Диофантовы уравнения примеры 8 класс

Линейное диофантово уравнение и 4 способа его решения

Разделы: Математика

Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) — частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

n Z.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 1 + 3.

5 = 3

3 = 2 .

Из этого равенства выразим 1. 1 = 3 — 2 = 3 – (5 — 3 ) =

= 3 — 5 = 3 = (8 — 5 — 5 82 -5

= 5(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19; уо =19 .

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): n Z.

Четвертый способ. Геометрический.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

Отложим на окружности последовательно друг за другом равные дуги, составляющие

-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли — ю часть окружности, так что х = у + .

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 уо =19

3. Общее решение уравнения (1): n Z.

Диофантовы уравнения

Что такое «решение задач подбором», и можно ли их решать иначе?

По отзывам сибмам, настоящим камнем преткновения в школьном курсе математики не только для учеников, но и для родителей становятся диофантовы уравнения. Что это такое и как их правильно решать? Разобраться нам помогли учитель математики образовательного центра «Горностай» Аэлита Бекешева и кандидат физико-математических наук Юрий Шанько.

Кто такой Диофант?

Еще древние египтяне для удобства рассуждений придумали специальное слово, обозначавшее неизвестное число, но в то время не было еще знаков действий и знака равенства, поэтому и записывать уравнения они не умели.

Первым, кто придумал, как можно записать уравнение, был замечательный ученый Диофант Александрийский. Александрия была большим культурным, торговым и научным центром древнего мира. Этот город существует и сейчас, он находится на Средиземноморском побережье Египта.

Жил Диофант, по-видимому, в III веке н.э. и был последним великим математиком античности. До нас дошли два его сочинения — «Арифметика» (из тринадцати книг сохранилось шесть) и «О многоугольных числах» (в отрывках). Творчество Диофанта оказало большое влияние на развитие алгебры, математического анализа и теории чисел.

А ведь вы знаете кое-что о диофантовых уравнениях…

Диофантовы уравнения знают все! Это задачки для учеников младших классов, которые решаются подбором.

” Например, «сколькими различными способами можно расплатиться за мороженое ценой 96 копеек, если у вас есть только копейки и пятикопеечные монеты?»

Если дать диофантовому уравнению общее определение, то можно сказать, что это алгебраическое уравнение с дополнительным условием: все его решения должны быть целыми числами (а в общем случае и рациональными).

” Зачастую мамы (особенно те, кто окончил школу еще при развитом социализме) полагают, что основная цель таких задач – научить детей расплачиваться мелочью за мороженое. И вот, когда они искренне убеждены, что раскладывание мелочи кучками осталось далеко в прошлом, их любимый семиклассник (или восьмиклассник) подходит с неожиданным вопросом: «Мама, как это решать?», и предъявляет уравнение с двумя переменными. Раньше таких задачек в школьном курсе не было (все мы помним, что уравнений должно быть столько же, сколько и переменных), так что мама не-математик нередко впадает в ступор. А ведь это та же самая задача про мелочь и мороженое, только записанная в общем виде!

Кстати, а зачем к ней вдруг возвращаются в седьмом классе? Все просто: цель изучения диофантовых уравнения – дать основы теории целых чисел, которая дальше развивается как в математике, так и в информатике и программировании. Диофантовы уравнения часто встречаются среди задач части «С» единого госэкзамена. Трудность, прежде всего в том, что существует множество методов решения, из которых выпускник должен выбрать один верный. Тем не менее, линейные диофантовы уравнения ax + by = c могут быть решены относительно легко с помощью специальных алгоритмов.

Алгоритмы для решения диофантовых уравнений

— Изучение диофантовых уравнения начинается в углубленном курсе алгебры с 7 класса. В учебнике Ю.Н. Макарычева, Н.Г. Миндюка приводятся некоторые задачи и уравнения, которые решают с использованием алгоритма Евклида и метода перебора по остаткам, — рассказывает Аэлита Бекешева. — Позже, в 8 – 9 классе, когда уже рассматриваем уравнения в целых числах более высоких порядков, показываем ученикам метод разложения на множители, и дальнейший анализ решения этого уравнения, оценочный метод. Знакомим с методом выделения полного квадрата. При изучении свойств простых чисел знакомим с малой теоремой Ферма, одной из основополагающих теорем в теории решений уравнений в целых числах. На более высоком уровне это знакомство продолжается в 10 – 11 классах. В это же время мы подводим ребят к изучению и применению теории «сравнений по модулю», отрабатываем алгоритмы, с которыми знакомились в 7 – 9 классах. Очень хорошо это материал прописан в учебнике А.Г. Мордковича «Алгебра и начала анализа, 10 класс» и Г.В. Дорофеева «Математика» за 10 класс.

Алгоритм Евклида

Сам метод Евклида относится к другой математической задаче – нахождению наибольшего общего делителя: вместо исходной пары чисел записывают новую пару – меньшее число и разность между меньшим и большим числом исходной пары. Это действие продолжают до тех пор, пока числа в паре не уравняются – это и будет наибольший общий делитель . Разновидность алгоритма используется и при решении диофантовых уравнений — сейчас мы вместе с Юрием Шанько покажем на примере, как решать задачи «про монетки».

— Рассматриваем линейное диофантово уравнение ax + by = c, где a, b, c, x и y — целые числа. Как видите, одно уравнение содержит две переменных. Но, как вы помните, нам нужны только целые корни, что упрощает дело — пары чисел, при которых уравнение верно, можно найти.

Впрочем, диофантовы уравнения не всегда имеют решения. Пример: 4x + 14y = 5. Решений нет, т.к. в левой части уравнения при любых целых x и y будет получаться четное число, а 5 — число нечетное. Этот пример можно обобщить. Если в уравнении ax + by = c коэффициенты a и b делятся на какое-то целое d, а число c на это d не делится, то уравнение не имеет решений. С другой стороны, если все коэффициенты (a, b и c) делятся на d, то на это d можно поделить все уравнение.

Например, в уравнении 4x + 14y = 8 все коэффициенты делятся на 2. Делим уравнение на это число и получаем: 2𝑥 + 7𝑦 = 4. Этот прием (деления уравнения на какое-то число) позволяет иногда упростить вычисления.

Зайдем теперь с другой стороны. Предположим, что один из коэффициентов в левой части уравнения (a или b) равен 1. Тогда наше уравнение уже фактически решено. Действительно, пусть, например, a = 1, тогда мы можем в качестве y взять любое целое число, при этом x = c − by. Если научиться сводить исходное уравнение к уравнению, в котором один из коэффициентов равен 1, то мы научимся решать любое линейное диофантово уравнение!

Я покажу это на примере уравнения 2x + 7y = 4.

Его можно переписать в следующем виде: 2(x + 3y) + y = 4.

Введем новую неизвестную z = x + 3y, тогда уравнение запишется так: 2z + y = 4.

Мы получили уравнение с коэффициентом один! Тогда z — любое число, y = 4 − 2z.

Осталось найти x: x = z − 3y = z − 3(4 − 2z) = 7z − 12.

” В этом примере важно понять, как мы перешли от уравнения с коэффициентами 2 и 7 к уравнению с коэффициентами 2 и 1. В данном случае (и всегда!) новый коэффициент (в данном случае — единица) это остаток от деления исходных коэффициентов друг на друга (7 на 2).

В этом примере нам повезло, мы сразу после первой замены получили уравнение с коэффициентом 1. Такое бывает не всегда, но и мы можем повторять предыдущий трюк, вводя новые неизвестные и выписывая новые уравнения. Рано или поздно после таких замен получится уравнение с коэффициентом 1.

Давайте попрообуем решить более сложное уравнение, предлагает Аэлита Бекешева.

Рассмотрим уравнение 13x — 36y = 2.

Шаг №1

36/13=2 (10 в остатке). Таким образом, исходное уравнение можно переписать следующим образом: 13x-13 * 2y-10y=2. Преобразуем его: 13(x-2y)-10y=2. Введем новую переменную z=x-2y. Теперь мы получили уравнение: 13z-10y=2.

Шаг №2

13/10=1 (3 в остатке). Исходное уравнение 13z-10y=2 можно переписать следующим образом: 10z-10y+3z=2. Преобразуем его: 10(z-y)+3z=2. Введем новую переменную m=z-y. Теперь мы получили уравнение: 10m+3z=2.

Шаг №3

10/3=3 (1 в остатке). Исходное уравнение 10m+3z=2 можно переписать следующим образом: 3 * 3m+3z+1m=2. Преобразуем его: 3(3m+z)+1m=2. Введем новую переменную n=3m+z. Теперь мы получили уравнение: 3n+1m=2.

Ура! Мы получили уравнение с коэффициентом единица!

m=2-3n, причем n может быть любым числом. Однако нам нужно найти x и y. Проведем замену переменных в обратном порядке. Помните, мы должны выразить x и y через n, которое может быть любым числом.

y=z-m; z=n-3m, m=2-3n ⇒ z=n-3 * (2-3n), y=n-3*(2-3n)-(2-3n)=13n-8; y=13n-8

x=2y+z ⇒ x=2(13n-8)+(n-3*(2-3n))=36n-22; x=36n-22

Пусть n=5. Тогда y=57, x=158. 13*(158)-36 * (57)=2

Да, разобраться не очень просто, зато теперь вы всегда сможете решить в общем виде задачи, которые решаются подбором!

Решаем задачи на подбор чисел

Примеры задач для учеников младших классов, которые решаются подбором: посоревнуйтесь с ребенком, кто решит их быстрее: вы, используя алгорит Евклида, или школьник — подбором?

Задача про лапы

Условия

В клетке сидят куры и кролики. Всего у них 20 лап. Сколько там может быть кур, а сколько — кроликов?

Решение

Пусть у нас будет x кур и y кроликов. Составим уравнение: 2х+4y=20. Сократим обе части уравнения на два: x+2y=10. Следовательно, x=10-2y, где x и y — это целые положительные числа.

Ответ

Число кроликов и куриц: (1; 8), (2; 6), (3; 4), (4; 2), (5; 0)

Согласитесь, получилось быстрее, чем перебирать «пусть в клетке сидит один кролик. »

Задача про монетки

Условия

У одной продавщицы были только пяти- и двухрублевые монетки. Сколькими способами она может набрать 57 рублей сдачи?

Решение

Пусть у нас будет x двухрублевых и y пятирублевых монеток. Составим уравнение: 2х+5y=57. Преобразуем уравнение: 2(x+2y)+y=57. Пусть z=x+2y. Тогда 2z+y=57. Следовательно, y=57-2z, x=z-2y=z-2(57-2z) ⇒ x=5z-114. Обратите внимание, переменная z не может быть меньше 23 (иначе x, число двухрублевых монеток, будет отрицательным) и больше 28 (иначе y, число пятирублевых монеток, будет отрицательным). Все значения от 23 до 28 нам подходят.

Презентация урока «Диофантовы уравнения» в 8 классе
презентация к уроку по алгебре (8 класс) на тему

Презентация предназначена для класса с углублённым изучением математики

Скачать:

ВложениеРазмер
Презентация «Диофантовы уравнения»582.33 КБ

Предварительный просмотр:

Подписи к слайдам:

Презентация урока алгебры 9 класса. Подготовила Перевезенцева Л.Г. МОУ СОШ № 10 г.Жуковский Московской области. Диофантовы уравнения.

Цели и задачи. Определение диофантова уравнения Биография Диофанта Диофантовые уравнения первой степени Диофантовые уравнения высших степеней Проект учащихся «Метод бесконечного спуска» Другие методы решения диофантовых уравнений Содержание.

Цели урока: Образовательные: 1.Познакомить учащихся с уравнениями, которые решаются в целых числах. 2.Организовать самостоятельный поиск решений диофантовых уравнений. 3.Рассмотреть различные приёмы решения. 4.Научить решать текстовые задачи, по которым можно составить диофантово уравнение. Развивающие. 1. Формирование умений обобщать, сравнивать, оценивать, контролировать, анализировать, делать выводы, 2. Развитие познавательных возможностей, творческих способностей, креативности личностных качеств, 3.Организация способности общения (живого, виртуального, обоюдного, группового и т.д.),. 4. Развитие инициативы, познавательного интереса, 5. Обучение методам исследовательского поиска, 6. Развитие мыслительной деятельности, 7.Развитие практической направленности изучаемого материала 8. Привитие любви к математике 3

Задача. У мальчика было 50 р., на которые он хотел купить почтовые марки. В киоске имелись марки по 4 р. и по 3 р., но у киоскера совсем не было сдачи. Помогите мальчику и киоскеру выйти из создавшегося затруднения. 4

Решение. Пусть марок по 4 р. х штук, по 3 р. – у штук. 5 Всего имеется 50 р., отсюда уравнение: 4 х + 3 у = 50 Эта задача имеет не одно, а несколько решений. х 2 5 8 11 у 14 10 6 2

Первым начал рассматривать такие уравнения Диофант ( II – III вв. до нашей эры). Он рассматривал уравнения, которые сегодня мы записали бы, например, так: ax + by = c ; (1) где a, b и c целые числа, и ответ должен быть дан только в целых числах. Такие уравнения называют « диофантовыми ».

Диофант пытался ответить на следующий вопрос: « Дано уравнение с целыми коэффициентами. Имеет ли оно целые решения ?» Диофантовы уравнения — алгебраические уравнения или их системы с целыми коэффициентами, имеющие число неизвестных, превосходящее число уравнений, и у которых разыскиваются целые или рациональные решения. Примеры диофантовых уравнений: ax+by=c , x 2 +y 2 =d 2 .

Биографических данных о древнегреческом ученом-математике Диофанте из Александрии практически не сохранилось. До наших времен дошла лишь часть математического трактата Диофанта «Арифметика», 6 книг из 13, а также отрывки книги о многоугольных числах. В «Арифметике», Диофант излагал начала алгебры, привел множество задач, сводящихся к неопределенным уравнениям различных степеней, и отметил методы нахождения решений таких уравнений в рациональных положительных числах. Сочинения Диофанта были отправной точкой для теоретико-числовых исследований П. Ферма, Л. Эйлера, К. Гаусса и других математиков. Именем Диофанта названы два больших раздела теории чисел — теория диофантовых уравнений и теория диофантовых приближений. 8

9 Рассмотрим линейное диофантово уравнение 2х + 3у = 1. Найдите целые решения. Одно из решений – пара чисел х = 5, у = -3 Проверка: 2 · 5 + 3 · (-3) = 1 Любое решение диофантова уравнения называется частным решением

При с = 0 уравнение (1) имеет вид ах + b у = 0 и называется однородным диофантовым уравнением. Пример. 2х + 3у = 0 2х = -3у Левая часть равенства делится на 2, а правая – на 3. Числа 2 и 3 взаимно просты. Поэтому у = 2 n, x = -3n , где 10

В общем виде решением уравнения ах + b у = 0 является пара (- b n, an) Общим решением диофантова уравнения 2х + 3у = 1 является х = 5 – 3 n, y = -3 + 2n, 11

Работа в группах. 1 группа. Предложите как можно подобрать частное решение уравнения 31х + 11 у = 1 2 группа. Решите уравнение: 6х + 9у = 2 3 группа. Решите уравнение: 6х + 9у = 3 4 группа. Решите уравнение:2х + 3у = 7 12

= 5·(31 – 11 · 2) – 4 · 11= 5 · 31+ 11· (- 14). х=5; у =- 14(частное решение) Проверка. Группа 1. Частное решение уравнения 31х + 11 у = 1 можно найти с помощью алгоритма Евклида: 31 11 22 2 11 9 9 1 9 2 8 4 1 1 = 9 – 4 · 2 2 = 11 – 9 · 1 9 = 31 – 11 · 2 подставим 1 = 9 – 4 ·(11 – 9) = 5 · 9 – 4 ·11 подставим

Группа 2. 6х + 9у = 2 (6х + 9у) ⫶ 3; 2 не делится на 3⟾ это уравнение не имеет решений. Группа 3. 6х + 9у = 3. Разделим обе части уравнения на 3. 2х + 3у = 1. Частное решение: х = 5; у = — 3. 2х + 3у = 2 ∙ 5 + 3 ∙ (-3) 2 ( х – 5) + 3 (у + 3) = 0. Сделаем замену: х´= х – 5, у´= у + 3; 2х´ + 3у´= 0; х´=-3 n, у´=2 n х = 5 + х´= 5 – 3 n ; у = -3 + у´= -3 + 2 n. Ответ: (5 – 3 n ; -3 + 2 n) , 14

Группа 4. 2х + 3у = 7 Частное решение х = 2; у = 1 Решение соответствующего однородного уравнения: х = 3 n ; у = — 2 n . Ответ: (2 + 3 n ; 1 — 2 n ), 15

Другой способ решения. 2х + 3у = 7 х = 16 3 – у + ; = n у = 1 – 2 n ; х = 3 – (1 – 2 n) + n = 2 + 3n Ответ: (2 + 3 n; 1 – 2n) ,

Диофантовы уравнения высших степеней. 1. Метод разложения на множители Задача 1. Доказать : что уравнение ( x — y ) 3 + ( y — z ) 3 + ( z — x ) 3 = 30 не имеет решений в целых числах. Решение: Разложив левую часть на множители, приведем уравнение к виду ( x — y )( y — z )( z — x ) = 10. Заметим, что ( x — y ) + ( y — z ) + ( z — x ) = 0. С другой стороны, делителями 10 являются числа ±1, ±2, ±5, ±10. Нетрудно проверить, что сумма любых трех чисел из этого множества, дающих в произведении 10, не будет равняться 0.

Задача 2. Решите уравнение в целых числах : 3ху + 2х + 3у = 0 Решение: 3ху + 2х + 3у + 2 = 2 3у ( х + 1) + 2 ( х + 1) = 2 (3у + 2)( х + 1) = 2 3у + 2 = 2 х + 1 = 1 3у + 2 = 1 х + 1 = 2 3у + 2 = -2 х + 1 = — 1 3у + 2 = -1 х + 1 = -2 Решите системы и отберите целые решения 18 Ответ: (0;0); (-3; -1)

19 Проект учащихся «Метод б есконечного спуска»

2. Метод «бесконечного спуска» Предположим, что уравнение имеет решение, строим бесконечный процесс, в то время как по смыслу задачи этот процесс должен на чём-то закончиться. Часто метод бесконечного спуска применяется в более простой форме. Предположим, что мы уже добрались до естественного конца, и видим, что «остановиться» невозможно. 20

21 Историческая справка. Метод бесконечного спуска изобрели, по-видимому, древнегреческие математики. Метод бесконечного спуска был существенно развит Пьером Ферма . Есть основания полагать, что Ферма пытался доказывать свою Великую теорему именно этим методом.

Несмотря на отсутствие многих важных деталей в беглых заметках Ферма, в них отчетливо просматривался один из способов доказательства от противного, известный под названием метода бесконечного спуска. Чтобы доказать, что уравнение не допускает решения в целых числах, Ферма начал с предположения о существовании гипотетического решения в целых числах x = X1, y = Y1, z = Z1. При изучении свойств чисел (X1, Y1, Z1) Ферма показал, что если бы такое гипотетическое решение действительно существовало, то существовало бы меньшее решение (X2, Y2, Z2). Рассматривая это новое решение, Ферма смог показать, что если бы оно существовало, то существовало бы еще меньшее решение (X3, Y3, Z3) и т.д. Эйлер попытался воспользоваться методом бесконечного спуска в качестве исходного пункта при построении общего доказательства для всех других степеней в уравнении Ферма. Он хотел получить доказательство для всех вплоть до бесконечности, но прежде всего он хотел «опуститься на одну ступень» и получить доказательство при =3. В письме к прусскому математику Христиану Гольдбаху в августе 1753 года Эйлер сообщил, что ему удалось приспособить метод бесконечного спуска и успешно доказать Великую теорему Ферма для случая =3. 22

Задача. 23 Решите уравнение в целых числах: Решение. 1 4 — 2 — 8 z 1 3 = 0 2 х 3 – у 3 – 4 z 1 3 =0 у 3 = 2(х 3 – 2 z 1 3 ) у 3 – чётное , у ⫶ 2, у = 2 у 1 2х 3 – 8у 1 3 – 4 z 1 3 = 0 х 3 – 4 у 1 3 – 2 z 1 3 = 0 х 3 — чётное число, х ⫶ 2, х = 2 х 1 1

Значит числа х 1 , у 1 и z 1 – тоже делятся на 2. Сколько бы раз мы не делили на 2,получаем числа, которые снова делятся на 2. Таким свойством обладает только 0. Ответ: (0;0;0). 24

Задание для самостоятельной работы. Доказать, что уравнение x 3 + 2 y 3 + 4 z 3 — 6 xyz = 0 в целых числах не имеет решений, не равных нулю одновременно. 25

Другие методы решения диофантовых уравнений Задача: Доказать, что уравнение x 3 + y 3 + z 3 = 2 имеет бесконечно много решений в целых числах. Решение: Положим x = a + b , y = a — b . Тогда x 3 + y 3 = 2 a 3 + 6 ab 2 . С учетом последнего равенства исходное уравнение принимает вид 2 a 3 + 6 ab 2 + z 3 = 2. Положив a = 1, получим z 3 = -6 b 2 . Положим теперь b = 6 t 3 . Отсюда z = — 6 t 2 , x = 1 + 6 t 3 , y = 1 — 6 t 3 . Таким образом, получено бесконечное множество решений исходного уравнения, соответствующих целочисленным значениям параметра t

Домашнее задание. № 1 Решите в целых числах уравнение: а)8х + 14у = 32; б)6х – 15у = 27; в)19х – 5у = 119 № 2. Найдите общий вид целых неотрицательных чисел, дающих при делении на 7 остаток 3, а при делении на 11 остаток 4. № 3. Разделите 200 на два слагаемых так, чтобы при делении одного на 6, а другого на 11 получились соответственно остатки 5 и 4. 27

За что ты можешь себя ПОХВАЛИТЬ? Что тебе УДАЛОСЬ на уроке? Над чем еще нужно ПОРАБОТАТЬ? Зачем нам нужен был этот урок? Итоги урока

29 Удачи! Урок окончен!

Литература Пичурин Л.Ф. За страницами учебника алгебры. Книга для учащихся 7-9кл. общелюразоват . учреждений.- М.: Просвещение, 1999.-237 с. Ткачева М.В. Домашняя математика. Книга для учащихся 7 кл . общеобразоват . учреждений. – М. : Просвещение, 1994.- 190с. http ://garshin.ru/evolution/mathematics/math-history.html http://www.math.md/school/krujok/diofantr/diofantr.html http://virlib.eunnet.net/books/numbers/text/5.html http://maths3.narod.ru/algteo4.html

По теме: методические разработки, презентации и конспекты

презентация»Решение уравнений 6 класс.»

Математика – серьезная наука и нельзя упускать возможности, чтобы сделать ее занимательной и увлекательной. Оживляет урок и использование различных форм ИКТ, но наиболее простой из них является презен.

Презентация «Линейные уравнения» для подготовки к ГИА в 9 классе

Презентация «Линейные уравнения» 9 класс для подготовки к ГИА.

Конспект урока и презентация для 8 класса по теме: «Формулы корней квадратных уравнений»

Урок алгебры. Тема: «Формулы корней квадратных уравнений». Урок «открытия» детьми нового знания. Цели урока: Деятельностные: формирование способности к построению нового метода решения ква.

Презентация «Решение уравнений», математика 6 класс.

На уроке математике представлено высказывание А. Эйнштейна про уравнения. Учащимся предлагается вспомнить ранее изученный материал, то есть устный счет на раскрытие скобок, решение простых уравнений.З.

Презентация: Алгебра 10 класс «Решение тригонометрических уравнений»

Основные способы решения тригонометрических уравнений.

Презентация ученицы 10го класса на тему «Виды тригонометрических уравнений».

Презентация ученицы 10го класса на тему «Виды тригонометрических уравнений». Выполнила Назарова Марина.

Презентация «Решение уравнений» 5 класс

Презентация предназначена для проведения урока математики в 5 классе по ФГОС. УМК Виленкин Н.Я. .


источники:

http://sibmama.ru/diofantvy-uravneniya.htm

http://nsportal.ru/shkola/algebra/library/2014/01/10/prezentatsiya-uroka-diofantovy-uravneniya-v-8-klasse-0