Диофантовы уравнения второго порядка с двумя неизвестными

Линейное диофантово уравнение и 4 способа его решения

Разделы: Математика

Првило 1. Если с не делится на d, то уравнение ах + ву = с не имеет решений в целых числах. Н.О.Д.(а,в) = d.

Правило 2. Чтобы найти решение уравнения ах + ву = с при взаимно-простых а и в, нужно сначала найти решение (Хо ; уо) уравнения ах + ву = 1; числа СХо , Суо составляют решение уравнения ах + ву = с.

Решить в целых числах (х,у) уравнение

Первый способ. Нахождение частного решения методом подбора и запись общего решения.

Знаем, что если Н.О.Д.(а;в) =1, т.е. а и в взаимно-простые числа, то уравнение (1)

имеет решение в целых числах х и у. Н.О.Д.(5;8) =1. Методом подбора находим частное решение: Хо = 7; уо =2.

Итак, пара чисел (7;2) — частное решение уравнения (1).

Значит, выполняется равенство: 5 x 7 – 8 x 2 = 19 … (2)

Вопрос: Как имея одно решение записать все остальные решения?

Вычтем из уравнения (1) равенство (2) и получим: 5(х -7) – 8(у — 2) =0.

Отсюда х – 7 = . Из полученного равенства видно, что число (х – 7) будет целым тогда и только тогда, когда (у – 2) делится на 5, т.е. у – 2 = 5n, где n какое-нибудь целое число. Итак, у = 2 + 5n, х = 7 + 8n, где n Z.

Тем самым все целые решения исходного уравнения можно записать в таком виде:

n Z.

Второй способ. Решение уравнения относительно одного неизвестного.

Решаем это уравнение относительно того из неизвестных, при котором наименьший (по модулю) коэффициент. 5х — 8у = 19 х = .

Остатки при делении на 5: 0,1,2,3,4. Подставим вместо у эти числа.

Если у = 0, то х = =.

Если у =1, то х = =.

Если у = 2, то х = = = 7 Z.

Если у =3, то х = =.

Если у = 4 то х = =.

Итак, частным решением является пара (7;2).

Тогда общее решение: n Z.

Третий способ. Универсальный способ поиска частного решения.

Для решения применим алгоритм Евклида. Мы знаем, что для любых двух натуральных чисел а, в, таких, что Н.О.Д.(а,в) = 1 существуют целые числа х,у такие, что ах + ву = 1.

1. Сначала решим уравнение 5m – 8n = 1 используя алгоритм Евклида.

2. Затем найдем частное решение уравнения (1)по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: 1 = 5m – 8n. Для этого используем алгоритм Евклида.

8 = 5 1 + 3.

5 = 3

3 = 2 .

Из этого равенства выразим 1. 1 = 3 — 2 = 3 – (5 — 3 ) =

= 3 — 5 = 3 = (8 — 5 — 5 82 -5

= 5(-2). Итак, m = -3, n = -2.

2. Частное решение уравнения (1): Хо = 19m; уо =19n.

Отсюда получим: Хо =19; уо =19 .

Пара (-57; -38)- частное решение (1).

3. Общее решение уравнения (1): n Z.

Четвертый способ. Геометрический.

1. Решим уравнение 5х – 8у = 1 геометрически.

2. Запишем частное решение уравнения (1).

3. Запишем общее решение данного уравнения (1).

Отложим на окружности последовательно друг за другом равные дуги, составляющие

-ю часть полной окружности. За 8 шагов получим все вершины правильного вписанного в окружность 8-угольника. При этом сделаем 5 полных оборотов.

На 5 – ом шаге получили вершину, соседнюю с начальной, при этом сделали 3 полных оборота и еще прошли — ю часть окружности, так что х = у + .

Итак, Хо = 5, уо =3 является частным решением уравнения 5х – 8у = 1.

2. Частное решение уравнения (1): Хо = 19 уо =19

3. Общее решение уравнения (1): n Z.

Диофантовы уравнения второго порядка с двумя неизвестными

В дальнейшем будут использоваться следующие обозначения:

N = <0,1,2. >— множество натуральных чисел;

N * = <1,2. >— множество натуральных положительных чисел;

Z = <0,±1,±2. >— — множество целых чисел;

Q = < m /n | m Î Z, n Î N * > — множество рациональных чисел;

R — множество действительных (вещественных) чисел.

В начале представим некоторые определения и утверждения, необходимые для далнейшего изложения

Определение. Пусть a,b Î Z, b ≠ 0. Числа q Î Z и r Î <0,1. |b|-1> называются соответственно неполным частным и остатком от деления a на b, если выполнено равенство

a = bq + r.(1)

При этом, если r = 0, то говорят, что a делится на b, или что b делит a, или что b является делителем a (обозначение a b или b|a.

Доказывается, что для любых целых чисел a, b; b ≠ 0, существуют единственные целые числа q, r, r Î <0. |b| — 1> такие, что имеет место соотношение (1).

Определение. Наименьшим общим кратным ненулевых целых чисел a1, a2, . an называется наименьшее положительное число, которое делится на каждое из этих чисел (обозначение [a1, a2, . an]).

Определение. Наибольшим общим делителем целых чисел a1, a2, . an, из которых хотя бы одно отлично от нуля, называется наибольшее натуральное число, на которое делится каждое из этих чисел (обозначение (a1, a2, . an)).

Определение. Числа a,b Î Z называются взаимно простыми, если (a,b) = 1.

Определение. Пусть даны числа a,b Î Z, причем c ≠ 0. Говорят, что число a сравнимо с числом b по модулю c, (обозначение ab (mod c)), если c|ab; в противном случае говорят, что число a не сравнимо с числом b по модулю c (обозначение a b(mod c)).

Определение. Натуральное положительное число, большее 1 и не имеющее натуральных положительных делителей, отличных от 1 и самого себя, называется постым. Остальные натуральные числа, большие 1, называются составными. Число 1 не является ни простым, ни составным.

Основная теорема арифметики.

Всякое натуральное число, большее 1, разлагается в произведение простых чисел (не обязательно различных), причем указанное разложение единственно с точностью до порядка следования множителей.

Малая теорема Ферма.

Пусть p — простое число. Тогда для любого целого числа a справедливо соотношение a pa(mod p).

О диофантовом анализе

При исследовании диофантовых уравнений обычно ставятся следующие вопросы:

  1. имеет ли уравнение целочисленные решения;
  2. конечно или бесконечно множество его целочисленных решений;
  3. решить уравнение на множестве целых чисел, т. е. найти все его целочисленные решения;
  4. решить уравнение на множестве целых положительных чисел;
  5. решить уравнение на множестве рациональных чисел.

Отметим, что проблема решения уравнений в целых числах решена до конца только для уравнений с одним неизвестным, для уравнений первой степени и для уравнений второй степени с двумя неизвестными. Для уравнений выше второй степени с двумя или более неизвестными достаточно трудной является даже задача существования целочисленных решений. Например, не известно, имеет ли уравнение x 3 + y 3 + z 3 = 30 хотя бы одно целочисленное решение. Более того, доказано, что в принципе не существует единого алгоритма, позволяющего за конечное число шагов решать в целых числах произвольные диафантовы уравнения.

Диофантовы уравнения с одним неизвестным

Рассмотрим уравнение

a0 + a1x + . + anx n = 0,(2)

где aj Î Z ( j = 0. n), an ≠ 0.

Покажем, каким образом можно определить все рациональные корни уравнения (2) (этот метод позволяет, в частности, решать уравнения вида (2) в целых числах). Не нарушая общности рассуждений, можно считать, что a0 ≠ 0. Пусть r — рациональный корень уравнения (2), r = p /q, где p Î Z, q Î N * , (p,q) = 1. Умножая обе части равенства на q n , получим a0q n + a1p·q n-1 + . + an-1p n-1 q + anp n = 0, следовательно,

p|a0q n и q|anp n .(3)

Так как (p,q) = 1, то (p,q n ) = 1, (q,p n ) = 1, поэтому из соотношений (3) следует, что p|a0, q|an. Поскольку рациональных чисел вида r = p /q, таких что (p,q) = 1, p|a0, q|an, конечное число, то за конечное число шагов можно выбрать те из них, которые являются решением уравнения (2). Как следует из приведенных выше рассуждений, других решений уравнение (2) иметь не может.

Задача 1. Решить в рациональных числах уравнение

2x 4 + 7x 3 — 12x 2 — 38x + 21 = 0.(4)

Решение. Свободный член уравнения имеет следующие делители ±1, ±3, ±7, ±21. Выпишем также положительные делители старшего коэффициента: 1, 2. Следовательно, для рационального корня уравнения (4) получаем следующие возможные значения:

Подстановкой в исходное уравнение убеждаемся, что из этого множества только числа -3 и 1 /2 являются его корнями.

Задача 2. Решить в целых числах уравнение

x 8 + x 7 + x + 1 = 0.(5)

Решение. Делители свободного члена уравнения: ±1. Положительные делители старшего коэффициента: 1. Следовательно, все целые корни уравнения (5) находятся среди чисел <-1,1>. Подставляя x = ±1 в (5) заключаем, что только x = -1 является корнем этого уравнения.
Диофантовы уравнения первой степени

Перейдем теперь к решению в целых числах уравнений первой степени или так называемых линейных уравнений, т. е. уравнений вида

a1x1 + a2x2 + . + anxn = b,(6)

где aj Î Z (j = 1,2. n), b Î Z.

Предположим, что не все числа aj (j = 1. n) равны нулю. Очевидно, для существования решения в целых числах уравнения (6) необходимо, чтобы (a1. an)|b. Покажем, что это условие является и достаточным.

Положив перейдем к равносильному уравнению

a1 ¢ x1 + . + an ¢ xn = b ¢ ,(7)

где (a1 ¢ , . an ¢ ) = 1. Пусть ai ¢ , aj ¢ — два ненулевых числа, таких, что |ai ¢ | ≠ |aj ¢ |. Для определенности предположим, что i ¢ | > |aj ¢ |. Разделив с остатком ai ¢ на aj ¢ , получим представление ai ¢ = aj ¢ q + r. Заменив ai ¢ на aj ¢ q + r в уравнении (7), приведем его к виду

a1 ¢ x1 + . + rxi + . + aj ¢ (xj + qxi) + . + an ¢ xn = b ¢ .(8)

Перепишем уравнение (8) в виде

a1 ¢ ¢ x1 + . + an ¢ ¢ xn ¢ ¢ = b ¢ ,(9)

где

ak ¢ ¢ =
ak ¢ ,ki
r,k = i
,xk ¢ ¢ =
xk,kj
xj + qxi,k = j.

Очевидно, что решения уравнения (7) и (9). связаны между собой взаимно однозначным соответствием и, таким образом, решив уравнение (9), несложно найти все решения уравнения (7). С другой стороны отметим, что » k, i Î <1. n>, ki ak ¢ ¢ = ak ¢ , |ai ¢ ¢ | ¢ |.

Следовательно, за конечное число шагов уравнение (7) приведется к виду

(10)

где числа (i = 1. n), которые не равны нулю, равны между собой по абсолютной величине. Из соотношения следует, что числа (i = 1. n) могут принимать только значения 0,±1, причем не все из них равны нулю. Предположим, для определенности, . Тогда уравнение (10) имеет следующее решение: где t2, t3, . tn — произвольные целые числа. Отсюда, учитывая проведенные замены, получается и решение уравнения (7). Отметим, что при получении решения уравнения (10) использовался лишь факт, что , поэтому, при выполнении алгоритма можно остановиться на том шаге, когда хотя бы один из коэффициентов станет равен ±1.

Задача 3. Решить в целых числах уравнение 4x — 6y + 11z = 7.

Решение. Разделив с остатком -6 на 4, получим -6 = 4(-2) + 2. Представим исходное уравнение в виде 4(x — 2y) + 2y + 11z = 7. После замены x ¢ = x — 2y это уравнение запишется следующим образом 4x ¢ + 2y + 11z = 7. Учитывая, что 11 = 2·5 + 1, преобразуем последнее уравнение: 4x ¢ + 2(y + 5z) + z = 7. Положив y ¢ = y + 5z, получим 4x ¢ + 2y ¢ + z = 7. Это уравнение имеет следующее решение: x ¢ , y ¢ — произвольные целые числа, z = 7 — 4x ¢ — 2y ¢ . Следовательно y = y ¢ — 5z = 20x ¢ + 11y ¢ — 35, x = x ¢ + 2y = 41x ¢ + 22y ¢ — 70.

Таким образом, решение исходного уравнения имеет вид

x = 41x ¢ + 22y ¢ — 70
y = 20x ¢ + 11y ¢ — 35
z = 7 — 4x ¢ — 2y ¢ ,

где x ¢ , y ¢ — произвольные целые числа.

Диофантовы уравнения высших степеней

1. Метод разложения на множители

Задача 4. Решить в целых числах уравнение x + y = xy.

Решение. Запишем уравнение в виде (x — 1)(y — 1) = 1. Произведение двух целых чисел может равняться 1 только в том случае, когда оба они равны 1. Т. е. исходное уравнение равносильно совокупности

x — 1 = 1,
y — 1 = 1,
x — 1 = -1,
y — 1 = -1,

с решениями (0,0) и (2,2).

Задача 5. Доказать, что уравнение x 5 + 3x 4 y — 5x 3 y 2 — 15x 2 y 3 + 4xy 4 + 15y 5 = 33 неразрешимо в целых числах.

Решение. Левая часть уравнения разлагается на множители следующим образом: (x — 2y)(xy)(x + y)(x + 2y)(x + 3y). Если y ≠ 0, то в этом выражении все 5 множителей различны. С другой стороны, число 33 можно разделить максимум на 4 различных множителя. Следовательно, исходное уравнение не разрешимо в целых числах x, y при y ≠ 0. Случай y = 0 также невозможен, поскольку тогда исходное уравнение принимает вид x 5 = 33, Так как исходное уравнение не имеет целочисленных решений и в случае y = 0.

Задача 6. Доказать, что уравнение (xy) 3 + (yz) 3 + (zx) 3 = 30 не имеет решений в целых числах.

Решение. Разложив левую часть на множители, приведем уравнение к виду (xy)(yz)(zx) = 10. Заметим, что (xy) + (yz) + (zx) = 0. С другой стороны, делителями 10 являются числа ±1, ±2, ±5, ±10. Нетрудно проверить, что сумма любых трех чисел из этого множества, дающих в произведении 10, не будет равнятьса 0.

Задача 7. Решить в целых числах уравнение y 3 — x 3 = 91.

Решение. Перепишем исходное уравнение в виде (yx)(y 2 + xy + x 2 ) = 91. Делителями числа 91 являются ±1, ±91. Так как y 2 + yx + x 2 ≥ y 2 — 2|y||x| + x 2 = (|y| — |x|) 2 ≥ 0, то исходное уравнение равносильно совокупности

yx = 1,
y 2 + yx + x 2 = 91,
yx = 91,
y 2 + yx + x 2 = 1,
Û
y = x + 1,
x 2 + x — 30 = 0,
y = x + 91,
x 2 + 91x + 30·99 = 0,
Û
y = x + 1,
x = -6,
x = 5,
x Î Ж .

Таким образом, целочисленными решениями исходного уравнения являются пары (-6,-5) и (5,6).

Задача 8. Решить в натуральных числах уравнение y 2 — x(x + 1)(x + 2)(x + 3) = 1.

Решение. Заметим, что

x(x + 1)(x + 2)(x + 3) + 1 = (x(x + 3))((x + 1)(x + 2)) + 1 =
= ((x 2 + 3x — 1) — 1)((x 2 + 3x + 1) + 1) + 1 = (x 2 + 3x+1) 2 .

Следовательно, исходное уравнение равносильно уравнению y 2 = (x 2 + 3x + 1) 2 или y = x 2 + 3x + 1. Таким образом, множество всех решений имеет вид <(x , x 2 + 3x + 1) | x Î N>.

2. Использование четности

Задача 9. Решить в простых числах уравнение

x 2 — 2y 2 = 1.(11)

Решение. Рассмотрим два случая в зависимости от четности переменной x.

a) Пусть x — нечетное число. Подстановка x = 2t + 1 приводит исходное уравнение к виду (2t + 1) 2 — 2y 2 = 1, или 2y 2 = 4t(t + 1). Следовательно, 2 | y 2 . Так как y — простое число, то y = 2. Отсюда

b) Пусть x — четное число. Так как x — простое число, то x = 2. Следовательно, т. е. уравнение неразрешимо в простых числах.

Следовательно, уравнение (11) имеет в классе простых чисел единственное решение (3;2).

Задача 10. Решить в целых числах уравнение

x 2 + y 2 + z 2 = 2xyz.(12)

Решение. Одно решение очевидно: x = y = z = 0. Покажем, что других решений в целых числах уравнение не имеет. Будем доказывать от противного. Пусть x, y, z — ненулевое решение исходного уравнения. Так как x 2 + y 2 + z 2 — четное число, то по крайней мере одно из чисел x, y, z — четное. Используя симметрию уравнения (12), предположим, что x = 2x1. — четное число. Тогда 4|y 2 + z 2 . Это может быть лишь в том случае, когда y и z — четные. Действительно, если одно из этих чисел четное, а другое нечетное, то число y 2 + z 2 — нечетное и 4 y 2 + z 2 . Если же оба эти числа (z и y) нечетные, то y 2 + z 2 = (2u + 1) 2 + (2v + 1) 2 = 4(u 2 + v 2 + u + v) + 2 ≡ 2(mod 4),

Повторением приведенных выше рассуждений доказывается, что 2|x1, 2|y1, 2|z1, следовательно, 2 2 |x, 2 2 |y, 2 2 |z. Рассуждая аналогично, получим, что для любого n Î N 2 n |x, 2 n |y, 2 n |z Противоречие. Следовательно, уравнение (12) имеет единственное решение (0,0,0).

Задача 11. Доказать, что уравнение

x 3 + 2y 3 + 4z 3 — 6xyz = 0,(13)

в целых числах не имеет решений, не равных нулю одновременно.

Решение. Предположим, что числа x, y, z, не равные одновременно нулю, являются решением исходного уравнения. Видно, что число x — четное. Подстановка x = 2x1 дает 4x1 3 + y 3 + 2z 3 — 6x1yz = 0. Отсюда следует, что число y — четное, y = 2y1. Учитывая это, получим 2x1 3 + 4y1 3 + z 3 — 6x1y1z = 0. Следовательно, z — также четное число. После подстановки z = 2z1 уравнение принимает вид x1 3 + 2y1 3 + 4z1 3 — 6x1y1z1 = 0. Рассуждая аналогично, доказывается, что для любого n Î N 2 n |x, 2 n |y, 2 n |z. Противоречие.

3. Доказательство неразрешимости уравнений с использованием сравнений

Задача 12. Решить в целых числах уравнение

x 2 + 1 = 3y.(14)

Решение. Пусть x, y — целые числа, удовлетворяющие уравнению (14 ). Тогда x 2 + 1 ≡ 0(mod 3). Рассмотрим случаи, соответствующие различным остаткам от деления x на 3.

a) Пусть x ≡ 0(mod 3). Тогда x 2 + 1 ≡ 1(mod 3), значит x 2 + 1 0(mod 3).

b) Пусть x ≡ 1(mod 3). Тогда x 2 + 1 ≡ 2(mod 3), следовательно, x 2 + 1 0(mod 3).

c) Пусть x ≡ 2(mod 3). Тогда x 2 + 1 ≡ 5 ≡ 2 0(mod 3). Следовательно, сравнение x 2 + 1 ≡ 0(mod 3) не имеет решений, значит и уравнение (14) также неразрешимо в целых числах.

Задача 13. Решить в целых числах уравнение

x 2 — 2y 2 + 8z = 3.(15)

Решение. Пусть (x, y, z) — целочисленное решение уравнения (15). Так как x — нечетное число, следовательно, x 2 = (2k + 1) 2 = 4k(k + 1) + 1 ≡ 1(mod 8).

По модулю 4 исходное уравнение принимает вид 1 — 2y 2 ≡ 3(mod 4) или y 2 ≡ -1(mod 2). Следовательно, y — нечетное число, отсюда y 2 ≡ 1(mod 8). Поэтому, по модулю 8 исходное уравнение будет иметь вид 1 — 2 ≡ 3(mod 8) Û 4 ≡ 0(mod 8).

Полученное противоречие доказывает неразрешимость исходное уравнение в целых числах.

Задача 14. Доказать, что уравнение x 3 + x + 10y = 20004 неразрешимо в целых числах.

Решение. По модулю 5 исходное уравнение принимает вид

x 3 + x ≡ -1(mod 5).(16)

Рассмотрев все возможные остатки от деления x на 5, убеждаемся, что сравнение (16) неразрешимо. Следовательно, исходное уравнение также неразрешимо в целых числах.

4. Другие методы решения диафантовых уравнений

Задача 15. Доказать, что уравнение x 3 + y 3 + z 3 = 2 имеет бесконечно много решений в целых числах.

Решение. Положим x = a + b, y = ab. Тогда x 3 + y 3 = 2a 3 + 6ab 2 . С учетом последнего равенства исходное уравнение принимает вид 2a 3 + 6ab 2 + z 3 = 2. Положив a = 1, получим z 3 = -6b 2 . Положим теперь b = 6t 3 . Отсюда z = -6t 2 , x = 1 + 6t 3 , y = 1 — 6t 3 . Таким образом, получено бесконечное множество решений исходного уравнения, соответствующих целочисленным значениям параметра t

Задача 16. Доказать, что уравнение

x 2 — 2y 2 = 1(17)

имеет бесконечно много решений в натуральных числах.

Решение. Нетрудно заметить, что (3,2) — одно из решений исходного уравнения. С другой стороны из тождества (x 2 + 2y 2 ) 2 — 2(2xy) 2 = (x 2 — 2y 2 ) 2 следует, что если (x, y) — решение уравнения (17), то пара (x 2 + 2y 2 , 2xy) также является его решением. Используя этот факт, рекуррентно определим бесконечную последовательность (xn , yn) различных решений исходного уравнения: (x1 , y1) = (3,2) и xn+1 = xn 2 + 2yn 2 , yn+1 = 2xnyn, n Î N * .

Задача 17. Решить в целых числах уравнение

Решение. Заметим, что слагаемые в левой части уравнения имеют одинаковый знак, а поскольку их сумма положительна, то каждое слагаемое также положительно. Применяя неравенство Коши, получим

Следовательно, xyz = 1. Отсюда получим, что решениями могут быть только тройки (1,1,1), (1,-1,-1), (-1,-1,1), (-1,1,-1). Проверкой убеждаемся, что каждая из них действительно является решением исходного уравнения.

Задача 18. Доказать, что уравнение x(x + 1) = 4y(y + 1) неразрешимо в целых положительных числах.

Решение. Нетрудно заметить, что исходное уравнение равносильно уравнению x 2 + x + 1 = (2y + 1) 2 . Следовательно, x 2 2 2 или x 2x 3 + xy — 7 = 0.

Решение. Из условия следует, что x должен быть делителем числа 7. Т. е. возможные значения x находятся среди чисел <±1, ±7>. Перебрав эти возможности, получаем решение уравнения: (1,5), (-1,-9), (7,-97), (-7,-99).

Задача 20. Доказать, что уравнение x 2 + 1 = py, где p — простое число вида 4k+3, неразрешимо в целых числах.

Решение. Предположим, что исходное уравнение разрешимо в целых числах. Тогда x 2 + 1 ≡ 0(mod p). Но, согласно малой теореме Ферма, -1 ≡ (-1) 2k+1 ≡ (x 2 ) 2k+1 ≡ x p-1 ≡ 1(mod p). Полученное противоречие доказывает неразрешимость исходного уравнения в Z.

Задача 21. Доказать, что уравнение x 2 — y 3 = 7 неразрешимо в целых положительных числах.

Решение. Если y — четное число, то x 2 ≡ 3(mod 4), что невозможно. Поэтому предположим, что y — нечетное число: y = 2k + 1. Тогда x 2 + 1 = y 3 + 8 = (y + 2)((y + 1) 2 + 3) = (y + 2)(4(k + 1) 2 + 3), Итак, число x 2 + 1 имеет делитель вида 4n + 3. Следовательно, оно имеет и простой делитель вида 4n + 3 (действительно, если бы все простые делители числа 4(k + 1) 2 + 3 имели вид 4n + 1, то и само число, являясь их произведением, имело бы вид 4n + 1. Однако последнее невозможно в силу предыдущей задачи.

Задача 22. Доказать, что уравнение не имеет решений в целых положительных числах.

Решение. Положим d = (x , y), x1 = x /d, y1 = y /d. Так как x 2 + xy + y 2 = x 2 y 2 , следовательно,

x1 2 + x1y1 + y1 2 = d 2 x1 2 y1 2 .(18)

Отсюда получаем, что x1|y1, y1|x1. Учитывая, что (x1,y1) = 1, делаем вывод, что x1 = y1 = 1. Таким образом, уравнение (18) принимает вид d 2 = 3, Отсюда следует требуемое утверждение.

Задача 23. Решить в целых числах уравнение x + y = x 2 — xy + y 2 .

Решение. Положим t = x + y. Так как то должно выполнятся неравинство откуда t Î [0;4].

Учитывая соотношение x + y = (x + y) 2 — 3xy, рассмотрим случаи, соответствующие целочисленным значениям t из отрезка [0;4].

a) t = 0

x + y = 0,
xy = 0,
Û
x = 0,
y = 0.

b) t = 1

x + y = 1,
xy = 0,
Û
x = 0,
y = 1,
x = 1,
y = 0.

c) t = 2

x + y = 2,
xy = 2 /3,
Ю (x , y) Î Ж .

d) t = 3

x + y = 3,
xy = 2,
Û
x = 1,
y = 2,
x = 2,
y = 1.

e) t = 4

x + y = 4,
xy = 4,
Û
x = 2,
y = 2.

Таким образом, целочисленными решениями исходного уравнения являются пары (0,0), (0,1), (1,0), (1,2), (2,1), (2,2).

Задачи для самостоятельного решения

  1. Найти все целые решения уравнения x 3 + (x + 1) 3 + (x + 2) 3 = (x + 3) 3 . Ответ:x = 3.
  2. Решить в рациональных числах уравнение x 4 — 4x 3 — 13x 2 + 28x + 12 = 0. Ответ:<-3,2>.
  3. Решить в целых числах уравнение 127x — 52y + 1 = 0. Ответ:x = 9 + 52t, y = 22 + 127t, t Î Z.
  4. Решить в целых числах уравнение 6x + 10y — 7z = 11. Ответ:x = 3u + 7v — 11, y = u, z = 4u + 6v — 11, u, v Î Z.
  5. Решить в целых числах уравнение 3x 2 + 4xy — 7y 2 = 13. Указание. Применить разложение на множители.
    Ответ: (2,1), (-2,-1).
  6. Решить в целых числах уравнение 1 + x + x 2 + x 3 = 2 y . Ответ: (0,0), (1,2).
  7. Решить в целых числах уравнение x 4 + 4y 4 = 2(z 4 + 4t 4 ). Указание. Использовать четность.
    Ответ: (0,0,0,0).
  8. Доказать, что уравнение y 2 = 5x 2 + 6 не имеет целочисленных решений.
    Указание. Рассмотреть уравнение по модулю 4.
  9. Доказать, что уравнение x 3 = 2 + 3y 2 не имеет решений в целых числах.
    Указание. Рассмотреть уравнение по модулю 9.
  10. Доказать, что уравнение x 4 + y 6 + z 12 = t 4 имеет бесконечно много решений в целых числах.
    Указание. Параметризовать решение.
  11. Доказать, что уравнение x 2 — 3y 2 = 1 имеет бесконечно много решений в целых числах.
    Указание. Использовать реккурентное соотношение между решениями.
  12. Решить в целых числах уравнение x 2 + x = y 4 + y 3 + y 2 + y. Указание. Представить уравнение в виде (2x + 1) 2 = (2y 2 + y + 1) 2 — (y 2 — 2y).
    Ответ: (0,-1), (-1,-1), (0,0), (-1,0), (5,2), (-6,2).
  13. Решить в целых положительных числах уравнение Указание. Применить неравинство Коши.
    Ответ: (1,1,1).
  14. Решить в целых положительных числах уравнение где параметр p — простое число больше 2.
    Ответ:

Диофантовы уравнения — методы, алгоритмы и примеры решения

Основные понятия

Решением линейных уравнений начали заниматься ещё в Древнем Вавилоне и Греции. Особого успеха в их вычислении смог добиться древнегреческий философ и математик правителя Греции — Диофант Александрийский. В третьем веке до нашей эры он издал свой труд под названием «Арифметика», в котором описал возможные решения различных математических задач. Большая часть их была посвящена уравнениям, которые и были позже названы в его честь.

Диофантовыми уравнениями принято называть линейные выражения вида: a1x1 + a2x2 + … + anxn = c. В этих равенствах икс обозначает искомое неизвестное, а коэффициенты a и c являются целыми числами. Греческий учёный предложил несколько способов решения таких уравнений:

  • полный перебор;
  • разложение на множители;
  • выражение одной переменной через другую с выделением целой части при решении системы;
  • поиск частного решения;
  • алгоритм Евклида;
  • геометрический метод.

Методы решения диофантовых уравнений позволяют найти целые или рациональные решения для алгебраических равенств или их систем. Но при этом число переменных в выражении не должно превышать двух. Как правило, такие уравнения имеют несколько решений, поэтому их другое популярное название — неопределённые.

Чтобы воспользоваться способами, предложенными математиком при рассмотрении задач, нужно попробовать проанализировать исходные данные и свести их к линейному равенству или системе уравнений. При этом коэффициенты, как стоящие возле неизвестных, так и свободные, должны быть целыми. Ответом же должно получиться тоже целое число, обычно натуральное.

Чтобы понимать возможности применения уравнений в тех или иных исследовательских вычислениях, необходимо предварительно ответить на два вопроса: могут ли быть у задания целочисленные решения и ограничено ли число действительных ответов. Поэтому использование способов подходит только для простейших уравнений первой и второй степени. Для выражений высших порядков, например, 4x 3 + 6Y 3 — 2z 4 = 23, определить, является ли решением целое число, довольно проблематично.

Методы решения

Для начала следует рассмотреть однородное линейное уравнение вида: ax + by = 0. Это простой многочлен первой степени. Для него характерно то, что если для коэффициентов можно подобрать один делитель, то обе части возможно сократить на его величину не нарушив принципы записи. Наиболее простым способом определить этот делитель является метод разработанный великим математиком своего времени Евклидом.

Решение диофантовых уравнений по алгоритму Евклида заключается в нахождении общего делителя натуральных чисел с использованием деления с остатком. Для этого нужно взять большее число и просто разделить его на наименьшее. Затем полученный остаток нужно снова разделить на меньшее из чисел. Это действие необходимо повторять до тех пор, пока результатом операции не станет единица, то есть выполнится деление без остатка. Последнее полученное число и будет являться наибольшим общим делителем (НОД).

Существует три теоремы, которые используются при решении уравнений первой степени:

  1. В случае, когда НОД равняется единице, выражение будет обязательно иметь хотя бы одну пару целого решения.
  2. Если коэффициенты выражения больше единицы, и при этом свободный член нельзя нацело разделить на них, то корни равенства не имеют целого значения.
  3. Когда коэффициенты равняются единице, все решения, состоящие из целых чисел, находятся с помощью формул: x = x0c + bt и y = y0c — at, где: х0, y0 — целые ответы, t — множество чисел.

Например, пусть есть равенство вида 54x + 37y = 1. Используя то, что a = 54, а b =37, можно записать: 54 — 37 *1 = 17. Теперь можно выполнить следующие вычисления:

  • 37 — 17 * 2 = 3;
  • 71 — 3 * 5 = 2;
  • 3 — 2 * 1 = 1.

Далее нужно выразить значения коэффициентов через остаток:

  • 3 — (17 — 3 * 5) = 1;
  • 1 = 17 — 3 * 4;
  • 1 = 17 — (37- 17 * 2) * 4;
  • 1 = 17 — 37 * 4+17 * 8;
  • 1 = 17 * 9 — 37 * 4;
  • 1 = (54 — 37 * 1) * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 9 — 37 * 4;
  • 1 = 54 * 9 — 37 * 13;
  • 1 = 54х + 37у.

Исходя из приведённого следует, что x0 равняется девяти, а игрек нулевой — минус тринадцать. Таким образом, рассматриваемое уравнение будет иметь вид:

Этим же способом можно и определить, что целых решений в выражении быть не может, как, например, для равенства 17x + 36y = 7. В этом случае НОД не делится на два, поэтому и целых решений нет.

Способ подбора и разложения

Метод подбора используется для нахождения корней простых уравнений. Пожалуй, это самый простой способ, но вместе с тем и требующий повышенного внимания и большого количества операций. Его суть заключается в полном переборе всех допустимых значений переменных, входящих в равенство. Например, эта задача которая будет интересна и школьникам, только знакомящимся с уравнениями.

Пусть имеется зоопарк, в котором находятся птицы и млекопитающие. Всего у животных двадцать лап. Определить, какое количество может быть птиц, а какое — млекопитающих. Для нахождения ответа методом перебора следует принять число одних животных, равное x (пусть это будут четырёхпалые), а других — y (птицы). Таким образом, получится уравнение: 2x + 4 y = 20. Для простоты выражение можно упростить, сократив на два: x + 2y = 10.

Полученное выражение нужно преобразовать, разделив неизвестные знаком равно: x = 10 — 2y. Зная, что ответом могут быть только целые числа, вместо y нужно пробовать подставлять возможные варианты: 1 — 8; 2 — 6; 3 — 4; 4 — 2; 5 — 0. Это и есть все возможные ответы на поставленную задачу.

Разложение выражения на множители можно выполнять различными способами. Вот основные из них:

  • вынесение общего множителя: если каждый член многочлена можно разделить на одно и то же число, то его можно вынести за скобку;
  • использование формулы сокращённого умножения: оно выполняется по формуле: an — bn = (a-b) * (an-1 + an-2 * b +… a2bn-3 + abn-2 + bn-1);
  • применение свойства полного квадрата: это самый эффективный способ, заключающийся в вынесении полного квадрата за скобку с последующим использованием формул разности квадратов;
  • группировкой — в его основе лежит вынесение общего множителя таким образом, чтобы появилась возможность перегруппировки выражения, после которой получится значение, присутствующее во всех членах равенства.

Например, пусть имеется нелинейное уравнение вида: 8×4 + 32×2 = 8. Все его члены можно перенести в одну сторону, а равенство приравнять к нулю, при этом сократив каждый член на восемь: x4 + 4×2 — 1 = 0. Для преобразования такого выражения удобнее всего применить метод квадратов. Таким образом, уравнение можно расписать следующим образом: x4 + 2 * 2 * x2 + 4 — 4 — 1 = (x2 + 2)2 — 5 = (x2 + 2 — √5) * (x2 + 2 +√5).

Геометрический подход

Этот метод удобно применять для системы уравнений. Его принцип построен на изображении графиков уравнений и определения их точки пересечения. При этом координаты этой точки и будут являться корнями рассматриваемой системы.

Из этого утверждения можно сделать следующие выводы:

  • если графики уравнений представляют пересекающиеся прямые, то решением будет только одно число;
  • когда графики уравнений не имеют общих точек, то решения у системы уравнений нет;
  • в случае, когда графики совпадают, система будет иметь бесконечное множество корней.

Применять этот метод можно для уравнений, порядок которых не превышает единицы. В равенствах высшего порядка построить график обычно сложно. Например, дана система:

Из первого и второго равенства можно выразить одно неизвестное через другое, используя несколько произвольных чисел. Затем, подставляя их вместо неизвестного, можно построить график. Как только две прямые будут построены, можно будет определить, что точка их пересечения имеет координаты -2; 5. Эти значения и будут искомыми корнями.

Занимательная задача

На самом деле примеры диофантовых уравнений можно встретить в повседневной жизни. Например, при покупке чего-либо в магазине. На эту тему математики смогли придумать интересные задачи, обычно предлагающиеся ученикам на дополнительных занятиях.

Вот одна из них, появившаяся из реальной истории. Однажды математик пришёл в магазин приобрести свитер. Его цена составляла 19 рублей. У учёного же были с собой только купюры номиналом три рубля, а у кассира — пятирублёвки. Задача состоит в том, чтобы выяснить, сможет ли состояться сделка. Иными словами, необходимо найти, сколько нужно математику дать купюр, и какое их количество он получит от кассира.

Рассуждать нужно следующим образом. В задачи есть два неизвестных: количество трёхрублёвых и пятирублёвых купюр. Поэтому можно составить уравнение: 3x — 5y = 19. По сути, уравнение с двумя неизвестными может иметь бесчисленное число решений, но не всегда из них может найтись хотя бы одно целое положительное.

Итак, зная, что неизвестные должны быть целыми положительными числами, нужно выразить неизвестное с меньшим коэффициентом через остальные члены. Получится равенство: 3 x = 19 + 5 y. Левую и правую часть можно разделить на три, а после выполнить простейшие преобразования: x = (19 + 5y) / 3 = 6 + y + (1 + 2y) / 3. Учитывая, что неизвестные и свободный член это целые числа, выражение (1 + 2y) / 3 можно заменить буквой r, также являющимся каким-то целым числом.

Тогда уравнение можно переписать как x = 6 + y + t. Отсюда t = (1 + 2y) / 3 или y = t + (t — 1) / 2. Снова можно сделать вывод, что (t — 1) / 2 — какое-то целое число. Если заменить его на t1, выражение примет вид: y = t + t1.

Подставив t = 2t1 + l в равенство можно получить, что x = 8 + 5t1, а y = 1 + 3t1. Таким образом, решением уравнения будут полученные равенства. Исходя из того, что результат должен быть положительным, равенства можно переписать в неравенства вида:8 + 5t1> 0, 1 + 3t1 > 0. Отсюда определить диапазон, ограничивающий t1. Беря во внимание только плюсовую часть диапазона, можно сделать заключение, что возможные варианты решения лежать в пределе от нуля до плюс бесконечности.

Подставляя по очереди числа, можно определить значения x и y. Искомый ряд будет выглядеть следующим образом: 1 = 8, 13, 18, 23, …, n; <у = 1 + 3t>1 = 1, 4, 7, 10,…, m. То есть математик, дав восемь купюр, получит одну на сдачу, а если он отдаст 13 купюр, то продавец должен будет ему выдать четыре пятирублёвки. Этот ряд можно продолжать до бесконечности.

Использование онлайн-калькулятора

Существуют сайты, рассчитывающие линейные уравнения в автоматическом режиме. Они называются математическими онлайн-калькуляторами. Пользователю, желающему воспользоваться их услугами, нужно иметь лишь подключение к интернету и любой веб-браузер.

Свои услуги сервисы предоставляют бесплатно. При этом часто на их страницах содержится краткий теоретический материал, посвящённый решению диофантовых уравнений. Кроме того, пользователю предоставляется возможность ознакомиться с решением типовых примеров.

Из нескольких десятков таких сайтов на русском языке можно отметить следующие:

Все приведённые сайты имеют интуитивно понятный интерфейс и бесплатны. После того как пользователь введёт в предложенную форму нужные уравнения и запустит расчётчик, онлайн-сервисы не только выдадут ответ, но и выведут на экран пошаговое решение с объяснениями. Таким образом, эти сервисы помогают не только быстро и верно найти решение, но и дают возможность пользователю понять принципы вычисления, проверить самостоятельно выполненный расчёт.


источники:

http://www.math.md/school/krujok/diofantr/diofantr.html

http://nauka.club/matematika/diofantovy-uravneniy%D0%B0.html