Диссоциация электролитов в водных растворах ионные уравнения

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K + (катион) + A — (анион)

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Для средних солей диссоциация чаще всего происходит в одну ступень:

Из одной молекулы ортофосфата натрия образовалось 4 иона.

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Электролитическая диссоциация

Растворы электролитов

Электролиты

При растворении в воде некоторые вещества имеют способность проводить электрический ток.

Те соединения, водные растворы которых способны проводить электрический ток называются электролитами.

Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания).

Вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) являются слабыми электролитами.

Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить относятся вещества к сильным или слабым электролитам:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Все они являются сильными электролитами. Почти все остальные кислоты, в том числе и органические являются слабыми электролитами.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be) относятся к сильным электролитам. Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений — сильные электролиты. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа.

Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Сущность теории электролитической диссоциации

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Степень диссоциации электролита зависит от:

  • природы самого электролита
  • природы растворителя
  • концентрации электролита
  • температуры.

Степень диссоциации

Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:

  • Степень диссоциации равна 0 α = 0 означает, что диссоциация отсутствует.
  • При полной диссоциации электролита степень диссоциации равна 1 α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на:

  • сильные (α > 0,7),
  • средней силы ( 0,3 > α > 0,7),
  • слабые (α — + bB +

    K = [A — ] a ·[B + ] b /[Aa Bb]

    Для слабых электролитов концентрация каждого иона равна произведению степени диссоциации α на общую концентрацию электролита С.

    Таким образом, выражение для константы диссоциации можно преобразовать:

    K = α 2 C/(1-α)

    Для разбавленных растворов (1-α) =1, тогда

    K = α 2 C

    Отсюда нетрудно найти степень диссоциации

    α = (K/C) 1/2

    Ионно–молекулярные уравнения

    Как составить полное и сокращенное ионные уравнения

    Рассмотрим несколько примеров реакций, для которых составим молекулярное, полное и сокращенное ионное уравнения.

    1) Пример нейтрализации сильной кислоты сильным основанием

    1. Процесс представлен в виде молекулярного уравнения.

    HCl + NaOH = NaCl + HOH

    2. Представим процесс в виде полного ионного уравнения. Т.е. запишем в ионном виде все соединения — электролиты, которые в растворе полностью ионизированы.

    H + + Cl — +Na + + OH — = Na + + Cl — + HOH

    3. После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

    H + + OH — = HOH

    Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

    При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

    2) Пример реакции осаждения

    Смешаем водные растворы AgNO3 и HI:

    Молекулярное уравнениеAgNO3 + HI →AgI↓ + HNO3
    Полное ионное уравнениеAg + + NO3 — + H + + I — →AgI↓ + H + + NO3
    Сокращенное ионное уравнениеAg + + I — →AgI↓

    Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

    Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей растворимости кислот, солей и оснований в воде. В приведенной таблице также указан цвет образуемого осадка, сила кислот и оснований и способность анионов к гидролизу.

    Пример образования летучего соединения

    Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

    Молекулярное уравнениеNa2SO3 + 2HI → 2NaI + SO2↑ + H2O
    Полное ионное уравнение2Na + + SO3 2- + 2H + + 2I — → 2Na + + 2I — + SO2↑ + H2O
    Сокращенное ионное уравнениеSO3 2- + 2H + → SO2↑ + H2O

    Отсутствие взаимодействия между растворами веществ

    При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

    Молекулярное уравнениеCaCl2 + 2NaI = 2NaCl +CaI2
    Полное ионное уравнениеCa 2+ + Cl — + 2Na + + I — = 2Na + + Cl — + Ca 2+ + 2I —
    Сокращенное ионное уравнениеотсутствует

    Условия протекания реакции (химического превращения)

    Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

    • Образование неэлектролита. В качестве неэлектролита может выступать вода.
    • Образование осадка.
    • Выделение газа.
    • Образование слабого электролита, например уксусной кислоты.
    • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
    • Образование или разрыв одной или нескольких ковалентных связей.

    1.4.5. Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты.

    Как известно из курса физики, электрическим током называют упорядоченное движение заряженных частиц. В случае металлов, электропроводность обеспечивается подвижными электронами в кристалле, слабо связанными c ядрами атомов, что позволяет им направленно двигаться под действием разности потенциалов.

    Кроме металлов, существуют также вещества растворы или расплавы которых проводят электрический ток. Такие вещества называют электролитами.

    Электролиты — вещества, расплавы или водные растворы которых проводят электрический ток.

    Но за счет чего обеспечивается электрическая проводимость расплавов и растворов электролитов?

    Рассмотрим такое соединение как хлорида натрия. Это вещество характеризуется ионным строением. В узлах его структурной решетки находятся попеременно в шахматном порядке катионы натрия и анионы хлора:

    Как можно видеть, заряженные частицы, которые могли бы быть обеспечивать электрическую проводимость присутствуют, но статичны, т.е. неподвижны в узлах решетки. Поэтому, чтобы электрический ток смог протекать через хлорид натрия, нужно еще и обеспечить «подвижность» ионов, из которых он состоит.

    Как известно, для одного и того же вещества наиболее подвижны составляющие его частицы в том случае, когда он находится в жидком, а не в твердом агрегатном состоянии. Поэтому для того, чтобы хлорид натрия смог проводить электрический ток, его необходимо расплавить, т.е. превратить в жидкость. В результате сообщения энергии кристаллу хлорида натрия в виде большого количества теплоты частично разрушаются ионные связи Na + Cl − , т.е. происходит диссоциация на свободные подвижные ионы:

    Na + Cl − ↔ Na + + Cl −

    Однако, добиться диссоциации хлорида натрия можно не только его плавлением, но также и его растворением в воде. Но каким образом, это становится возможным? Ведь для того чтобы произошло разрушение кристаллической решетки требуется сообщить ей энергию, что и происходило при расплавлении. Откуда же берется энергия на разрушение решетки в случае растворения?

    При помещении кристалла NaCl в воду его поверхность подвергается «облепливанию» молекулами воды или гидратации, в результате которой, ионам в структурной решетке сообщается энергия, достаточная для выделения из структурной решетки и «отправления в свободное плавание» в «оболочке» из молекул воды:

    или более упрощенно:

    NaCl ↔ Na + + Cl − (участвующие в гидратации кристалла NaCl и ионов молекулы воды не записываются)

    Если энергия, выделяющаяся при гидратации кристалла, меньше энергии кристаллической решетки, то его растворение и диссоциация становятся невозможными. Например, поверхность кристалла сульфата бария, помещенного в водную среду, также покрывается молекулами воды, но выделяющаяся в результате этого энергия недостаточна отрыва ионов Ba 2+ и SO4 2- из кристаллической решетки и, как следствие, становится невозможно его растворение (на самом деле возможно, но в крайне малой степени, т.к. абсолютно нерастворимых веществ не бывает).

    Аналогичным образом диссоциация осуществляется также гидроксидами металлов. Например:

    Помимо веществ ионного строения, электролитически диссоциировать способны также и некоторые вещества молекулярного строения с ковалентным полярным типом связи, а именно кислоты. Как и в случае ионных соединений, причина образования ионов из электронейтральных молекул кроется в их гидратации. Существование гидратированных ионов энергетически более выгодно, чем существование гидратированных молекул. Например, диссоциация молекулы соляной кислоты выглядит примерно следующим образом:

    Гидратация катионов водорода настолько сильна, что можно говорить не просто о катионе водорода, окружённом молекулами воды (как это было с катионами натрия), а о полноценной частице – ионе гидроксония H3O + , содержащей три полноценные ковалентные связи H-О, одна из которых образована по донорно-акцепторному механизму. Таким образом, уравнение диссоциации соляной кислоты правильнее записывать так:

    Тем не менее, даже в этом случае, чаще всего, уравнение диссоциации соляной кислоты, впрочем, как и любой другой, записывают, игнорируя явное участие в диссоциации кислот молекул воды.

    Диссоциация многоосновных кислот протекает ступенчато, например:

    Таким образом, как мы уже выяснили, к электролитам относят: соли, кислоты и основания.

    Для описания способности электролитов к электролитической диссоциации используют величину, которая называется степенью диссоциации (α).

    Степень диссоциации – отношение числа продиссоциировавших частиц, к общему числу растворенных частиц.


    источники:

    http://zadachi-po-khimii.ru/obshaya-himiya/rastvory-elektrolitov.html

    http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/jelektroliticheskaja-dissociacija-jelektrolitov-v-vodnyh-rastvorah