Дифференциальные уравнения в прикладных задачах примеры

Примеры дифференциальных уравнений с решениями

  • Попробуйте решить приведенные ниже дифференциальные уравнения.
  • Нажмите на изображение уравнения, и вы попадете на страницу с подробным решением.

Примеры решений дифференциальных уравнений первого порядка

Примеры решений дифференциальных уравнений второго и высших порядков

Найти общее решение дифференциального уравнения, или решение с заданными начальными условиями.

Примеры решений линейных дифференциальных уравнений с постоянными коэффициентами

Примеры решений линейных уравнений в частных производных первого порядка

Найти общее решение линейного однородного уравнения в частных производных первого порядка и решить задачу Коши с указанным граничным условием:
,
при .

Найти поверхность, удовлетворяющую данному уравнению
,
и проходящую через данную окружность
, .

Автор: Олег Одинцов . Опубликовано: 28-01-2016 Изменено: 26-11-2021

ГЛАВА 3. Применение дифференциальных уравнений первого порядка для решения прикладных задач физики, биологии, медицины

Задача 1. Скорость размножения некоторых бактерий пропорциональна количеству бактерий, имеющихся в наличии в рассматриваемый момент времени t. Количество бактерий утроилось в течение 5 часов. Найти зависимость числа бактерий от времени.

Решение. Обозначим количество бактерий в момент времени t через x, тогда — скорость размножения бактерий.

По условию задачи — уравнение с разделяющимися переменными.

Потенцируем последнее выражение и получаем общее решение нашего дифференциального уравнения.

Найдем частное решение, соответствующее начальным условиям

При t=0, x=x0 -частное решение дифференциального уравнения.

Чтобы найти искомую зависимость, определим коэффициент пропорциональности k. По условию задачи известно, что через 5 часов .

Прологарифмируем последнее выражение

Окончательно получаем

Задача 2. При прохождении света через вещество происходит ослабление интенсивности светового потока, вследствие превращения световой энергии в другие виды энергии, т.е. происходит поглощение света веществом. Найти закон поглощения, если известно, что ослабление интенсивности пропорционально толщине слоя и интенсивности падающего излучения.

Решение. Исходя из условия задачи, можно сразу написать дифференциальное уравнение

,

где dI -ослабление интенсивности при прохождении слоя толщиной dx.

k -коэффициент пропорциональности.

Знак минус показывает, что интенсивность падает по мере прохождения слоя.

Проинтегрируем наше уравнение, предварительно разделив переменные

Исходя из того, что падающий на поверхность вещества свет имел интенсивность I=I0 , при x=0, найдем частное решение

Итак, мы получили закон поглощения света веществом ( закон Бугера), где
k -натуральный показатель поглощения.

Задача 3. Известно, что механические свойства биологических объектов изучаются с помощью вязкоупругих моделей (поршень — пружина). Одной из найболее распространенных является модель Кельвина — Фойхта, состоящая из параллельно соединенных пружины и поршня (см. рис.1).

Рис. 4. Модель Кельвина — Фойхта

Найти зависимость деформации от времени , если к модели приложена постоянная нагрузка.

Решение. Согласно условию задачи , и учитывая также, что при малых деформациях выполняется закон Гука, т.е. , а механическое напряжение, возникающее в вязкой среде пропорционально скорости деформации, т.е. , мы можем написать дифференциальное уравнение.

, или

Проинтегрируем полученное дифференциальное уравнение от начального момента времени и нулевой деформации до текущих значений t и , мы будем иметь сразу частное решение.

Потенцируя последнее выражение, получаем

Находим отсюда

Как видно из полученной формулы, в рамках модели Кельвина — Фойхта деформация при постоянной нагрузке возрастает с течением времени. Это соответствует реальным материалам. Такое свойство материала названо текучестью.

Занятие по математике (2 курс) Решение задач прикладного характера на составление дифференциальных уравнений

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Решение задач прикладного характера на составление дифференциальных уравнений.

Преподаватель математики Елена Геннадьевна Шерстнева

ЗАНЯТИЕ ПО МАТЕМАТИКЕ ( 2 КУРС)

Решение задач прикладного характера на составление дифференциальных уравнений .

Вид занятия: Применение знаний, умений и навыков полученных при изучении дифференциальных уравнений.

Учебные: показать алгоритм решения задач на составление дифференциальных уравнений, познакомить с математическими моделями в физике, биологии, экономике. Учащиеся должны понимать сущность приложения математики к решению технических задач, которая заключается в том, что задачу переводят на язык математики, решают ее, как принято в математике, и интерпретируют на языке исходных данных.

Воспитательные. Формировать научное мировоззрение. Продолжить знакомить учащихся с понятием математического моделирования, рассказать о том, что одними и теми же дифференциальными уравнениями можно описывать совершенно разные реальные процессы, например электротехнические, механические и другие, т.е. дифференциальные уравнения как математические модели обладают большой общностью и в этом их важное философское и познавательное значение.

Межпредметные связи. Рассматриваемые на занятии математические модели в физике, биологии, экономике помогут увидеть силу межпредметных связей, важную роль математики, дающей мощный аппарат для решения многих задач, которые выдвигаются и успешно решаются в различных областях науки и практики.

Мотивация познавательной деятельности учащихся. Показать практическую значимость изучаемого материала, его широкое применение в общетехнических и специальных дисциплинах. Многие производственные процессы описываются дифференциальными уравнениями. Поэтому важно не только уметь решать сами дифференциальные уравнения, но и уметь составлять эти уравнения исходя из практической потребности.

Основные знания и умения: иметь понятие о решении несложных задач на составление дифференциальных уравнений по физике, электротехнике, экономике.

Раздаточный материал: Опорный конспект с планом занятия и набором задач для решения.

Технические средства обучения: использование фрагментов из компьютерной программы обучения «Функции и графики», компьютерная презентация конструкторской задачи.

Литература: 1. Валуцэ И.И. Математика для техникумов

2. Соловейчик И.Л. Сборник задач по математике для техникумов

3. Баврин И.И. Начала анализа и математические модели в естествознании и

4. Филимонова Е.В. Математика (среднее профессиональное образование).

Вопросы и упражнения для выполнения на занятии

Какое уравнение называется дифференциальным?

Назовите виды дифференциальных уравнений.

Решите уравнение: dx = (1+ x ) dy . Найти уравнение интегральной кривой, проходящей через точку (1; 4). Задача Коши.

Скорость размножения некоторых бактерий пропорциональна их количеству М в рассматриваемый момент времени t . Найти зависимость количества бактерий от времени. Начальные условия М при t =0

Скорость распада радия пропорциональна его начальному количеству R в данный момент времени t . Найти закон радиоактивного распада. Начальные условия R = R 0 при t =0.

Скорость изменения количества населения прямо пропорциональна этому количеству А на данный период времени. Построить математическую модель прироста (убыли) населения. Начальные условия А = А при t =0.

Решить уравнение: ху+ у = х (х ≠ 0).

Инженерно-конструкторская задача. Найти форму автомобильной фары так, чтобы все лучи от зеркала фары шли цилиндрическим световым пучком.

Задача «Истощение ресурсов» В 1980 году для обеспечения пищей одного человека требовалась площадь 0,1 га и на земном шаре было 4000 млн га пахотной земли. Предположим, что с 1980 г эти условия по настоящее время не изменились и не изменятся в будущем, а также не появились и не появятся новые источники пищи. Тогда население Земли должно быть ограничено количеством 40 000 млн человек. Когда будет достигнут этот предел насыщения, если в 1980 году оно составляло 3600 млн человек и непрерывно растет со скоростью 1,7 % в год.

Дополнительные задачи: Скорость прямолинейного движения точки выражается формулой V = 3 + 4 t . Найдите уравнение движения точки, если S = 10 м при t =1 c

Подумайте, какая функция может являться решением уравнения: у » = — k 2 у (уравнение гармонических колебаний). Вторая производная функции равна самой функции с точностью до постоянного множителя.

Запишите домашнее задание №10, 107 учебник И.И. Валуцэ стр.351

«Скорость обесценивания оборудования вследствие его износа в данный момент времени пропорциональна его фактической стоимости ……»

Подведение итогов урока

Математическая модель, основанная на некотором упрощении, никогда не бывает тождественна рассматриваемому объекту, не передает всех его свойств и особенностей, а является его приближенным отражением. Однако, благодаря замене реального объекта соответствующей ему моделью появляется возможность математически сформулировать задачу его изучения и воспользоваться для анализа его свойств математическим аппаратом, который не зависит от конкретной природы данного объекта. Этот аппарат позволяет единообразно описать широкий круг фактов и наблюдений, провести их детальный количественный анализ, предсказать, как поведет себя объект в различных условиях, т.е. прогнозировать результаты будущих наблюдений.

В 1917 году Эйнштейн сделал первую попытку применить общую теорию относительности для описания пространственно временной структуры Вселенной. А основные уравнения теории относительности – это дифференциальные уравнения, имеющие множество решений. Отсюда множество моделей Вселенной.

Дифференциальные уравнения показательного роста (убывания).

Дифференциальные уравнения имеют большое прикладное значение, являясь мощным орудием исследования задач естествознания и техники, они широко используются в механике, астрономии, физике, во многих задачах химии, биологии. Это объясняется тем, что весьма часто объективные законы, которым подчиняются те или иные явления (процессы), записываются в форме дифференциальных уравнений, а сами эти уравнения являются средством для количественного выражения этих законов. Например, законы механики Ньютона позволяют механическую задачу описания движения системы материальных точек или твердого тела свести к математической задаче нахождения решений дифференциальных уравнений. Расчет радиотехнических схем и вычисление траектории спутников, исследование устойчивости самолета в полете и выяснение течения химических реакций – все это производится путем изучения и решения дифференциальных уравнений.

Мы будем рассматривать дифференциальное уравнение вида:

где kconst , причем k может быть : k > 0 или k

Зная формулу производной показательной функции, легко догадаться, что решением этого уравнения, является любая функция вида:

т.к. C – произвольная постоянная, то уравнение имеет бесконечно много решений.

Смысл дифференциального уравнения заключается в том, что скорость изменения функции в точке x пропорциональна значению самой функции в этой точке .

Приведем примеры, в которых величины изменяются по указанному закону .

Если r ‘ ( t ) скорость радиоактивного распада в момент времени t, то скорость уменьшения массы пропорциональна его количеству.

Значит, решением уравнения, является функция r ‘ ( t ) = С e kt . Найдем из условия, что в начальный момент времени масса радиоактивного вещества была равна:

Промежуток времени T , через который масса радиоактивного вещества уменьшится в 2 раза называют “периодом полураспада”, зная Т , можно найти k :

Логарифмируя по основанию е , получаем — k T = – ln 2 ,

Например, для радия период полураспада . Поэтому, , следовательно, через 1 млн. лет от начальной массы r o останется.

Задача: Скорость размножения бактерий m (t) связана с массой m(t) бактерий в момент времени t уравнением:

где k > 0, зависящее от вида бактерий и внешних условий.

Решениями этого уравнения являются функции m ( t ) = C · e kt .

Постоянную C можно найти из условия, что в момент t = 0 масса m o бактерий известна, тогда

Задача. Два тела имеют одинаковую температуру – 100 0 . Они вынесены на воздух, его температура 0 0 . Через 10 мин. температура одного тела стала 80 0 , а второго – 64 0 . Через сколько минут после начала остывания разность их температур будет равна 25 0 .

Значит, 80 0 = 100 0 · e -10 k , e -10 k = 0,8

-10 k = ln 0,8,

2) 64 0 = 100 0 · 100 0 · e -10 k , тогда e -10 k = 0,64, следовательно -10 k = ln 0,64,

Следовательно

Ответ: t = 31,06 мин .

Задача. Задача о гармонических колебаниях.

В практике часто встречаются процессы, которые периодически повторяются например, колебательные движения маятника, струны, пружины, процессы связанные с переменным электрическим током, магнитным полем и т.д. Решение многих таких задач сводится к решению дифференциальных уравнений

где k – заданное положительное число

Инженерно-конструкторская задача. Найти форму автомобильной фары так, чтобы все лучи от зеркала фары шли цилиндрическим световым пучком. (Демонстрация презентации).

1.

2.

3.

4.

5.

Решаем квадратное уравнение относительно y’:

следовательно

Решим это уравнение, взяв + , заменяем на получаем

,умножаем обе части на dx , отсюда это однородное уравнение.

Сделаем замену y = z x и продифференцируем ее по x, получим dy = x dz + z dx , подставляем

Обе части делим на x получаем , раскрываем скобки и приводим подобные , разделяем переменные , интегрируем , решением будет функция далее , т.к , то раскрываем скобки в итоге получаем — это каноническое уравнение параболы с вершиной (; 0) и фокусом в точке (0;0).

Задача «Истощение ресурсов» В 1980 году для обеспечения пищей одного человека требовалась площадь 0,1 га и на земном шаре было 4000 млн га пахотной земли. Предположим, что с 1980 г эти условия по настоящее время не изменились и не изменятся в будущем, а так же не появились и не появятся новые источники пищи. Тогда население Земли должно быть ограничено количеством 40 000 млн человек. Когда будет достигнут этот предел насыщения, если в 1980 году оно составляло 3600 млн человек и непрерывно растет со скоростью 1,7 % в год.

Решение. А = А0 e к t

А0 = 3,6 · 10 9 , А = 40 · 10 9 , k = 0,017

40 · 10 9 = 3,6 · 10 9 · e 0,017t , t = (2 ln 10/3) /0,017 ≈ 142 г.

Ответ: В 2122 году наступит предел насыщения

Беседа о бережном отношении к природе и ее богатствам.


источники:

http://megaobuchalka.ru/9/21993.html

http://infourok.ru/zanyatie-po-matematike-kurs-reshenie-zadach-prikladnogo-haraktera-na-sostavlenie-differencialnih-uravneniy-718684.html