Дискретное уравнение через дифференциальное уравнение

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Дискретизация дифференциальных уравнений

В частных производных

Решением дифференциального уравнения называется функция непрерывного аргумента, обращающая это уравнение в тождество при заданных граничных и начальных условиях. При численном решении исходное дифференциальное уравнение (вместе с граничными и начальными условиями) заменяется эквивалентной системой алгебраических уравнений, а численным решением называется сеточная функция, обращающая указанную систему алгебраических уравнений в тождество.

Процесс замены дифференциального уравнения системой алгебраических уравнений называется дискретизацией, а сама алгебраическая система – дискретным аналогом дифференциального уравнения. Цель наших дальнейших действий заключается в изучении широко распространенных способов получения (построения) дискретных аналогов дифференциальных уравнений в частных производных.

4.1 Метод конечных разностей

Введенное в предыдущем параграфе определение сеточной функции естественным образом распространяется на случай двух и более аргументов. Простейшую двумерную сетку i,j, yi,j> можно построить как набор из J одномерных сеток, каждая из которых содержит I узлов, при этом должно выполняться условие:

xi-1, j
,(21)

где Т – температура (подлежащая определению в результате решения), t – время, α – коэффициент теплопроводности, х – координата.

С точки зрения физики, уравнение (21) описывает нестационарный процесс распространения тепла в стержне с теплоизолированной боковой поверхностью и возможностью подвода (отвода) теплоты на его торцах (рис. 6).

С математической точки зрения, решением уравнения (21) является функция, зависящая от двух переменных (координата х и время t).

Рис. 6. Стержень с теплоизолированной боковой поверхностью

Для решения задачи должно быть заданы:

§ граничное условие на левом торце стержня – либо зависимость температуры от времени T0=T(x0,t) (условие Дирихле) либо пространственная производная (условие Неймана);

§ граничное условие на правом конце стержня – TN=T(xN,t) либо ;

§ начальное условие – закон распределения температуры по всей длине стержня в начальный момент времени Т(х, 0), где x0

Алгебраическое уравнение (21) позволяет методом «последовательного обхода» узлов расчетной сетки найти все неизвестные значения сеточной функции Ti, j:

,(22a)

Как следует из рассмотрения рис. 8а, в правой части уравнения (22a) упоминаются лишь те узлы расчетной сетки, значения температуры в которых уже известны. Расчетные схемы, обладающие указанным свойством, называются явными. Данное обстоятельство, с одной стороны, существенно упрощает решение задачи об отыскании значений сеточной функции Тi, j, с другой стороны, анализ формулы (22a), показывает, что температура в узле xi в момент времени tj+1, зависит только от температуры в узлах xi-1, xi, xi+1 в момент времени tj, и не зависит от распределения температур внутри стержня в момент времени tj+1, что не вполне соответствует физическому смыслу задачи.

Для устранения этого противоречия, несколько видоизменим аппроксимацию производной в уравнении (21):

,(23)
.(23a)

Правая часть уравнения (23a) содержит неизвестные величины Ti-1,j+1 и Ti+1,j+1, поэтому оно не может быть непосредственно (без увеличения объема вычислительной работы) использовано для нахождения температуры Ti,j+1. Расчетный шаблон для неявной расчетной схемы (23a) приведен на рис. 8б. Как показывают оценки [Флетчер], объем вычислений, при применении неявной схемы вместо явной схемы (22a), возрастает, ориентировочно, в два раза. Однако лучшая физическая обоснованность неявной схемы позволяет нам рассчитывать на более высокое качество результатов расчета.

В качестве примера, обсудим решение неявного уравнения (23а) методом итераций(Гаусса-Зейделя). Первый этап метода заключается в выборе начального приближения для искомых значений функции. В данном случае, хорошей идеей представляется использование в качестве начального приближения значений температуры, взятых с предыдущего временного слоя, т.е.

, для всех[22] i=1 … N-1(24)

где верхний индекс означает номер итерации.

Тогда, с учетом (23а), в первом приближении температура в момент времени tj+1 может быть определена как

, , …, .(25)

Скорее всего, значения температуры, определенные в первом приближении, не будут удовлетворять исходному уравнению (23). Поэтому процесс придется продолжать до тех пор, пока для каждого узла сетки различие между результатами, полученными на очередной и предыдущей итерациях, не станет меньше некоторой наперед заданной величины (точности решения) ε, т.е. пока не будет выполнено условие:

, для всех i=1 … N-1.(26)

Следует также предусмотреть прекращение расчета в том случае, если решения не удастся достигнуть (решение не сойдется) после некоторого «разумного» числа итераций К. Причиной отсутствия сходимости, в частности, могут стать завышенные требования к точности решения ε, чрезмерно большие шаги расчетной сетки Δx и Δt, неудачный выбор начального приближения, а также некоторые физические эффекты[23].

В некоторых случаях, добиться сходимости решения удается за счет использования метода релаксации. Преобразуем последнюю из формул (25) к виду:

,(25а)

где r – коэффициент релаксации (r>0).

Очевидно, что, при r=1, формула (25а) совпадает с последней из формул (25). При значениях 0 1 (верхняя релаксация), может привести к сокращению продолжительности расчета, а может вызвать полный «развал» численной схемы.

Следует подчеркнуть, что выбор метода дискретизации дифференциальных уравнений и оптимальной величины коэффициента релаксации возлагается на исследователя[25]. Дополнительные сведения по этому вопросу содержатся в главе, посвященной свойствам разностных схем.

4.2 Метод конечных элементов

В основе метода конечных элементов (МКЭ) лежит предположение о характере поведения функции , являющейся точным решением дифференциального уравнения. Для демонстрации основных идей МКЭ, предположим, что с достаточной точностью искомое решение (x) может быть представлено с помощью кусочно-линейной интерполяции[26] (рис. 9).

Очевидно, что значение кусочно-линейной функции Ф*=Ф(х*) в некоторой точке х*, лежащей внутри отрезка [xi-1, xi] может быть найдено по формуле:

Рис. 9. Кусочно-линейная интерполяция решения дифференциального уравнения

,(27)
.(27а)

График функции формы (пробной функции) , приведен на рис. 10. Необходимо отметить, что функция формы, является локальной, т.е. она отлична от нуля лишь в некоторой области, непосредственно прилегающей к рассматриваемому узлу xi. В частности, в случае кусочно-линейной интерполяции функции одной переменной (x), функция формы отлична от нуля лишь в пределах отрезков (конечных элементов) [xi-1, xi] и [xi, xi+1].

Рис. 10. Линейная функция формы

Отметим также, что производная кусочно-линейной функции Ф(х) в пределах элемента [xi-1, xi] совпадает с конечно-разностным отношением назад (9а), а в пределах элемента [xi, xi+1] – с конечно-разностным отношением вперед (9b).

Продемонстрируем применение метода конечных элементов на примере рассмотренного нами ранее обыкновенного дифференциального уравнения (13). Для сокращения записи будем использовать обозначение F(x)= .

Подстановка в уравнение (13) вместо точного решения (x) кусочно-линейной функции Ф(х) приведет к тому, что уравнение (13) будет выполняться неточно. Можно записать:

, хÎ[х0; хN].(28)
, хÎ[ х0; хN],(28а)

где R(х) – невязка решения, в общем случае являющаяся функцией независимой переменной х. Очевидно, что кусочно-линейная функция Ф(х) будет хорошим приближением к точному решению (x) лишь в том случае, если невязка R(x) будет мала для всех значений хÎ[ х0; хN].

Второй принципиальный этап МКЭ заключается в выборе способа определения неизвестных узловых значений Фi. Для решения этой задачи потребуем, чтобы взвешенные интегралы невязки по всей области задания функции (x) были равны нулю:

, для всех i=1…N(29)

Вследствие локальности функций формы (см. рис. 10), можно записать:

для всех i=1…N(30)
(30а)

Все интегралы, входящие в (30а), могут быть сравнительно легко определены, а сами соотношения (30а), совместно с начальным условием Ф0= 0), являются системой линейных алгебраических уравнений, которая может быть решена любым из известных методов, т.е.:

(30b)

Следует обратить внимание на то, что матрица системы линейных алгебраических уравнений (30b) имеет специфическую диагональную (ленточную) структуру. Для решения систем уравнений с ленточными матрицами, в вычислительной математике разработан ряд специальных методов, позволяющих существенно уменьшить объем вычислительной работы, самый распространенный из этих методов, называется методом прогонки.

Результаты решения дифференциального уравнения (13) методом конечных элементов приведены на рис. 11. Как можно видеть из этого рисунка, уже при шаге сетки Δх=0,08 численное решение, полученное с помощью МКЭ, гораздо лучше соответствует точному решению, чем численное решение, полученное с помощью метода Эйлера при шаге сетки Δх=0,025 (см. рис. 4). Следует, однако, отметить, что объем вычислительной работы, связанный с определением интегралов, входящих в (30), и последующее решение полученной системы алгебраических уравнений, на порядок превосходит объем вычислительной работы, выполненной по методу Эйлера.

Метод конечных элементов естественным образом распространяется на случай функций нескольких переменных. При этом, как правило, оказывается удобнее задавать каждую из функций формы в локальной системе координат, связанной с рассматриваемым узлом расчетной сетки. В качестве примера, на рис. 12 приведен график полилинейной функции формы , определенной на плоской сетке, содержащей треугольные конечные элементы.

Рис. 11. Решение дифференциального уравнения (13) методом конечных элементов

Рис. 12. Полилинейная функция формы , определенная на плоской сетке,

содержащей треугольные конечные элементы

4.3 Метод конечных объемов

Использование метода конечных (контрольных) объемов продемонстрируем на примере двумерного стационарного уравнения теплопроводности:

,(31)

где α – коэффициент теплопроводности, S – скорость выделения теплоты в единице объема.

Решение задачи начнем с построения разностной сетки и разбиения расчетной области на непересекающиеся ячейки (объемы), каждая из которых содержит лишь один узел сетки (рис. 13). Проинтегрируем уравнение (31) по объему ячейки А:

(31а)

Рис. 13. Расчетная сетка, используемая для решения уравнения (31)

методом конечных объемов

Используя теорему о среднем можно записать

,(32)

где Δх, Δу – длины граней ячейки, xW – абсцисса левой («западной») границы ячейки А, xЕ – абсцисса правой («восточной») границы, уN – ордината верхней («северной») границы, уS – ордината нижней («южной») границы, S* – средняя по ячейке скорость тепловыделения. Индекс у производных (*), в левой части (32), указывает на то, что их следует рассматривать как средние значения, определенные таким образом, чтобы правильно представить тепловые потоки на каждой из границ. С учетом данного обстоятельства, дискретный аналог (32) может быть получен без затруднений [Патанкар].

Таким образом, уравнение (32) описывает баланс тепла (закон сохранения энергии) в пределах ячейки А. При условии правильного описания тепловых потоков между ячейками, система, составленная из уравнений вида (32), примененных к каждому контрольному объему, будет верно описывать баланс тепла во всей расчетной области.

В завершение параграфа следует отметить, что в частных случаях расчетные формулы, полученные описанными выше способами, могут совпадать, а наиболее существенные отличия проявляются при использовании криволинейных неортогональных расчетных сеток.

Обыкновенные дифференциальные уравнения

Содержание:

Обыкновенные дифференциальные уравнения

При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.

Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.

Основные понятия о дифференциальных уравнениях

Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение
(7.1)

Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.

Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.

Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.

Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.

Например, для дифференциального уравнения
y’- 2 x = 0 (7.2)
решением является функция y = x 2 . Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.

Следует заметить, что y = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.

Дифференциальные уравнения первого порядка

Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную:
F (x, y, y’) = 0.
(7.3)

Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.

Если уравнение (7.2) решить относительно у’, то оно будет иметь вид:
y’= f (x, y) или . (7.4)

Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение имеет решениями функции y = Cx, а дифференциальное уравнение — функции где C — произвольное число.

Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.

Определение. Общим решением дифференциального уравнения (7.3) называется функция
у = φ (х, С), (7.5)
которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.

Если функция (7.5) выражается неявно, то есть в виде
Ф (х, у, С) = 0, (7.6)
то (7.6) называется общим интегралом дифференциального уравнения.

Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.

Ф (х, у, С0) называется частным интегралом дифференциального уравнения.

На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или (7.7)

Условие (7.7) называется начальным условием решения.

Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.

Мы видим, что дифференциальное уравнение имеет общее решение y = Cx. Зададим начальное условие . Подставим эти значения в общее решение, получим 6 = 2С, откуда С = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.

Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет
решение, дает теорема Коши.

ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производная определены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.

Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной .

График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение имеет общее решение y = Cx, то ему соответствует семья прямых,
которые проходят через начало координат (рис. 1).

Уравнение имеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).

Если задано начальное условие то это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи
интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).

Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.

Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.

Дифференциальные уравнения с разделенными переменными

Определение. Уравнение вида
f1 (y) dy = f2 (x) dx,
(7.8)
где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.

В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части:
.

Понятно, что произвольную постоянную С можно записывать в любой части равенства.

Пример 1. Решить дифференциальное уравнение:
, удовлетворяющее начальному условию

Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:


— это общее решение дифференциального уравнения.
Подставляя в общее решение начальное условие, найдем С: 2 = С.
Итак,
является частным решением данного уравнения.

Дифференциальные уравнения с разделяющимися переменными

Определение. Уравнение вида
f1 (x) f2 (y) + g1 (x) g2 (y) = 0
(7.9)
называется дифференциальным уравнением с разделяющимися переменными.

В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:

Интегрируя это уравнение, запишем
.

Получили общий интеграл данного уравнения.

Пример 2. Решить дифференциальное уравнение
x (y + 1) dx – (x 2 + 1) ydy = 0.

Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим
.

Интегрируя, получим

— общий интеграл дифференциального уравнения.

Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.

Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:

Получили общий интеграл дифференциального уравнения.

Используя начальное условие, найдем произвольную постоянную С:
ln 1 + arctg 0 = C, откуда C = 0.

Найденную постоянную подставим в общий интеграл и отыщем частное решение:
откуда

Однородные дифференциальные уравнения

Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие

Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.

Определение. Дифференциальное уравнение
y ‘= f (x, y) (7.10)
называется однородным, если функция f (x, y) однородная нулевого измерения.

Покажем, что это уравнение можно свести к уравнению с разделенными переменными.
Рассмотрим функцию f (tx, ty). Сделаем замену будем иметь:

Тогда уравнение (7.10) запишется в виде (7.11)
В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле
или y = xu, (7.12)
то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.

Из формулы (7.12) найдем y’ = u + xu’ и уравнение примет вид: u + xu’ = φ (u),
то есть , откуда .

После интегрирования получим
Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.

Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить вместо u.
В результате получим решение уравнения в неявном виде.

Пример 1. Найти решение однородного уравнения

Решение. Заменой y = xu сведем заданное уравнение к уравнению
или .

Отделяя переменные, найдем
откуда или , то есть
.
Возвращаясь к переменной y, получим общее решение: .

Линейные дифференциальные уравнения

Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения:
y’ + P (x) y = Q (x). (7.13)

Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2 .

Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.

Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.

Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.

Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14)
где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).

Из равенства y = uv найдем производную y’:
y’= u’ ⋅ v + u⋅ v’.

Подставим y и y’ в уравнение (7.13):
u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).

Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15)
Тогда для отыскания функции u получим уравнение:
u’v = Q (x). (7.16)

Сначала найдем v из уравнения (7.15).
Отделяя переменные, имеем , откуда

Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.

Зная v, находим u из уравнения (7.16):

откуда

Здесь мы уже берем для u все первообразные.

Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения:
(7.17)

При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).

Пример 1. Решить дифференциальное уравнение .
Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение: или
. (7.18)

Выражение, стоящее в скобках, приравниваем к нулю, имеем
или

Отделим переменные, домножив обе части уравнения на , тогда .
После интегрирования, получим ln |v| = ln |x| (здесь ограничимся одной первообразной), откуда v = x.
Подставим v = x в уравнение (7.18):

Общее решение запишется:
y = x (x + C) = x 2 + Cx.

Пример 2. Найти частное решение дифференциального уравнения который удовлетворяет начальному условию y (0) = 0.

Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v.
Тогда

Подставим v в уравнение и найдем u:

Общее решение дифференциального уравнения будет:

Подставляем начальные условия в найденное решение и находим С:

Из общего решения получаем частное решение
.

Дифференциальное уравнение Бернулли

Определение. Уравнения вида
(или )
называется дифференциальным уравнением Бернулли.

Данное уравнение отличается от уравнения (7.13) только множителем (или ) в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на :

Сделаем замену:
Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:

Мы получили линейное дифференциальное уравнение относительно новой переменной

Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.

Решение. .
Сделаем замену Тогда

Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).

Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения

Тогда .

Проинтегрировав правую часть этого уравнения по частям, получим , а при y -1 = z = uv, имеем

Обыновенное дефференциальное уравнение

Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную искомую функцию и производные искомой функции до некоторого порядка включительно.

Обыкновенное дифференциальное уравнение может быть приведено к виду

Здесь — известная функция, заданная в некоторой области

Число т. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.

Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Основные понятия и определения

Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид

В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:

Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение

используя последнее в окрестности тех точек, в которых обращается в бесконечность.

Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение

Обе переменные и входят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.

Умножая обе части уравнения (3) на некоторую функцию получаем более симметричное уравнение:

где Обратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно или так что уравнение (4) равносильно следующим двум уравнениям:

Иногда уравнение записывают *з так называемой симметрической форме:

Возможно вам будут полезны данные страницы:

Решение уравнения. Предположим, что правая часть уравнения (2), определена на некотором подмножестве вещественной плоскости Функцию определенную в интервале мы будем называть решением уравнения (2) в этом интервале*, если:

  1. Существует производная для всех значений из интервала (Отсюда следует, что решение представляет собою функцию, непрерывную ею всей области определения).
  2. Функция обращает уравнение (2) в тождество:

справедливое для всех значений из интервала Это означает, что при любом из интервала точка принадлежит множеству и

Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения этого перевернутого уравнения естественно присоединять к решениям уравнения (2).

В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).

Примеры с решением

Пример 1.

является решением уравнения

в интервале ибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:

справедливое при всех значениях

Пример 2.

Функция есть решение равнения в интервале

Пример 3.

является решением уравнения

в интервале

Иногда функцию обращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.

Системы обыкновенных дифференциальных уравнений

При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . yn и их производные.

Пример. Пусть материальная точка массы m имеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времени t, когда на нее действует сила .

Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’.
Положим, что сила, а соответственно и ее проекции Fx, Fy, Fz зависят от времени t, от положения x, y, z точки и от скорости движения точки, то есть от . Искомыми неизвестными функциями в этой задаче будут три функции x = x (t), y = y (t), z = z (t). Эти
функции определяются из уравнений динамики:

Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t) и y (t):

Рассмотрим простейшие системы дифференциальных уравнений.

Системы дифференциальных уравнений первого порядка

Система n уравнений первого порядка с n неизвестными функциями имеет вид:
(7.38)

где x — независимая переменная, y1, y2, . yn — неизвестные функции.

Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.

Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.

Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия:
(7.39)

Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):

Заменим производные
их выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение

Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем

Продолжая дальше таким образом, получим

В результате получаем следующую систему уравнений:
(7.40)

Из первых (n-1) уравнений определим y2, y3, . yn:
(7.41)

и подставим их значения в последнее уравнение системы (7.40) для определения y1:

Продифференцируем это выражение (n-1) раз, определим
как функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем
(7.43)

Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.

Пример 1. Проинтегрировать систему

когда заданы начальные условия
Решение. Дифференцируем по x первое уравнение, имеем:
. Подставляем сюда значение и из системы, получим

Из первого уравнения системы найдем и подставим в полученное нами уравнение:
или

Общим решением этого уравнения является
(*)
и тогда (**)

Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем:
1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6.
Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Система дифференциальных уравнений:
(7.44)
где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t)
неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.

Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.

Будем искать решение системы (7.44) в виде:
(7.45)

Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):

Сократим на e kt и преобразуем систему, сведя ее к такой системе:
(7.46)

Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:

Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:

Это уравнение называется характеристическим уравнением для системы (7.44).

Рассмотрим отдельные случаи на примерах:

1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:

Пример 2. Найти общее решение системы уравнений:

Решение. Составим характеристическое уравнение:
или k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.

Решение системы ищем в виде

Составим систему (7.46) для корня k1 и найдем и :
или

Откуда Положив получим
Итак, мы получили решение системы:

Далее составляем систему (7.46) для k = 4:

Откуда
Получим второй решение системы:
Общее решение системы будет:

2) Корни характеристического уравнения различны, но среди них есть комплексные:

k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:

(7.47)

(7.48)

Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения:
(7.49)
где — действительные числа, которые определяются через .

Соответствующие комбинации функций (7.49) войдут в общий решение системы.

Пример 3. Найти общее решение системы

Решение. Составляем характеристическое уравнение:
или k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .

Подставляем поочередно k1, k2 в систему (7.46), найдем

Запишем уравнение (7.47) и (7.48) для наших данных

Перепишем эти решения в таком виде:

За частные решения можно взять отдельно действительные и отдельно мнимые части:

Общим решением системы будет

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.


источники:

http://megaobuchalka.ru/4/14924.html

http://natalibrilenova.ru/obyiknovennyie-differentsialnyie-uravneniya/