Дирака уравнение как применимо к любви

Мы называем это любовью

Уравнение Дирака. Самое красивое из всех в физике. Оно описывает феномен квантовой запутанности, в котором говорится: «Если две системы взаимодействуют друг с другом в течение определенного периода времени, а затем отделяются друг от друга, — и мы можем описать их как две разные системы, но они уже существуют как иная уникальная система. То, что происходит с одним, продолжает влиять на другого, даже на расстоянии миль или световых лет».

Это квантовая запутанность или квантовая связь.

Две частицы, которые в какой-то момент были связаны, связаны всегда. Не смотря на расстояние между ними, даже если они находятся на противоположных концах Вселенной, связь между ними мгновенная.

То же самое происходит между двумя людьми, когда их связывает то, что могут испытать только живые существа.

Мы называем это ЛЮБОВЬЮ.

Другие статьи в литературном дневнике:

  • 11.04.2021. Мы называем это любовью

Портал Стихи.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и российского законодательства. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Стихи.ру – порядка 200 тысяч посетителей, которые в общей сумме просматривают более двух миллионов страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2022 Портал работает под эгидой Российского союза писателей 18+

Выводы Дирака. Уравнение Дирака. Квантовая теория поля

Данная статья посвящена работе Поля Дирака, уравнение которого значительно обогатило квантовую механику. Она описывает основные понятия, необходимые для того, чтобы разобраться в физическом смысле уравнения, а также способы его применения.

Наука и ученые

Человек, не связанный с наукой, представляет процесс добычи знаний каким-то магическим действием. А ученые, по мнению таких людей, — это чудаки, которые говорят на непонятном языке и слегка высокомерны. Знакомясь с исследователем, далекий от науки человек сразу говорит, что он в школе физику не понимал. Таким образом обыватель отгораживается от научного знания и просит более образованного собеседника говорить проще и понятнее. Наверняка Поля Дирака, уравнение которого мы рассматриваем, приветствовали так же.

Элементарные частицы

Строение вещества всегда волновало любознательные умы. В Древней Греции люди заметили, что мраморные ступени, по которым прошло множество ног, со временем меняют форму, и предположили: каждая ступня или сандалия уносила с собой крошечную частицу вещества. Эти элементы решили назвать «атомами», то есть «неделимыми». Наименование осталось, но выяснилось, что и атомы, и частицы, из которых состоят атомы, — тоже составные, сложные. Эти частицы называются элементарными. Именно им посвящена работа Дирака, уравнение которого позволило не только объяснить спин электрона, но и предположить наличие антиэлектрона.

Корпускулярно-волновой дуализм

Развитие техники фотографии в конце девятнадцатого века повлекло за собой не только моду на запечатление себя, еды и кошек, но и продвинуло возможности науки. Получив такой удобный инструмент, как быстрая фотография (напомним, раньше выдержки доходили до 30-40 минут), ученые стали массово фиксировать разнообразные спектры.

Существующие на тот момент теории строения веществ не могли однозначно объяснить или предсказать спектры сложных молекул. Сначала знаменитый опыт Резерфорда доказал, что атом не такой уж неделимый: в его центре находилось тяжелое положительное ядро, вокруг которого располагались легкие отрицательные электроны. Потом открытие радиоактивности доказало, что и ядро не монолит, а состоит из протонов и нейтронов. А дальше почти одновременное открытие кванта энергии, принципа неопределенности Гейзенберга и вероятностной природы местоположения элементарных частиц дали толчок к развитию принципиально иного научного подхода к изучению окружающего мира. Появился новый раздел – физика элементарных частиц.

Основным вопросом на заре этого века великих открытий в сверхмалых масштабах стало объяснение наличия у элементарных частиц и массы, и свойств волны.

Эйнштейн доказал, что даже неуловимый фотон обладает массой, так как передает импульс твердому телу, на который падает (явление давления света). При этом многочисленные опыты по рассеянию электронов на щелях говорили как минимум о наличии у них дифракции и интерференции, это свойственно только волне. В итоге пришлось признать: элементарные частицы одновременно и объект с массой, и волна. То есть масса, скажем, электрона как бы «размазана» в пакет энергии с волновыми свойствами. Этот принцип корпускулярно-волнового дуализма позволил объяснить прежде всего, почему электрон не падает на ядро, а также по каким причинам в атоме существуют орбиты, а переходы между ними скачкообразные. Эти переходы и порождают спектр, уникальный для любого вещества. Далее физика элементарных частиц должна была объяснить свойства самих частиц, а также их взаимодействие.

Волновая функция и квантовые числа

Эрвин Шредингер совершил удивительное и до сих пор малопонятное открытие (на его основании чуть позже Поль Дирак построил свою теорию). Он доказал, что состояние любой элементарной частицы, например, электрона описывает волновая функция ψ. Сама по себе она ничего не значит, а вот ее квадрат покажет вероятность найти электрон в данном месте пространства. При этом состояние элементарной частицы в атоме (или другой системе) описывается четырьмя квантовыми числами. Это главное (n), орбитальное (l), магнитное (m) и спиновое (ms) числа. Они показывают свойства элементарной частицы. Как аналогию можно привести брусок масла. Его характеристики – масса, размер, цвет и жирность. Однако свойства, описывающие элементарные частицы, нельзя понять интуитивно, их надо осознавать через математическое описание. Работа Дирака, уравнение которого — в центре внимания этой статьи, посвящена последнему, спиновому числу.

Прежде чем перейти непосредственно к уравнению, необходимо объяснить, что же обозначает спиновое число ms. Оно показывает собственный момент импульса электрона и других элементарных частиц. Это число всегда положительно и может принимать целое значение, ноль или полуцелое значение (для электрона ms = 1/2). Спин – величина векторная и единственная, которая описывает ориентацию электрона. Квантовая теория поля кладет спин в основу обменного взаимодействия, которому нет никакого аналога в обычно интуитивно понятной механике. Спиновое число показывает, каким образом должен повернуться вектор, чтобы прийти в изначальное состояние. Примером может служить обычная шариковая ручка (пишущая часть пусть будет положительным направлением вектора). Чтобы она пришла в изначальное состояние, ее надо повернуть на 360 градусов. Такая ситуация соответствует спину, равному 1. При спине 1/2, как у электрона, поворот должен быть 720 градусов. Так что, помимо математического чутья, надо иметь развитое пространственное мышление, чтобы понять это свойство. Чуть выше шла речь о волновой функции. Она является основным «действующим лицом» уравнения Шредингера, с помощью которого описывается состояние и положение элементарной частицы. Но это соотношение в своем изначальном виде предназначено для частиц без спина. Описать состояние электрона можно, только если провести обобщение уравнения Шредингера, что и было проделано в работе Дирака.

Бозоны и фермионы

Фермион – частица с полуцелым значением спина. Фермионы располагаются в системах (например атомах) согласно принципу Паули: в каждом состоянии должно быть не более одной частицы. Таким образом, в атоме каждый электрон чем-то отличается от всех остальных (какое-то квантовое число имеет другое значение). Квантовая теория поля описывает и другой случай – бозоны. Они имеют целый спин и могут все одновременно быть в одном состоянии. Реализация этого случая называет Бозе-конденсацией. Несмотря на достаточно хорошо подтвержденную теоретическую возможность его получить, практически это осуществили только в 1995 году.

Уравнение Дирака

Как мы уже говорили выше, Поль Дирак вывел уравнение классического поля электрона. Оно также описывает состояния других фермионов. Физический смысл соотношения сложен и многогранен, и из его формы следует много фундаментальных выводов. Вид уравнения следующий:

где m — масса фермиона (в частности электрона), с — скорость света, pk— три оператора компонент импульса (по осям x, y, z), ħ — урезанная постоянная Планка, x и t – три пространственные координаты (соответствуют осям X, Y, Z) и время, соответственно, и ψ(x, t) — четырёхкомпонентная комплексная волновая функция, αk (k=0, 1, 2, 3) — матрицы Паули. Последние представляют собой линейные операторы, которые действуют на волновую функцию и ее пространство. Формула эта довольно сложная. Чтобы понять хотя бы ее компоненты, надо разбираться в основных определениях квантовой механики. Также следует обладать недюжинными математическими познаниями, чтобы как минимум знать, что такое вектор, матрица и оператор. Специалисту вид уравнения скажет еще больше, чем его компоненты. Человек, сведущий в ядерной физике и знакомый с квантовой механикой, поймет важность этого соотношения. Однако надо признаться, что уравнения Дирака и Шредингера — всего лишь элементарные основы математического описания процессов, которые происходят в мире квантовых величин. Физики-теоретики, которые решили посвятить себя элементарным частицам и их взаимодействию, должны понимать суть этих соотношений на первом-втором курсах института. Но наука эта увлекательная, и именно в этой области можно совершить прорыв или увековечить свое имя, присвоив его уравнению, преобразованию или свойству.

Физический смысл уравнения

Как мы и обещали, рассказываем, какие выводы таит уравнение Дирака для электрона. Во-первых, из этого соотношения становится ясно, что спин электрона равен ½. Во-вторых, согласно уравнению, у электрона есть собственный магнитный момент. Он равен магнетону Бора (единица элементарного магнитного момента). Но самый главный результат получения этого соотношения кроется в незаметном операторе αk. Вывод уравнения Дирака из уравнения Шредингера занял много времени. Вначале Дирак думал, что эти операторы мешают соотношению. С помощью разных математических ухищрений он пытался исключить их из уравнения, но ему это не удалось. В итоге уравнение Дирака для свободной частицы содержит четыре оператора α. Каждый из них представляет собой матрицу [4×4]. Два соответствуют положительной массе электрона, что доказывает наличие двух положений его спина. Другие же два дают решение для отрицательной массы частицы. Самые простые познания в физике предоставляют человеку возможность заключить, что это невозможно в реальности. Но в результате эксперимента выяснилось, что последние две матрицы являются решениями для существующей частицы, противоположной электрону – антиэлектрону. Как и электрон, позитрон (так назвали эту частицу) обладает массой, но его заряд положителен.

Позитрон

Как часто бывало в эру квантовых открытий, Дирак сначала не поверил собственному выводу. Он не решился открыто опубликовать предсказание новой частицы. Правда, во множестве статей и на различных симпозиумах ученый подчеркивал возможность ее существования, хотя и не постулировал это. Но вскоре после вывода этого знаменитого соотношения позитрон был найден в составе космического излучения. Таким образом, его существование было подтверждено эмпирически. Позитрон – первый найденный людьми элемент антиматерии. Позитрон рождается как один из близнецов пары (другой близнец – это электрон) при взаимодействии фотонов очень высокой энергии с ядрами материи в сильном электрическом поле. Приводить цифры мы не будем (заинтересованный читатель и сам найдет всю нужную информацию). Однако стоит подчеркнуть, что речь идет о космических масштабах. Произвести фотоны нужной энергии способны лишь взрывы сверхновых и столкновения галактик. Также они в некотором количестве содержатся в ядрах горячих звезд, в том числе Солнца. Но человек всегда стремится к своей выгоде. Аннигиляция материи с антиматерией дает много энергии. Чтобы обуздать этот процесс и пустить его на благо человечества (например, эффективными были бы двигатели межзвездных лайнеров на аннигиляции), люди научились изготавливать протоны в лабораторных условиях.

В частности, большие ускорители (типа адронного коллайдера) могут создавать пары электрон-позитрон. Раньше также высказывались предположения, что существуют не только элементарные античастицы (помимо электрона их еще несколько), но и целая антиматерия. Даже совсем небольшой кусочек любого кристалла из антивещества обеспечил бы энергией всю планету (может быть, криптонит супермена был антиматерией?).

Но увы, создание антиматерии тяжелее ядер водорода в обозримой вселенной задокументировано не было. Однако если читатель думает, что взаимодействие вещества (подчеркнем, именно вещества, а не отдельно взятого электрона) с позитроном сразу заканчивается аннигиляцией, то он ошибается. При торможении позитрона с высокой скоростью в некоторых жидкостях с ненулевой вероятностью возникает связанная пара электрон-позитрон, которая называется позитроний. Это образование имеет некоторые свойства атома и даже способно вступать в химические реакции. Но существует этот хрупкий тандем недолго и потом все равно аннигилирует с испусканием двух, а в некоторых случаях и трех гамма-квантов.

Недостатки уравнения

Несмотря на то что благодаря этому соотношению был обнаружен антиэлектрон и антиматерия, оно имеет существенный недостаток. Запись уравнения и модель, построенная на его основе, не способны предсказать, как рождаются и уничтожаются частицы. Это своеобразная ирония квантового мира: теория, предсказавшая рождение пар материя-антиматерия, не способна адекватно описать этот процесс. Данный недостаток был устранен в квантовой теории поля. Путем введения квантованности полей эта модель описывает их взаимодействие, в том числе рождение и уничтожение элементарных частиц. Под «квантовой теорией поля» в данном случае подразумевается совершенно конкретный термин. Это область физики, которая изучает поведение квантовых полей.

Уравнение Дирака в цилиндрических координатах

Для начала сообщим, что такое цилиндрическая система координат. Вместо привычных трех взаимно перпендикулярных осей для определения точного местоположения точки в пространстве используются угол, радиус и высота. Это то же самое, что полярная система координат на плоскости, только добавляется третье измерение – высота. Эта система удобна, если требуется описать или исследовать некоторую поверхность, симметричную относительно одной из осей. Для квантовой механики это весьма полезный и удобный инструмент, который позволяет значительно сократить размер формул и количество вычислений. Это следствие осесимметричности электронного облака в атоме. Уравнение Дирака в цилиндрических координатах решается несколько иначе, чем в привычной системе, и дает иногда неожиданные результаты. Например, некоторые прикладные задачи по определению поведения элементарных частиц (чаще всего электронов) в квантованном поле решались преобразованием вида уравнения к цилиндрическим координатам.

Использование уравнения для определения строения частиц

Это равенство описывает простые частицы: такие, которые не состоят из еще более мелких элементов. Современная наука способна измерять магнитные моменты с достаточно высокой точностью. Таким образом, несоответствие посчитанного с помощью уравнения Дирака значения измеренному экспериментально магнитному моменту будет косвенно свидетельствовать о сложном строении частицы. Напомним, это равенство применимо к фермионам, их спин полуцелый. С помощью этого уравнения была подтверждена сложная структура протонов и нейтронов. Каждый из них состоит из еще более мелких элементов, которые называются кварками. Глюонное поле держит кварки вместе, не давая им рассыпаться. Существует теория, что и кварки — это не самые элементарные частицы нашего мира. Но пока у людей не хватает технической мощи, чтобы это проверить.

Нобелевские лауреаты: Поль Дирак. Предсказатель антивещества

О сочетании несочетаемого, юном гении, предсказании антивещества и о дружбе с Ландау повествует наш новый выпуск рубрики «Как получить Нобелевку».

В 1932-1933 годах Нобелевскую премию по физике получили три человека, которые фактически взорвали всю физическую науку изнутри. Каждому из них можно и нужно посвящать несколько томов биографии, а не одну, хоть и немалого объема, заметку. Более того, два из трех выполнили свои прорывные работы в таком возрасте, когда некоторые только заканчивают университет, а затем долгие годы работали на высочайшем уровне. Немцу Вернеру Гейзенбергу мы уже посвятили материал, теперь же настала очередь человека, сперва носившего швейцарское, а затем британское подданство, — Поля Дирака. Ну а об австрийце Эрвине Шредингере и его коте мы поговорим в среду.

Поль Адриен Морис Дирак

Родился: 8 августа 1902 года, Бристоль, Великобритания

Умер: 20 октября 1984 года, Таллахасси, Флорида, США

Нобелевская премия по физике 1933 года (1/2 премии, совместно с Эрвином Шредингером). Формулировка Нобелевского комитета: «За открытие новых продуктивных форм атомной теории» (for the discovery of new productive forms of atomic theory).

«В Бристоль, друзья!»

Итак, наш герой, несмотря на франкофонское имя и фамилию, родился в Великобритании, в Бристоле. Это объясняется достаточно просто: его отец, Шарль Адриен Ладислас Дирак, эмигрировал в Великобританию из швейцарского Сан-Мориса (Saint-Maurice, не путать со столицей Зимних Олимпийских игр Санкт-Морицем, St. Moritz). Кстати, в единственном биографическом справочнике всех нобелиатов, двухтомнике издательства «Прогресс», который вышел в 1992 году и был переводом американского издания The H.W. Wilson Company, в биографии нашего героя — глупейшая опечатка (мне неизвестно, есть ли она в оригинале): там Шарль Дирак назван эмигрантом из Швеции. И из этой книжки ошибка пошла гулять по десяткам русскоязычных биографий его сына.

Итак, отец будущего нобелевского лауреата 1933 года переехал из Швейцарии в Туманный Альбион. Здесь, в Бристоле, Шарль преподавал свой родной французский язык и однажды повстречал уроженку Корнуэлла Флоренс Ханну Холтен, капитанскую дочку, работавшую в Центральной библиотеке Бристоля. Плодом их любви стали трое детей: старший — Реджинальд Чарльз Феликс, которого все будут звать просто Феликс; средний — Поль Адриен Морис; младшая — Беатрис Изабель Маргарет, которую все будут звать просто Бетти.

Центральная библиотека Бристоля

Родители были заботливыми, хотя, похоже, Поль воспринимал это как должное и понял, насколько дороги они были своим родителям, только в 1925 году, когда покончил с собой его старший брат. Он вспоминал: «Мои родители были ужасно расстроены. Я не знал, что они так сильно заботятся. Я никогда не знал, что родители должны заботиться о своих детях, но с тех пор (со времени смерти брата — прим. Indicator.Ru) я знаю , как было на самом деле».

Ранние годы

Шарль Дирак и дети оставались швейцарскими подданными аж до 1919 года, когда отец наконец-то натурализовался и стал подданным Его Величества, как и трое Дираков-младших. Интересно, что Шарль требовал от всех, чтобы в семье говорили только по-французски. Видимо, поэтому будущий великий физик предпочитал молчать. И размышлять.

После средней школы — Технического колледжа Бристоля, где учились только мальчики и был естественнонаучный уклон, — Дирак учился хорошо и быстро: тогда шла Первая мировая и места в старших классах быстро освобождались. В год окончания войны наш герой поступил в Бристольский университет на инженерный факультет. Уже тогда имея склонность к геометрии и алгебре, Дирак видел научный смысл в строгих, четких вычислениях и точных уравнениях. Как он потом вспоминал сам, инженерный факультет приблизил его к реальной науке и жизни: «Раньше я видел смысл лишь в точных уравнениях. Мне казалось, что если пользоваться приближенными методами, то работа становится невыносимо уродливой, в то время как мне страстно хотелось сохранить математическую красоту. Инженерное образование, которое я получил, как раз научило меня смиряться с приближенными методами, и я обнаружил, что даже в теориях, основанных на приближениях, можно увидеть достаточно много красоты…»

Кстати, именно тогда, в годы учебы Дирака, на мир обрушилась теория относительности. Не математический аппарат, известный физикам с 1905 года, а культурный феномен.

Начало необычайной эпохи

«В мир с сокрушительной силой ворвалась теория относительности. О ней неожиданно заговорили все. В газетах было полно сообщений о теории относительности. Журналы печатали статьи разных авторов. Одни выступали за теорию относительности, но были и такие, которые выступали против. Теорию относительности понимали тогда в очень широком смысле — ее взяли на вооружение и философы, и люди других, самых разных профессий. Нетрудно понять причину столь головокружительного успеха. Мы тогда только что пережили очень серьезную и страшную войну. Потом эта жуткая война совершенно неожиданно пришла к концу. В результате все устали. Хотелось бы о ней забыть. И тогда возникла теория относительности, замечательная идея, открывающая дорогу к новому образу мышления. В этом было бегство от войны. Мне кажется, что ни до ни после ни одна научная мысль, которой удавалось завладеть умами широкой публики, не производила равного по своей силе эффекта». Началась «необычайная эпоха» — так называл бурление молодой физики сам Дирак, а его статья «Воспоминания о необычайной эпохе», откуда мы взяли цитату выше, стала классикой научных мемуаров.

Обучение продолжалось три года. Кстати, нужно отметить, что сам Дирак уделял внимание и философии. Как он сам вспоминал, несколько студентов инженерного факультета сначала ходили на эти лекции, но потом они отсеялись. «Я выдержал до конца, изо всех сил пытаясь понять философию. Мои сокурсники инженеры, обладавшие сугубо практическим взглядом на вещи, решили, что инженеру не нужны философские проблемы, и перестали ходить на лекции. Мне, однако, казалось, что в философии что-то есть, и я прилагал все усилия к тому, чтобы разобраться в точке зрения, на которой стоят философы. Кроме того, я немного почитал о философии». Справедливости ради отметим, что в итоге Дирак пришел к выводу, что «не считает философию наукой, которая может способствовать развитию физики», и в этом был оппонентом нобелевского лауреата по физике 1932 года, Вернера Гейзенберга, который во второй половине жизни много времени уделял философии.

В 1921 году Дирак стал бакалавром электротехники, однако, несмотря на правильные изменения в мышлении нашего героя, которые внесла инженерная специальность, работа инженером Дирака совсем не привлекала. Поэтому, наверное, хорошо, что во время практики на машиностроительном заводе Регби он не очень хорошо себя проявил, а то, как знать, вместо великого физика и нобелевского лауреата мы бы получили среднего машиностроителя или механизатора в британской провинции.

Самому Дираку было не до смеха: работы не было, пойти учиться в Кембридж он не мог. Стипендии просто бы не хватило на то, чтобы жить (знакомое состояние для российских студентов), а власти Бристоля не имели права оказать ему поддержку: британское подданство у Поля было всего два года. К счастью, в самом Бристоле его знали и любили, и сотрудники университета позволили ему поучиться математике «просто так». Так что два года Поль Дирак был вольнослушателем и в 1923 году сдал итоговый экзамен с отличием, получил стипендию Бристольского университета, грант от бристольского Отдела образования и укатил в Кембридж в аспирантуру.


источники:

http://fb.ru/article/319380/vyivodyi-diraka-uravnenie-diraka-kvantovaya-teoriya-polya

http://indicator.ru/physics/pol-dirak.htm