Дифференциальные уравнения задача 2 вариант 2

Дифференциальные уравнения задача 2 вариант 2




Решебник Кузнецова Л. А.
V Дифференциальные уравнения

Задание 2. Найти общий интеграл дифференциального уравнения.

&nbsp &nbsp &nbsp &nbsp Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 17

&nbsp &nbsp &nbsp &nbsp Вариант 1 &nbsp &nbsp Вариант 2 &nbsp &nbsp Вариант 3 &nbsp &nbsp Вариант 4 &nbsp &nbsp Вариант 5 &nbsp &nbsp Вариант 6

&nbsp &nbsp &nbsp &nbsp Вариант 7 &nbsp &nbsp Вариант 8 &nbsp &nbsp Вариант 9 &nbsp &nbsp Вариант 10 &nbsp &nbsp Вариант 11 &nbsp &nbsp Вариант 12

&nbsp &nbsp Вариант 13 &nbsp &nbsp Вариант 14 &nbsp &nbsp Вариант 15 &nbsp &nbsp Вариант 16 &nbsp &nbsp Вариант 17 &nbsp &nbsp Вариант 18

&nbsp &nbsp Вариант 19 &nbsp &nbsp Вариант 20 &nbsp &nbsp Вариант 21 &nbsp &nbsp Вариант 22 &nbsp &nbsp Вариант 23 &nbsp &nbsp Вариант 24

&nbsp &nbsp Вариант 25 &nbsp &nbsp Вариант 26 &nbsp &nbsp Вариант 27 &nbsp &nbsp Вариант 28 &nbsp &nbsp Вариант 29 &nbsp &nbsp Вариант 30

&nbsp &nbsp &nbsp &nbsp 2.17 Найти общий интеграл дифференциального уравнения

.

Решение.

&nbsp &nbsp &nbsp &nbsp Это однородное дифференциальное уравнение. Решение ищем в виде &nbsp &nbsp &nbsp &nbsp . Тогда &nbsp &nbsp &nbsp &nbsp.

&nbsp &nbsp &nbsp &nbsp Уравнение запишется в виде &nbsp &nbsp или &nbsp &nbsp Разделим переменные, умножив уравнение на &nbsp &nbsp &nbsp &nbsp и разделив его на &nbsp &nbsp &nbsp &nbsp . Получим &nbsp &nbsp Проинтегрируем полученное уравнение &nbsp &nbsp Отсюда &nbsp &nbsp Найдём интеграл &nbsp &nbsp Тогда общее решение уравнения запишется в виде или в виде &nbsp &nbsp Потенцируем последнее уравнение и учитываем, что &nbsp &nbsp &nbsp &nbsp . Получим &nbsp &nbsp Общий интеграл исходного дифференциального уравнения &nbsp &nbsp Ответ:

Дифференциальные уравнения (варианты)

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , .

Подставим в исходное , , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 2

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3-3r2+4= 0

Корни характеристического уравнения:

R1 = -1 и корень характеристического уравнения r2 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e-x, y2 = e2x, y3 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = (2•x-3)•e-x

Уравнение имеет частное решение вида:

Y’ =

Y» =

Y»’ =

которые подставляем в исходное дифференциальное уравнение:

-3+4=

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r3 — 16r = 0

Корни характеристического уравнения:r1 = -4, r2 = 0, r3 = 4

Следовательно, фундаментальную систему решений составляют функции:

Y1 = e-4x, y2 = e0x, y3 = e4x

Общее решение однородного уравнения имеет вид:

Правая часть F(x) = e2•x+3cos2x-sinx

Будем искать отдельно частные решения для F1(x) = e2•x, F2(x) = 3cos2x, F3(x) = — sinx

Рассмотрим правую часть: F1(x) = e2•x

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 0.

Следовательно, число α + βi = 2 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•e2x) -16(2•A•e2x) = e2•x или -24•A•e2x = e2•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/24;

Частное решение имеет вид: y* = -1/24e2x

Рассмотрим правую часть: F2(x) = 3•cos(2•x)

Поиск частного решения.

Уравнение имеет частное решение вида:y* = Acos(2x) + Bsin(2x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (8•A•sin(2x)-8•B•cos(2x)) -16(2•B•cos(2x)-2•A•sin(2x)) = 3•cos(2•x)

или 40•A•sin(2x)-40•B•cos(2x) = 3•cos(2•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B =-3/40;

Частное решение имеет вид:

Поиск частного решения.

Уравнение имеет частное решение вида: y* = Acos(x) + Bsin(x)

Которые подставляем в исходное дифференциальное уравнение:

Y»’ -16y’ = (A•sin(x)-B•cos(x)) -16(B•cos(x)-A•sin(x)) = — sin(x)

или 17•A•sin(x)-17•B•cos(x) = — sin(x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/17;B = 0;

Частное решение имеет вид: y* = -1/17cos(x) + 0sin(x) или y* = -1/17cos(x)

Окончательно, общее решение данного уравнения

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -6 r + 8 = 0

Корни характеристического уравнения: r1 = 2, r2 = 4

Следовательно, фундаментальную систему решений составляют функции: y1 = e4x, y2 = e2x

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 -4 r + 4 = 0

Корни характеристического уравнения:

Корень характеристического уравнения r1 = 2 кратности 2.

Следовательно, фундаментальную систему решений составляют функции: y1 = e2x, y2 = xe2x

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = e2•x•sin(5•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 1, Q(x) = 0, α = 2, β = 5.

Следовательно, число α + βi = 2 + 5i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = e2x(Acos(5x) + Bsin(5x))

Которые подставляем в исходное дифференциальное уравнение:

Y» -4y’ + 4y = (-e2x((20•A+21•B)•sin(5x)+(21•A-20•B)•cos(5x))) -4(e2x((2•B-5•A)•sin(5x)+(2•A+5•B)•cos(5x))) + 4(e2x(Acos(5x) + Bsin(5x))) = e2•x•sin(5•x)

или -25•A•e2x•cos(5x)-25•B•e2x•sin(5x) = e2•x•sin(5•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = -1/25;

Частное решение имеет вид: y* = e2x(0cos(5x) -1/25sin(5x)) илиy* =-1/25 e2x sin(5x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Тогда . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Метод исключения неизвестных.

Продифференцируем по х первое уравнение

Исключая с помощью второго уравнения , получим ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное ,

Тогда частное решение

Общее решение неоднородного примет вид:

Из первого уравнения

Ответ:

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения , получим

, ,

Таким образом, задача свелась к линейному неоднородному уравнению с постоянными коэффициентами второго порядка. Решим соответствующее однородное уравнение.

Характеристическое уравнение имеет корни и . Следовательно, общее решение для х будет .

Частное решение неоднородного уравнения будем искать в виде , тогда , . Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Из второго уравнения

Ответ:

Вариант 5

Данное уравнение – уравнение с разделяющимися переменными. Разделим переменные: . Интегрируем:

Посчитаем интегралы отдельно:

Тогда: или

Ответ:

Это уравнение вида — линейное дифференциальное уравнение I порядка. Такое уравнение можно решать методом Бернулли с помощью подстановки где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Интегрируя, находим

Подставим найденную функцию v во второе уравнение . Получим откуда

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Используем условие . Тогда , Окончательно

Ответ:

Данное уравнение не содержит у, следовательно понизить его порядок можно с помощью подстановки , тогда .

Отсюда — линейное дифференциальное уравнение. Приведём к виду: ,

Замена где u и v две неизвестные функции. Подставляя в исходное уравнение получим

или

Так как одна из неизвестных функций может быть выбрана произвольно, возьмем в качестве v одно из частных решений уравнения

Тогда исходное дифференциальное уравнение примет вид

Рассмотрим каждое из получившихся уравнений. Первое уравнение – дифференциальное уравнение с разделяющимися переменными. Разделяем переменные:

Подставим найденную функцию v во второе уравнение . Получим

Это дифференциальное уравнение с разделяющимися переменными. Решая его, находим функцию и:

Возвращаясь к функции у, получим

Ответ:

Решим соответствующее однородное уравнение

Составим характеристическое уравнение Его корни

Так как его корни действительные и есть кратные, общее решение однородного уравнения имеет вид

.

Частное решение неоднородного уравнения будем искать в виде , тогда , . , , .

Подставим в исходное , . Приравнивая коэффициенты при одинаковых степенях х в левой и правой части получим систему:

Тогда частное решение

Общее решение неоднородного примет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 — r= 0

Вынесем r за скобку. Получим: r(r-1) = 0

Корни характеристического уравнения:r1 = 0, r2 = 1

Следовательно, фундаментальную систему решений составляют функции: y1 = e0x, y2 = ex.

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) =

Уравнение имеет частное решение вида:

которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Частное решение имеет вид:

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

Корни характеристического уравнения:(комплексные корни): r1 = 4i, r2 = -4i

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 16•cos(4•x)-16•e4x, будем искать отдельно частные решения для f1(x)= 16•cos(4•x) и для f2(x)= 16•e4x

Для f1(x) = 16•cos(4•x) имеем

Уравнение имеет частное решение вида: y ч1* = x (Acos(4x) + Bsin(4x))

Которые подставляем в исходное дифференциальное уравнение:

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 0;B = 2;

Частное решение имеет вид: yч1* = x (0cos(4x) + 2sin(4x)) или y ч1* = 2xsin(4x)

Частное решение ищем в виде y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 16, Q(x) = 0, α = 4, β = 0.

Следовательно, число α + βi = 4 + 0i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида:

Которые подставляем в исходное дифференциальное уравнение:

Y» + 16y = (16•A•e4x) + 16(Ae4x) = 16•e4•x или 32•A•e4x = 16•e4•x

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = 1/2;

Частное решение имеет вид: y*ч2 = 1/2e4x

Таким образом, общее решение дифференциального уравнения имеет вид:

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 9 = 0

Корни характеристического уравнения: r1 = -3i, r2 = 3i

Общее решение однородного уравнения имеет вид:

Для поиска частного решения воспользуемся методом вариации произвольных постоянных. Для этого решим систему:

Тогда окончательно

Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами.

Решение уравнения будем искать в виде y = erx. Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами: r2 + 1 = 0

Корни характеристического уравнения:(комплексные корни): r1 = i,

Следовательно, фундаментальную систему решений составляют функции:

Общее решение однородного уравнения имеет вид:

Рассмотрим правую часть: f(x) = 2•cos(3•x)-3•sin(3•x)

Поиск частного решения.

Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида: R(x) = eαx(P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы

Имеет частное решение y(x) = xkeαx(R(x)cos(βx) + S(x)sin(βx))

Где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).

Здесь P(x) = 2, Q(x) = -3, α = 0, β = 3.

Следовательно, число α + βi = 0 + 3i не является корнем характеристического уравнения.

Уравнение имеет частное решение вида: y* = Acos(3x) + Bsin(3x)

Которые подставляем в исходное дифференциальное уравнение:

Y» + y = (-9(A•cos(3x)+B•sin(3x))) + (Acos(3x) + Bsin(3x)) = 2•cos(3•x)-3•sin(3•x)

или -8•A•cos(3x)-8•B•sin(3x) = 2•cos(3•x)-3•sin(3•x)

Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:

Решая ее, находим: A = -1/4;B = 3/8;

Частное решение имеет вид: y* = -1/4cos(3x) + 3/8sin(3x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Используем начальные условия

Тогда окончательно,

Характеристическое уравнение исходного дифференциального уравнения имеет мнимые корни . Следовательно, общее решение дифференциального уравнения . Подставляем в первое граничное условие

. Тогда .

Подставляем во второе граничное условие

При А=0 и В=0 – тривиальное решение у=0

Поэтому и — собственные значения

— собственные векторы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения

Ответ:

Найдём сначала общее решение соответствующей однородной системы

Продифференцируем по х второе уравнение

Исключая с помощью первого уравнения и с помощью второго уравнения системы, получим

,

Таким образом, задача свелась к линейному однородному уравнению с постоянными коэффициентами второго порядка. Характеристическое уравнение имеет корни . Следовательно, общее решение для будет .

Из второго уравнения Общее решение однородной системы:

Принимаем частное решение первоначальной системы в виде:

Решаем данную систему по формулам Крамера, получим два дифференциальных уравнения первого порядка:

Окончательно,

Или

Ответ:

Примеры решений задач по дифференциальным уравнениям

Теперь, когда вы научились находить производные и интегралы, самое время перейти к более сложной теме: решению дифференциальных уравнений (они же дифуры, диффуры и диф.уры :)), то есть уравнений, которые вместе с самой функцией (и/или аргументом), содержат и производную или даже несколько.

Как же решать дифференциальные уравнения? Главное, что понадобится, это а) умение правильно определить тип дифференциального уравнения и б) умение хорошо интегрировать — это существенная часть работы. А дальше следовать алгоримам для каждого из типов уравнений, которые подробно описаны в учебниках и ниже в примерах.

В этом разделе вы найдете решенные задачи на составление и решение дифференциальных уравнений. Примеры решений дифуров выложены бесплатно для вашего удобства и отсортированы по темам — изучайте, ищите похожие, решайте свои. Есть трудности в выполнении заданий? Мы готовы оказать помощь по дифференциальным уравнениям

Как решить дифференциальное уравнение онлайн?

Да ладно, неужели только вручную? Мучиться, определять тип, переносить, интегрировать, заменять, снова интегрировать, подставлять, выводить? Наверняка ведь есть онлайн-калькуляторы, которые позволяют решать дифференциальные уравнения?

У меня две новости, хорошая и плохая. Хорошая в том, что действительно самые распространенные типы дифференциальных уравнений математические программы умеют решать. Плохая в том, что обычно они выводят ответ (для научных расчетов этого достаточно), а не полное решение.

Есть известный математический сервис www.wolframalpha.com, которые представляет полные решения множества математических задач, в том числе диффуров онлайн (на английском языке) за 7 долларов в месяц. Ответы же доступны всем и могут помочь проверять правильность своего решения (см. ниже на скриншоте обведено само уравнение и его решение). Подробнее об этом сайте и типичных задачах, решаемых на нем, вы можете узнать тут.

Если вы забьете в поисковик что-то вроде «решить дифференциальное уравнение онлайн», то получите десятки ссылок на сайты, обещающие именно это.

Я проверила все сайты с первых страниц Яндекса и Гугла. Большая часть сайтов использует результаты расчетов www.wolframalpha.com (см. выше) и показывает вам ответ (и рекламу :)). Некоторые при этом не показывают даже ответа или говорят, что уравнение введено некорректно (хотя это вполне стандартное решаемое вручную линейное уравнение с постоянными коэффициентами). Полное решение не выдал ни один сайт.

Выводы? Бесплатно и полно и онлайн — не бывает. Хотите получать полные решения — используйте платную подписку на ВольфрамАльфа (или проконсультируйтесь у нас). Хотите ответы — там же бесплатно. Хотите научиться решать? Придется засучить рукава. Примеры на этой странице и ссылки внизу помогут вам. Удачи!

Общий интеграл, семейство кривых

Задача 1. Показать, что функция $y^2-x^2-Cy=0$ является общим интегралом дифференциального уравнения $y'(x^2+y^2)-2xy=0.$

Задача 2. Составить дифференциальное уравнение семейства кривых $C_1 x+(y-C_2)^2=0.$

Решения дифференциальных уравнений 1 порядка

Задача 3. Найти общее решение линейного дифференциального уравнения первого порядка $ xy’+x^2+xy-y=0.$

Задача 4. Решить однородное дифференциальное уравнение $y’=-y/x \quad (x \ne 0).$

Задача 5. Решить дифференциальное уравнение $(y^4-2x^3y)dx+(x^4-2xy^3)dy=0.$

Задача 6. Решить однородное дифференциальное уравнение $(2x+y+1)dx+(x+2y-1)dy=0.$

Задача 7. Решить линейное дифференциальное уравнение первого порядка $y’-2xy=3x^2-2x^4.$

Задача 8. Решить дифференциальное уравнение $(x+y^2)y’=y-1.$

Решение задачи Коши для ДУ

Задача 9. Решить дифференциальное уравнение с разделяющимися переменными $(1+x^2)dy-2xydx=0.$ Найти частное решение, удовлетворяющее начальному условию $y(0)=1$.

Задача 10. Решить задачу Коши для дифференциального уравнения второго порядка $2y y» +1 =(y’)^2, \, y(1/3)=1, \, y'(1/3)=2$.

Задача 11. Найти решение задачи Коши для дифференциального уравнения $$ y’= \frac<2y-x><2x+y>, y(1)=1. $$

Задача 12. Решить задачу Коши для дифференциального уравнения третьего порядка $$ y»’=x+\cos x, \quad y(0)=0, y'(0)=0, y»(0)=0. $$

Решения дифференциальных уравнений 2 порядка

Задача 13. Решить дифференциальное уравнение второго порядка с постоянными коэффициентами $y»+4y’+4y=xe^<2x>.$

Задача 14. Решить задачу Коши для дифференциального уравнения второго порядка с постоянными коэффициентами методом вариации: $$ y»-3y’=\frac<9e^<-3x>><3+e^<-3x>>, \quad y(0)=4\ln 4, y'(0)=3(3\ln 4-1). $$

Cоставление дифференциальных уравнений

Задача 15. Скорость остывания нагретого тела пропорциональна разности температур тела и окружающей среды. За 10 минут тело охладилось от 100 до 60 градусов. Температура среды постоянна и равна 20 градусам. Когда тело остынет до 25 градусов?

Задача 16. Моторная лодка движется в спокойной воде со скоростью 5 м/сек. На полном ходу ее мотор выключается и через 40 сек после этого скорость лодки уменьшается до 2 м/сек. Определить скорость лодки через 2 минуты после остановки мотора, считая, что сопротивление воды пропорционально скорости движения лодки.

Решения нелинейных дифференциальных уравнений

Задача 17. Решить дифференциальное уравнение $y^2 ^2 -2xyy’+2y^2-x^2=0.$

Задача 18. Решить дифференциальное уравнение $^2-4xyy’+8y^2=0.$


источники:

http://matica.org.ua/primery/primery/differentcialnye-uravneniia-varianty

http://www.matburo.ru/ex_ma.php?p1=madiff