звеньев: .

При параллельном соединении (рисунок 2.5) на вход всех звеньев поступает одна и та же входная величина x(t), а их выходные величины y 1 , y 2 и y 3 суммируются.

Эквивалентная передаточная функ­ция параллельно соединенных l звеньев равна сумме их ПФ:

Третье типовое соединение (рисунок 2.6), называемое встречно-параллельным, приводит к образованию замкнутой системы и состоит из двух звеньев. Звено с ПФ W п (s) образует прямую цепь (связь) передачи сигналов, а звено с ПФ W ос (s) осуществляет ОС.

Эквивалентная ПФ встречно-параллельного соединения звеньев определяется по формуле замыкания

В выражении (2.29) знак «+» соответствует отрицательной ОС, а знак «–» соответствует положительной ОС.

Структурная схема одноконтурной САУ

Алгоритмической структурной схемой САУ называют графическое представление ММ системы в соединении ДЗ, в котором каждой математической операции преобразования сигнала соответствует типовое звено, условно обозначаемое прямоугольником с указанием входных и выходных величин, а так же ПФ этого ДЗ.

Структурная схема типовой одноконтурной САУ показана на рисунке 2.7. На рисунке 2.8 изображена эквивалентная схема типовой САУ.

Очевидно, что эквивалентная схема проще, так как содержит меньше звеньев. Подобного упрощения достигают методом свертки (сущность метода см. п. 2.1.2.6). ПФ звеньев обеих схем связаны согласно (2.27) простейшим образом:

Структурная схема показывает строение САУ, наличие внешних воздействий и точки их приложения, пути распространения воздействий и выходную величину. По существу, структурная схема представляет собой графическую форму ММ САУ, что придает ей наглядность в изображении связей между ДЗ. Это позволяет легко находить по структурной схеме ПФ относительно любых входов и выходов. Для составления структурной схемы САУ необходимо иметь ее функциональную схему (см. п. 1.4) и дифференциальные уравнения или ПФ всех элементов системы.

Передаточные функции САУ

Структурная схема любой одноконтурной САР с любым количеством последовательно или параллельно соединенных звеньев, охваченных местными ОС, может быть сведена к типовой структурной схеме, показанной на рисунке 2.8. Основную ПФ, связывающую изображение выходной величины Y ( s ) с изображением задающего воздействия G ( s ), обозначают Ф( s ): ,

Для следящих систем характерно равенство W yg (s) = W(s). Структурная схема таких САУ показана на рисунке 2.9, а саму САУ называют системой с единичной ОС.

Основная ПФ названной САУ имеет вид .

Таким образом, основная ПФ Ф( s ) определяется по ПФ разомкнутой системы W(s).

Основная ПФ системы Ф(s) характе­ризует передачу САУ задающего воздействия g(t), его воспроизведение управляемой величиной y (t). Воспроизве­дение тем лучше, чем ближе Ф(s) к идеальному значению

ПФ разомкнутой САУ определяют по преобразованной структурной схеме САУ (рисунок 2.10). При этом контур регулирования полагают разомкнутым около сумматора и считают все возмущающие воздействия равными нулю (z = 0). ПФ разомкнутой типовой САУ определяется по формуле (2.27):

ПФ разомкнутой САУ W(s) характеризует соб­ственные динамические свойства САУ и позволяет определить ее устойчивость, а так же выбрать коррек­тирующее устройство для улучшения свойств САУ.

В общем случае ПФ разомкнутой САУ представляет собой дробно-рациональную функцию оператора s:

Реальные САУ всегда имеют m . Многочлен A(s) называют характеристическим полиномом разомкнутой САУ, а уравнение A(s) = 0 представляет собой характеристическое уравнение разомкнутой САУ

ПФ разомкнутой САУ обычно записывают в стандартной форме, при которой полиномы B(s) и A(s) имеют свободные члены и , т.е.

Величину v называют порядком астатизма САУ относительно задающего воздействия g(t).

Статические САУ характеризуются v = 0 и имеют ПФ вида .

Астатические САУ характеризуются астатизмом v ¹ 0. В случае v = 1 разомкнутая система имеет ПФ вида

так как свободный член полинома знаменателя A(s) равен нулю (a 0 = 0). Замкнутую САУ при этом называют астатической САУ первого порядка. Такая система содержит в прямой цепи одно И-звено. САУ с двумя И‑звеньями (v = 2) называют астатической САУ второго порядка.

Для определения влияния возмущения z(t) на управляемую величину y (t) структурную схему типовой САУ (рисунок 2.8) следует представить в виде, показанном на рисунке 2.11.

При этом звено с ПФ W 2 ( s ) образует собой прямую цепь, звенья с ПФ W 1 ( s ) и W 3 ( s ) – обратную связь. Тогда в соответствии с (2.29) ПФ замкнутой САУ по возмущению

что позволяет «свернуть» структурную схему САУ (рисунок 2.12) и изобразить САУ звеном с эквивалентной ПФ (2.40).

F z ( s )

ПФ F z ( s ) показывает влияние возмущения z(t) на управляемую величину y (t). Возмущение отклоняет её от заданного значения g (t) и уменьшает точность воспроизведения задающего воздействия. Это отрицательное влияние возмущения тем меньше, чем ближе F z ( s ) к идеальному значению F z ( s ) = 0.

При одновременном приложении к линейной САУ управляющего g(t) и возмущающего z(t) воздействий в соответствии с принципом наложения изображение регулируемой величины определяется следующим образом:

При исследовании САУ часто интересуются значением ошибки регулирования (1.1):

ПФ замкнутой САУ по ошибке определяется по следующей формуле:

Структурная схема системы с ПФ F e ( s ) вида (2.41) показана на рисунке 2.13. При этом считают, все внешние воздействия z(t) = 0, исключая задающее воздействие g (t).

Передаточная функция F e ( s ), как и F ( s ), характеризует воспроизведение управляемой величиной y (t) задающего воздействия g (t) (отработку задания). Воспроизведение тем лучше, чем ближе F e ( s ) к идеальному значению F e ( s ) = 0.

ПФ САУ по ошибке (2.41) позволяет рассчитать значение статической ошибки системы по следующей формуле:

Часто статическую ошибку принимают за оценку точности статической САУ.

Эквивалентные преобразования структурных схем

Структурную схему любой сложности путем последовательных преобразований можно привести к эквивалентной одноконтурной (рисунок 2.14). Условием эквивалентности является сохранение в процессе преобразований зависимости основных величин y(t), e (t) и y ос (t) от внешних воздействий z (t).

Эквивалентные преобразования структурных схем осуществляют по соответствующим правилам в следующей последовательности. Прежде всего каждое имеющееся в схеме типовое соединение звенев заменяют эквивалентным звеном. Затем целесообразно выполнить перенос точек разветвления (узлов) в соответствии с рисунком 2.15 и сумматоров в соответствии с рисунком 2.16, чтобы в преобразованной таким образом схеме образовались новые типовые соединения звеньев. Эти соединения опять должны быть заменены эквивалентными звеньями. Узел может быть перенесен назад через звено W 1 ( s ) или вперед через звено W 2 ( s ). В первом случае в ответвление включают звено с ПФ W 1 ( s ), во втором – звено с ПФ 1/ W 2 ( s ). Подобным образом поступают при переносе сумматора.

Таким образом, указанные правила позволяют преобразовать сложные структурные схемы многоконтурных САУ с перекрещивающимися связями, а также с несколькими входами и выходами. Преобразование структурных схем позволяет определить ПФ САУ любой сложности.

Типовые воздействия

Работа многих САУ сопровождается резкими изменениями внешних воздействий (например, уменьшением или увеличением нагрузки и т.п.). Важно оценить поведение САУ в таких ситуациях, т.е. выяснить, насколько значительным будет отклонение от нормального режима работы и насколько быстро и точно оно будет устранено регулятором. Для того, чтобы сравнить поведение при этом различных САУ и элементов, рассматривают строго определенное, нормированное, изменение воздействий. Таким типовым изменением воздействия считают мгновенное его изменение от нуля до единицы. Для математической записи используют единичную ступенчатую функцию (функцию Хевисайда):

Другим часто встречающимся изменением внешних воздействий являются их кратковременные, но значимые всплески, импульсы. Например, ударная нагрузка на двигатель, порывы ветра, действующие на летательный аппарат и т.п. Нормированным (стандартным) импульсным воздействием счи­тают единичный импульс, т.е. импульс, произведение длитель­ности которого на его ампли­туду равно единице.

Предел, к которому стре­мится единичный импульс, когда его продолжительность стремится к нулю T ® 0, есть единичная импульсная функция ( d -функция или функция Дирака):

Приблизительно d -функцию можно представить как очень узкий прямоугольный импульс длительности T и амплитуды около начала координат (рисунок 2.18), так что его площадь (интеграл) равна единице: .

Это равенство описывает основное свойство d -функции. Кроме того, считают, что d -функция равна первой производной единичной ступенчатой функции

Рассмотренные воздействия относят к динамическим, так как с их помощью анализируют динамические свойства САУ (см. п. 2.14).

Свойства элементов и САУ оценивают также в установившихся режимах. Для этого к системе или элементу прикладывают периодическое воздействие. Наиболее часто используют гармоническое воздействие вида

Такой выбор обусловлен тем, что любое реальное периодическое воздействие может быть представлено рядом гармонических составляющих (рядом Фурье): .

Реакцию линейной САУ на реальное воздействие определяют методом наложения (суперпозиции).

Временн Ï е характеристики динамических звеньев и САУ

К временн Ï м (динамическим) характеристикам САР относят переходную и импульсную характеристики.

Переходной характеристикой (функцией) h(t) называют функцию, описывающую аналитически или графически изменение выходной величины звена или САУ y(t), вызванное единичным ступенчатым воздействием x ( t ) = 1( t ) на входе звена или САУ при нулевых начальных условиях. Другими словами h(t) есть реакция звена или САУ на единичное ступенчатое воздействие при нулевых начальных условиях. Переходные характеристики и функции типовых ДЗ представлены в таблице 2.2.

Импульсной характеристикой (функцией) или весовой характеристикой звена или САУ w(t) называют характеристику, описывающую реакцию ДЗ или САУ на единичное импульсное воздействие на входе звена или САУ при нулевых начальных условиях. Импульсные характеристики и функции типовых ДЗ представлены в таблице 2.3

Частотные характеристики

В тех случаях, когда протекающие процессы в САУ изучены слабо, и вывод ДУ, описывающих эти САУ, затруднен, в основу математического моделирования кладут не уравнения движения, а так называемые частотные характеристики (ЧХ) систем.

Частотные характеристики динамических звеньев

Если на вход стационарного ДЗ (рисунок 2.1) действует гармонический сигнал то на выходе ДЗ установится также гармонической сигнал той же угловой частоты w , но с измененными амплитудой Y m и начальной фазой y 2 (рисунок 2.19). Эти изменения зависят как от свойств самого ДЗ, так и от угловой частоты входного воздействия.

Отношение амплитуд выходного и входного сигналов

разность их фаз

j ( w ) = y 2 — y 1

являются функциями частоты. Их называют соответственно амплитудно-частотной характеристикой (АЧХ) и фазово-частотной характерис­тикой (ФЧХ) звена.

Эти характеристики показывают, что линейное ДЗ изменяет амплитуду и фазу гармонического сигнала: в установившемся режиме амплитуда уменьшается или увеличивается в A раз, а фазовый сдвиг уменьшается или увеличивается на j градусов (радиан) при изменении угловой частоты w . Частотные характеристики зависят от свойств ДЗ, но не зависят от амплитуды и фазы входного воздействия. АЧХ может служить для оценки фильтрующих свойств, а ФЧХ – инерционных свойств ДЗ.

Частотные характеристики всякого элемента САУ связаны с его ПФ W ( s ). Подставляя в выражение ПФ вместо оператора Лапласа s мнимую величину j w , получают комплексную функцию частоты W(j w ), которую называют частотной передаточной функцией. Эта функция при любой частоте w является комплексной величиной и поэтому может быть представлена в показательном виде

Следовательно, модуль и аргумент частотной ПФ определяют соответственно АЧХ и ФЧХ звена.

Частотная ПФ, как комплексная функция, может быть также представлена и в алгебраическом виде

где U ( w ); V ( w ) – функции частоты, называемые соответственно вещественной (действительной) и мнимой ЧХ.

Они не имеют конкретного физического смысла, но используются в расчетах и определяются по формулам:

Частотные характеристики связаны между собой известными соотношениями (рисунок 2.20):

Если частотная ПФ задана в алгебраи­ческом виде (2.55), преобразование ее к показательному виду (2.52) осуществляют по формулам (2.58). Соотношения (2.59) позволяют осуществить при необходимости обратное преобразование.

Кроме аналитического описания ЧХ изображают графически в декартовых координатах. Построение АЧХ и ФЧХ осуществляют по формулам (2.53) и (2.54). На рисунках 2.21 и 2.22 изображены в самом общем виде соответственно АЧХ и ФЧХ обыкновенных инерционных ДЗ или САУ. В таблице 2.4 приведены АЧХ и ФЧХ типовых ДЗ.

К обычным ЧХ относят ампли­тудно-фазовую частотную характе­ристику (АФЧХ). АФЧХ представляет собой годограф частотной ПФ W(j w ), т.е. геометрическое место концов вектора W(j w ) при изменении частоты w от 0 до ± ¥ . Эту характеристику строят на комплексной плоскости в полярных ( A , w ) или декартовых ( U , V ) координатах конца вектора W(j w ) по формулам (2.52), (2.53) или (2.55), (2.56).

Типичный годограф W(j w ) обыкно­венного инерционного ДЗ показан на рисунке 2.20 в диапазоне частот — ¥ w + ¥ . Рабочая ветвь годографа соответствует физически реализуемым положительным частотам w ³ 0. Фазовые углы j ( w ) отсчитывают от положительной действительной полуоси (+1) против движения часовой стрелки. Инерционные звенья характеризуются отрицательными фазовыми углами j ( w ) Логарифмические частотные характеристики

Логарифмические амплитудно-частотная (ЛАЧХ) и фазово-частотная (ЛФЧХ) характеристики удобны тем, что небольшим графиком может быть охвачен широкий диапазон частот. При этом одинаково наглядно изменение частотных свойств как на малых, так на средних и высоких частотах.

Небольшим графиком охватывается и широкий диапазон изменения амплитуды при одинаковой наглядности изменения больших и малых амплитуд.

В качестве примера на рисунках 2.23 и 2.24 показаны АЧХ одного и того же А-звена первого порядка (k = 1 и T = 10) в диапазонах частот, отличающихся только на один порядок. По второму графику практически не возможно судить о свойствах исследуемого ДЗ в области малых частот w

Для сравнения на рисунке 2.25 изображена ЛАЧХ указанного А-звена в диапазоне частот 0 w 4. Очевидно, что ЧХ, построенная в логарифмических координатах, точно передает характер исследуемой зависимости на всех частотах. Кроме того, значительные непрямолинейные участки ЛАЧХ с большой точностью могут быть заменены прямыми линиями – асимптотами. В этом случае ЛАЧХ изображают отрезками прямых (асимптот) и называют асимптотической или приближенной ЛАЧХ (рисунок 2.26).

Асимптоты имеют отрицательный и положительный наклон, кратный 20 дБ на декаду. Для построения асимптотической ЛАЧХ проводят простые вычисления, так как любую асимптоту можно построить по двум точкам. При построении ЛАЧХ (рисунок 2.25) по оси абсцисс откладывают частоту в логарифмическом масштабе, т.е. наносят отметки, соответствующие lg W , где – относительная частота. Однако около этих отметок указывают частоты w . Отрезок оси абсцисс, соответствующий изменению частоты в 10 раз, называют декадой ( ), а отрезок, соответствующий изменению частоты в два раза, – октавой ( ). Декада и октава – равномерные единицы на оси абсцисс. Нуль оси обсцисс лежит слева в бесконечности, так как lg0 = — ¥ . Поэтому при построении ЛАЧХ выбирают такой отрезок оси абсцисс, который охватывает требуемый диапазон частот ( w 1 , w 2 ), например, полосу пропускания (0, w п ). В качестве «базовой» частоты w 2 удобно в этом случае принять частоту среза, т.е. w 2 = w ср (рисунок 2.21). По оси ординат ЛАЧХ откладывают в равномерном масштабе в децибеллах (дБ) логарифми­ческую амплитуду

Децибелл является единицей логарифмической относительной величины. Изменение отношения двух амплитуд в 10 раз ( ) соответствует изменению усиления на 20 дБ (см. таблицу 2.5).

ЛФЧХ имеет такую же ось абсцисс, что и ЛАЧХ. По оси ординат ЛФЧХ откладывают в равномерном масштабе угол фазового сдвига j . Оси абсцисс ЛФЧХ и ЛАЧХ обычно совмещают, чтобы изменения фазы можно было сопоставлять с изменениями амплитуды.

Точные и приближенные (асимптотические) ЛАЧХ типовых ДЗ приведены в таблице 2.6.

В англоязычной технической литературе и современных математических системах (M A TLAB, Maple и др.) ЛАЧХ и ЛФЧХ называют диаграммами Боде ( Bode diagramms ).

Понятие об идентификации

Идентификацией динамической системы называют получение или уточнение по экспериментальным данным ММ этой системы. ММ может быть выражена ДУ, ПФ и т.п. Получение ММ в таком виде составляет задачу непараметрической идентификации. Параметры модели являются результатом параметрической идентификации.

Классическими методами непараметрической идентификации линей­ных САУ или ее элементов являются:

– метод временн Ï х характеристик;

– метод частотных характеристик;

– метод корреляционных функций.

К прямым методам параметрической идентификации относят:

– метод наименьших квадратов;

– метод сумм произведений и др.

Выбор того или иного метода идентификации и оценки параметров ММ зависит от априорной информации об объекте исследования и требованиях, предъявляемых к ММ. На практике чаще используют метод временн Ï х характеристик как более простой в организации эксперимента. Если эксперимент проводят для получения переходной характеристики h(t), метод называют методом переходных характеристик (функций). Традиционно объединяют метод переходных характеристик с регрессионным анализом, основу которого составляет метод наименьших квадратов (МНК). Созданная таким образом ММ является регрессионной моделью, качество которой гарантированно статистически.

Сущность метода переходных характеристик заключается в следующем. До начала эксперимента изучают объект идентификации и разрабатывают программу его исследования, а также оценивают возможность считать объект линейным, стационарным, с сосредоточенными параметрами. Названные допущения позволяют описать динамические свойства исследуемого объекта ОДУ (2.5) или ПФ. Если объектом идентификации является элемент САУ, то по его физическим свойствам предварительно выбирают ММ из числа типовых ДЗ (см. п. 2.1.2.2). Затем проводят активный эксперимент. Для этого сначала приводят исследуемый объект в исходное установившееся состояние. После этого ступенчато изменяют входное воздействие на D x и регистрируют соответствующее изменение во времени выходной величины D y = f ( t ). Эту зависимость называют разгонной характеристикой (см. п. 3.2) и обозначают y ( t ). По достижении объектом нового установившегося состояния прекращают эксперимент. Полученную экспериментально разгонную характеристику y ( t ) аппроксимируют теоретической переходной функцией h ( t ). Эта функция является решением ОДУ, принятого в качестве ММ объекта идентификации. Аппроксимирующую переходную функцию h ( t ) выбирают первоначально из переходных функций типовых ДЗ (см. таблицу 2.2) при условии наибольшего соответствия характеристик y ( t ) и h ( t ) друг другу. Типовое ДЗ, переходная функция которого выбрана в качестве аппроксимирующей, таким образом, принимается в качестве ММ исследуемого объекта. Определяется порядок ОДУ, решением которого является аппроксимирующая характеристика h ( t ). Уравнение характеристики h ( t ) записывают в явном виде (см. таблицу 2.1). В этом уравнении неизвестными остаются только коэффициенты. Их находят решением обратной задачи: по известным значениям функции h ( t ) и соответствующим им значениям аргумента (времени t ) рассчитывают неизвестные коэффициенты. Эта задача является оптимизационной в том смысле, что искомые коэффициенты должны обеспечить минимум расхождения между характеристиками h ( t ) и y ( t ). В качестве критерия расхождения чаще всего принимают минимум суммы квадратов ошибок по всей совокупности измерений (принцип Лежандра):

Этот метод называют методом наименьших квадратов (МНК). С его помощью строят уравнение регрессии h ( t ), которым аппроксимируют разгонную характеристику y ( t ). Идентификация будет полной, если будет доказана адекватность принятой ММ. Названную модель считают адекватной, если расхождение между характеристиками h ( t ) и y ( t ) является незначительным в статистическом смысле. Оценку адекватности уравнения регрессии в целом проводят по F -критерию Фишера. При положительном результате проверки уравнения регрессии оценивают значимость его коэффициентов по t -критерию Стьюдента. Одновременно коэффициенты уравнения регрессии являются коэффициентами ММ.

3. Частотные характеристики звеньев и систем автоматического управления. ч. 3.2 Простейшие типовые звенья

Лекции по курсу «Управление Техническими Системами» читает Козлов Олег Степанович на кафедре «Ядерные реакторы и энергетические установки» факультета «Энергомашиностроения» МГТУ им. Н.Э. Баумана. За что ему огромная благодарность!

Данные лекции готовятся к публикации в виде книги, а поскольку здесь есть специалисты по ТАУ, студенты и просто интересующиеся предметом, то любая критика приветствуется.

Тема сегодняшней статьи:
3.2. Типовые звенья систем автоматического управления (регулирования). Классификация типовых звеньев. Простейшие типовые звенья.

Хочешь вкусить плодов познания? — Грызи гранит науки!

Понятие “типовые звенья” в теории управления техническими системами, в основном, связано с описанием САУ (САР) в переменных “вход – выход”, т.е. описание систем в передаточных функциях. Любую линейную САУ (САР) или линеаризованную САР можно структурно расчленить на простейшие элементы (звенья), соединенные между собой соответствующими последовательными, параллельными связями, местными и локальными обратными связями, сумматорами, сравнивающими устройствами и т.д.

Достигнуто общепринятое соглашение, что наиболее удобно расчленять структурную схему САР на звенья 1-го и 2-го порядков. Принято называть такие простейшие звенья типовыми.

С другой стороны, реальная линеаризованная (линейная) система состоит из набора отдельных узлов и агрегатов, соединенных соответствующими связями, причем порядок уравнений динамики вышеуказанных узлов и агрегатов может быть и выше второго. В этом случае звенья (узлы и агрегаты) САР можно классифицировать по их свойствам.

Различают 3 типа звеньев:

Существуют также особые звенья, которые будут рассмотрены позднее.

Учитывая, что передаточная функция линейного (линеаризованного) звена может быть записана как:

где: и — полиномы по степеням s, причем коэффициенты при низшей степени s в полиномах , равны 1, классификацию на типы звеньев можно объяснить видом полиномов или (что эквивалентно) видом коэффициентов в соответствующих уравнениях динамики звена.
Подробнее о передаточной функции см. здесь.

Позиционным звеном считают звено, в котором полиномы N(s) и L(s) содержат свободные члены (равные 1). Например:

или в уравнении динамики (x(t) – входной сигнал, y(t) – выходной):

Из типовых звеньев (1-го и 2-го порядка) к позиционным звеньям относятся: идеальное усилительное звено, апериодические звенья 1-го и 2-го порядка, колебательное звено и форсирующее звено.

Дифференцирующим звеном считается звено, в котором полином L(s) содержит свободный член (равный 1), а полином N(s) не содержит свободного члена ().
Например:

или в уравнении динамики:

Из типовых звеньев к дифференцирующим звеньям относятся идеальное дифференцирующее звено, инерционно-дифференцирующее звено.

Интегрирующим звеном считается звено, в котором полином N(s) содержит свободный член (), а полином L(s), не содержит свободного члена (). Например:

или в уравнении динамики:

Из типовых звеньев к интегрирующим звеньям относятся идеальное интегрирующее звено, инерционно–интегрирующее звено.

Пример переходного процесса при единичном ступенчатом воздействии на три разных звена, приведенных выше:

3.2.1. Идеальное усилительное звено

Уравнение динамики каждого звена имеет вид: , т.е. уравнение не является дифференциальным, следовательно, данное звено является безынерционным.

Переходя к изображениям , получаем:
– уравнение динамики звена в изображениях.
Передаточная функция идеального усилительного звена:

АФЧХ не зависит от ω, поскольку:

Рисунок 3.2.1 АФЧХ идеального усилительного звена

Годограф АФЧХ “вырождается” в точку: U(ω) =K; V(ω) =0;
A(ω) ≡modW(iω) =│W(iω)│=K =>
Lm(ω)=20lgA(ω) =20lgK; =>
φ(ω) = const = 0 т.е. фазового сдвига нет. Следовательно, данное звено является безынерционным, чисто усилительным звеном.

Рисунок 3.2.4 ЛАХ идеального усилительного звена

Найдем весовую w(t) и переходную h(t) функции звена (подробнее см. здесь).
Весовая функция:

3.2.2. Идеальное дифференцирующее звено

Уравнение динамики звена имеет вид:

где: – постоянная времени.

Переходя к изображениям:

Уравнение динамики звена в изображениях:

Передаточная функция идеального дифференцирующего звена:

Графики годографа АФЧХ, A(ω) и φ(ω) имеют вид:

Логарифмическая амплитудная характеристика ЛАХ::

Из рисунка 3.2.9 видно, что данное звено обеспечивает опережение по фазе на /2 (при любой частоте входного сигнала).

Чем выше частота единичного гармонического сигнала на входе в звено, тем выше амплитуда выходного сигнала в установившемся режиме.

Найдем весовую функцию звена:

Учитывая, что δ(t) имеет вид как на рис.3.2.11 (зависимость показана утрированно), а весовая функция пропорциональна производной от δ(t):

Найдем переходную функцию звена:

Иногда идеальное дифференцирующее звено представляется в виде или . В последнем варианте коэффициент К имеет смысл постоянной времени.

3.2.3. Идеальное интегрирующее звено

Уравнение динамики такого звена имеет вид:

или в изображениях:

Передаточная функция идеального интегрирующего звена:

Умножая числитель и знаменатель на i, получаем:

Годограф АФЧХ имеет вид:

Данное звено всегда дает отставание по фазе на угол .

Найдем весовую функцию звена:

Найдем переходную функцию звена:

Примерами устройств, близких к идеальному усилительному звену, можно считать: широкополосный электронный усилитель (приближенно), механический редуктор без учета инерционности и нелинейных эффектов, жесткую механическую муфту и т.д.

Примером идеального дифференцирующего звена можно считать тахогенератор:

где u(t) – напряжение на клеммах тахогенератора, φ(t) – угол поворота якоря (ротора) тахогенератора.

Примером идеального интегрирующего звена можно считать большинство электродвигателей (без учета инерционности якоря), где входным воздействием считать напряжение в обмотке возбудителя (двигателем постоянного тока), а выходным воздействием – угол поворота выходного вала.

Пример интегрирующего и дифференцирующего звена на основе конденсатора

Один и тот же технический элемент, с точки зрения теории автоматического управления, может выступать как в качестве интегрирующего, так и в качестве дифференцирующего звена.

В качестве примера интегрирующего звена можно рассмотреть конденсатор, где входным воздействием является ток, а выходным результатом является напряжение на клеммах конденсатора. Действительно, при малом токе и большой емкости конденсатора, в случае ступенчатого изменения тока с 0, мы получаем график напряжения, совпадающий по форме с переходной функцией интегрирующего звена. На рисунке 3.2.20 представлена такая модель, где ток ступенькой меняется на пятой секунде расчета.

Если построить с помощью гармонического анализатора ЛАХ и ФЧХ, мы увидим, что угол наклона ЛАХ составляет -20 dB/dec, а угол сдвига фазы равен — или -90 градусов на графике (см. рис. 3.2.21).

Тот же самый конденсатор, при определенных параметрах сети, может выступать в качестве идеального дифференцирующего звена, если в качестве входного воздействия подавать напряжение, а в качестве результирующей величины использовать ток в цепи.

Электрическая схема использования конденсатора в качестве дифференцирующего звена с гармоническим анализатором приведена на рисунке 3.2.22. На графиках гармонического анализатора видно, что угол наклона ЛАХ составляет 20 dB/dec, а угол сдвига фазы равен или 90 градусов на графике.

Примеры моделей, использованные в данной лекции, можно взять в этом архиве.

Апериодическое (инерционное, статическое) звено. Передаточная функция и уравнения

Дифференциальное уравнение, описывающее взаимосвязь входного и выходного сигналов апериодического типового динамического звена (ТДЗ), можно представить в следующем виде:

Где: k – коэффициент передачи, Т0 – постоянная времени.

Дифференциальное уравнение является не самой удобной формой представления математической модели объекта или звена. Это связано с тем, что решения любого дифференциального уравнения довольно сложная вычислительная процедура. Более удобна и, соответственно чаще используемая, математическая модель объекта, записанная в виде передаточной функции.

Передаточная функция – это преобразованное по Лапласу исходное дифференциальное уравнение, то есть уравнение, записанное в виде преобразованных по Лапласу выходного и входного сигналов объекта (звена).

Исходное дифференциальное уравнение в преобразовании Лапласа называют оригиналом, а записанное в операторной форме преобразованное уравнение – его изображением. Суть преобразования Лапласа заключается в замене на функции комплексных переменных Хвых(р) и Хвх(р) функций вещественных переменных Хвых(τ) и Хвх(τ), где р – оператор Лапласа (комплексное число р = ±m±in). Данные функции связываются между собой интегралом Лапласа:

Для большинства используемых в ТДЗ дифференциальных уравнений, чисто формальным условием перехода от оригинала к изображению будут представленные ниже замены:

Использовав приведенное выше условие довольно легко получить изображение, то есть перейти к операторной форме записи дифференциального уравнения апериодического звена.

Оригинал дифференциального уравнения апериодического звена имеет следующий вид:

Операторная форма записи (изображения) уравнения апериодического звена:

Огромным преимуществом данного преобразования является то, что записанное в операторной форме исходное дифференциальное уравнения становится алгебраическим. Но стоит отметить, что если бы все дифференциальные уравнения можно было бы преобразовать по Лапласу, то в математике произошла бы революция, так как решение алгебраических уравнение значительно проще дифференциальных. К сожалению, такое преобразование возможно лишь для ограниченного количества уравнений, в том числе для уравнений типовых динамических звеньев (ТДЗ).

Поскольку уравнение апериодического звена приняло вид алгебраического, то его можно записать следующим образом:

Из полученного выражения достаточно легко выделить отношение Хвых(р) / Хвх(р), которое называется передаточной функцией и для апериодического звена имеет вид:

У каждого типового динамического звена присутствует ряд типовых частотных характеристик: амплитудно-частотную (АЧХ), фазочастотную (ФЧХ), амплитудно-фазовую частотную (АФЧХ или АФХ), логарифмическую амплитудно-частотную (ЛАЧХ), логарифмическую фазочастотную (ЛФЧХ).

На практике чаще всего используется АФЧХ или АФХ.

Амплитудно-фазовая характеристика это вектор, а график АФХ – годограф этого вектора, то есть кривая на комплексной плоскости, которую описывает конец вектора при изменении частоты ω от 0 до ∞. Вектор характеризуется двумя величинами – длина (скаляр или вектор по модулю) и направление (градиент).

Вектор аналитически можно записать в виде двух проекций на действительную и мнимую оси, и выразить эти проекции через угол α:

После использования формулы Эйлера:

Где |W| — длина вектора или вектор по модулю, i – мнимое число:

Аналитическое выражение для любого вектора АФХ любого типичного динамического звена легко получить из передаточной функции, заменив в ней оператор Лапласа р на выражение iω. Где ω – частота колебаний (ω = 2π/Т), Т – период колебаний.

Для апериодического звена амплитудно-фазовая частотная характеристика (АФХ) имеет вид:

Для записи вектора АФХ в виде проекций на действительную и мнимую ось необходимо произвести следующие преобразования:

Изменяя частоту ω от 0 до ∞ можно построить на комплексной плоскости годораф (график вектора АФХ), представляющий из себя полуокружность (рисунок а)), которая располагается в четвертом квадранте комплексной плоскости. Диаметр полуокружности равен коэффициенту k.

На рисунке б) показана типовая переходная функция апериодического звена. Как видно из графика, она изменяется по экспоненциальному закону. У любой экспоненты есть одно прекрасное свойство – если к любой ее точке провести касательную, а затем точку пересечения касательной с асимптотой и точку касания спроецировать на ось времени, то получится один и тот же отрезок времени на оси времени. Эта проекция, которую называют постоянной времени, соответствует значению коэффициента Т0 в АФХ и передаточной функции апериодического звена, а ордината асимптоты, к которой стремится экспонента, соответствует коэффициенту k в передаточной функции. Таким образом, по переходной характеристике апериодического звена довольно легко найти коэффициенты Т0 и k в передаточной функции звена.

Физическим примером апериодического звена может быть конденсатор, при подаче напряжения на который заряд происходит не мгновенно, а с определенной задержкой, или же электродвигатель, который при подаче питания разгоняется не мгновенно, а через какое-то время t. На рисунке в) показан пример установки, которую также можно считать апериодическим звеном (вода – заполняющая бак).

В бак поступает определенное количество воды с расходом Q1. В то же время из бака вытекает вода с расходом Q2. Регулируемый параметр в этой системе Хвых – уровень воды в баке H.

При подаче единичного скачка Q1 (открыли входной вентиль) уровень воды H в баке повышается. При этом растет гиростатическое давление и возрастает Q2. Через некоторое время уровень воды H в баке стабилизируется (экспонента приближается к асимптоте). Способность самостоятельно восстанавливать равновесие, которое присуща объектам, аппроксимируемым апериодическим звеном, за счет стока или притока вещества или энергии называют самовыравниванием. Количество самовыравнивания определяет коэффициент р, равный обратному значению коэффициента k в передаточной функции звена, то есть р = 1/k.

В литературе объекты с передаточной функцией апериодического звена называют статическими.


источники:

http://habr.com/ru/post/532700/

http://elenergi.ru/aperiodicheskoe-zveno.html