Диссоциация глюкозы в растворе уравнение

Электролитическая диссоциация

Электролитической диссоциацией называют процесс, в ходе которого молекулы растворенного вещества распадаются на ионы в результате взаимодействия с растворителем (воды). Диссоциация является обратимым процессом.

Диссоциация обуславливает ионную проводимость растворов электролитов. Чем больше молекул вещества распадается на ионы, тем лучше оно проводит электрический ток и является более сильным электролитом.

В общем виде процесс электролитической диссоциации можно представить так:

KA ⇄ K + (катион) + A — (анион)

Замечу, что сила кислоты определяется способностью отщеплять протон. Чем легче кислота его отщепляет, тем она сильнее.

У HF крайне затруднен процесс диссоциации из-за образования водородных связей между F (самым электроотрицательным элементом) одной молекулы и H другой молекулы.

Ступени диссоциации

Некоторые вещества диссоциируют на ионы не в одну стадию (как NaCl), а ступенчато. Это характерно для многоосновных кислот: H2SO4, H3PO4.

Посмотрите на ступенчатую диссоциацию ортофосфорной кислоты:

Важно заметить, что концентрация ионов на разных ступенях разная. На первых ступенях ионов всегда много, а до последних доходят не все молекулы. Поэтому в растворе ортофосфорной кислоты концентрация дигидрофосфат-анионов будет больше, чем фосфат-анионов.

Для серной кислоты диссоциация будет выглядеть так:

Для средних солей диссоциация чаще всего происходит в одну ступень:

Из одной молекулы ортофосфата натрия образовалось 4 иона.

Из одной молекулы сульфата калия образовалось 3 иона.

Электролиты и неэлектролиты

Химические вещества отличаются друг от друга по способности проводить электрический ток. Исходя из этой способности, вещества делятся на электролиты и неэлектролиты.

Электролиты — жидкие или твердые вещества, в которых присутствуют ионы, способные перемещаться и проводить электрический ток. Связи в их молекулах обычно ионные или ковалентные сильнополярные.

К ним относятся соли, сильные кислоты и щелочи (растворимые основания).

Степень диссоциации сильных электролитов составляет от 0,3 до 1, что означает 30-100% распад молекул, попавших в раствор, на ионы.

Неэлектролиты — вещества недиссоциирующие в растворах на ионы. В молекулах эти веществ связи ковалентные неполярные или слабополярные.

К неэлектролитам относятся многие органические вещества, слабые кислоты, нерастворимые в воде основания и гидроксид аммония.

Степень их диссоциации до 0 до 0.3, то есть в растворе неэлектролита на ионы распадается до 30% молекул. Они плохо или вообще не проводят электрический ток.

Молекулярное, полное и сокращенное ионные уравнения

Молекулярное уравнение представляет собой запись реакции с использованием молекул. Это те уравнения, к которым мы привыкли и которыми наиболее часто пользуемся. Примеры молекулярных уравнений:

Полные ионные уравнения записываются путем разложения молекул на ионы. Запомните, что нельзя раскладывать на ионы:

  • Слабые электролиты (в их числе вода)
  • Осадки
  • Газы

Сокращенное ионное уравнение записывается путем сокращения одинаковых ионов из левой и правой части. Просто, как в математике — остается только то, что сократить нельзя.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Блиц-опрос по теме Электролитическая диссоциация

Вращающиеся стулья «HighWay»: программируемая основа (стр. 7 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6 7 8 9

1. Все вещества, способные к образованию растворов, делят на две категории, называемые. в зависимости оттого, проводят или не проводят их растворы (расплавы) электрический ток.

[1] металлами и неметаллами;

[2] окислителями и восстановителями;

[3] электролитами и неэлектролитами;

[4] проводниками и изоляторами.

2. Электролиты — это вещества, которые.

[1] проводят электрический ток;

[2] растворимы в воде;

[3] не растворимы в органических растворителях;

[4] диссоциируют в растворе или расплаве на ионы.

[1] атомы, характеризующихся одним и тем же заря­дом ядра;

[2] одноатомные или многоатомные частицы, несущие электрический заряд;

[3] условные заряды атомов в молекуле, вычисленные в предположении, что все связи в молекуле — ковалентные;

[4] вещества, используемые для изготовления элек­трических проводов.

4. Положительные ионы называют.

5. Отрицательные ионы называют.

6. Самопроизвольный распад молекул растворенного (иногда — расплавленного) вещества на катионы и анионы называется.

[2] ионной проводимостью;

[3] гомогенным катализом;

[4] электролитической диссоциацией.

7. Процесс электролитической диссоциации является.

8. Мерой электролитической диссоциации электролита принято считать.

[1] степень диссоциации;

[2] молярную концентрацию раствора;

[4] константу гидролиза.

9. Степень диссоциации — это.

[1] отношение количества растворенного вещества к общему количеству веществ в растворе;

[2] отрицательный логарифм концентрации катионов в растворе;

[3] отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества;

[4] число гидратированных молекул электролита,

10. Численное значение степени диссоциации электролита в растворе при данной температуре зависит от.

[1] атмосферного давления;

[2] наличия катализатора;

[3] концентрации раствора;

[4] агрегатного состояния электролита.

348. В зависимости от численного значения степени диссоциации а разбавленных растворов электролиты подразделяют на: а) сильные, б) слабые:

[1] а)α = 60%; б) α = 40%;

[2] а) α 80%; б) α 20%;

[3] а) α 30%; б) α 3%;

[4] а) α 0,6; б) α 0,03.

349. Поскольку диссоциация электролита КА на катион К+ и анион А — является обратимым равновесным процессом КА ↔ К+ + А-, то к нему применим закон действующих масс, в соответствии с которым определяется константа равновесия, называемая в таких случаях константой диссоциации Кд. Константа диссоциации определяется по формуле:

350. Закон разбавления Оствальда и описывается формулой:

351. Какое уравнение описывает диссоциацию глюкозы в водном растворе?

[1] С6Н12O6 ↔ 6С° + 6Н+ + 6O-;

[2] глюкоза не диссоциирует на ионы в водном рас­творе;

[3] С6Н12Об ↔ 6С-1 + 12Н+ + 6O-1;

[4] С6Н12Об ↔ C6H12O6.

352. Диссоциация воды описывается уравнением:

[4] вода не является электролитом и поэтому не дис­социирует.

353. Вода — очень слабый электролит, поэтому ее молярная концентрация [Н2О] остается практически постоянной при ее диссоциации, а следовательно, остается постоянной и величина Kw = [Н+][ОН—], которую называют.

[2] произведением растворимости воды;

[3] ионным произведением воды;

[4] произведением искусства дистилляции.

354. Ионное произведение воды зависит только от температуры, численное значение этой величины при 25 °С составляет.

[1] Kw = 6,02 × 10-23 моль2/л2;

[2] Кw = 8,31 × 10-3 моль2/л2;

[3] Кw = 6,62 × 10-34 моль2/л2;

[4] Kw = 1,0 ×10-14 моль2/л2.

355. Кислотность (основность) растворов принято выражать через водородный показатель (рН), рассчитываемый по формуле:

57. Масса осадка, образующегося при смешивании 100 мл 0,1 М раствора FeCl3 и 150 мл 0.2М раствора NaOH, равна гр.

58. Массовая доля фосфата калия в растворе, полученном при растворении 0,5 моль соли в 124 г воды равна %

59. В 400 мл 0,2М раствора нитрата натрия содержится ___ грамма(ов) соли.

60. Уравнение реакции, которая в водном растворе протекает практически до конца, имеет вид…

1) BaSO4 + 2HCl = BaCl2 + H2SO4

2) K2SO4 + 2HCl = H2SO4 + 2KCl

3) FeCl3 + 3NaOH = Fe(OH)3 + 3NaCl

4) CaCl2 + 2NaNO3 = Ca(NO3)2 + 2NaCl

56. При разбавлении 0,2 М раствора соляной кислоты в два раза, рН будет иметь значение, равное…

19. Процесс электролитической диссоциации нитрата бария описывается уравнением:

[1] Ba(NO3)2 ↔ Ba4+ + 2NO32-

[2] Ba(NO3)2 ↔ Ba2+ + 2N5+ + 6O2-;

[3] Ba(NO3)2 ↔ Ba3+ + N2O4- + 2O-;

[4] Ba(NO3)2 ↔ Ba2+ + 2NO3-.

26. Чему равна концентрация ионов Н+ в растворе КОН с концентрацией 0,01 моль/л при условии, что гидроксид калия продиссоциировал нацело?

[4] поскольку раствор щелочной, в нем не могут при­сутствовать ионы Н+ (т. е. [Н+] = 0).

27. Рассчитайте рН: а) соляной кислоты с концентрацией 0.1 моль/л; б) водного раствора гидроксида калия с концентрацией 1,0 моль/л, считая, что указанные вещества диссоциируют полностью.

28. Рассчитайте концентрацию ионов водорода в растворе аммиака с концентрацией 1,5 моль/л. Константа диссоциации гидроксида аммония равна 1,7×10-5.

[2] [Н+] = 2 × 10-2 моль/л;

[3] [Н+] = 2 × 10-12 моль/л;

[4] [Н+] = 4 × 10-1 моль/л.

414. Раствор, в котором значение рН практически не изменяется при добавлении небольших количеств кислоты или основания, называется…

29. Диссоциацию малорастворимых веществ (типа AgCl или BaSO4 характеризуют с помощью специальной константы, называемой.

[1] константой Больцмана;

[2] произведением растворимости;

[3] степенью ионизации;

[4] ионным произведением.

30. Смешали по 250 мл растворов фторида натрия с концентрацией 0,2 моль/л и нитрата лития с концентрацией 0,3 моль/л. Определите массу образовавшегося осадка. Произведение растворимости фторида лития равно 1,5×10-3.

[2] осадок LiF не образуется;

31. Если в растворе присутствует несколько электролитов, то между ними могут протекать реакции, которые «идут практически до конца» в сторону образования осадков или (и) газов, или (и) слабых электролитов. Для описания таких реакций используют ионные уравнения, которые в отличие от молекулярных.

[1] не содержат стехиометрических коэффициентов;

[2] описывают химическую реакцию, протекающую только в водных растворах;

[3] относятся не к одной какой-либо реакции между конкретными веществами, а к целой группе ана­логичных реакций;

[4] применимы только к реакциям обмена.

32. Для уравнения реакции CuSO4 + КОН = . сокращенное ионное уравнение имеет вид:

[1] 2K+ + SO42- = K2SO4;

[2] Cu2+ + SO42- + 2K+ + 2OH — = Cu(OH)2¯ + K2SO4;

[3] CuSO4 + 2OH — = Cu(OH)2¯ + SO42-;

[4] Cu2+ + 2OH — = Cu(OH)2¯.

33. Взаимодействие карбоната бария с соляной кислотой можно представить сокращенным ионным уравнением:

[1] Ва2+ + 2С1- = ВаС12;

[2] Ва2+ + СО32- + 2Н+ + 2С1- = Ва2+ + СО32- + 2НС1¯;

[3] ВаСО3 + 2Н+ = Ba2+ + CO2 + H2O;

[4] 2Н+ +CO32- = H2CO3

34. Сокращенному ионному уравнению Cu2+ + S2- = CuS¯ соответствует следующее молекулярное уравнение:

[1] CuCO3 + H2S = CuS¯ + СО2↑ + Н2О;

[2] CuBr2 + K2S = CuS¯ + 2KBr;

[3] Сu(ОН)2 + Na2S = CuS¯ + 2NaOH;

[4J Cu3(PO4)2 + 3(NH4)2S = 3CuS¯ + 2(NH4)3PO4.

35. С каким веществом вступит в реакцию обмена в водном растворе бромид бария?

38. С точки зрения теории диссоциации, кислотой называют соединение.

[1] образующее при диссоциации в водном растворе из отрицательных ионов только гидроксид-ионы ОН — ;

[2] подвергающееся гидролизу в водном растворе;

[3] образующее при диссоциации в водном растворе из положительных ионов только ионы водорода Н+;

[4] способное проводить электрический ток.

39. Основанием называется соединение.

Электролитическая диссоциация

Материалы портала onx.distant.ru

Примеры решения задач

Задачи для самостоятельного решения

Степень диссоциации

Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

α = N′/N

Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

Классификация электролитов

Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные) . Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

Ассоциированные электролиты подразделяются на три типа:

      1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
      2. Ионные ассоциаты образуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К + , Cl — , а также возможно образование ионных пар (К + Cl — ), ионных тройников (K2Cl + , KCl2 — ) и ионных квадруполей (K2Cl2, KCl3 2- , K3Cl 2+ ).
      3. Комплексные соединения (как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
        Примеры комплексных ионов: [Cu(NH3)4] 2+ , [Fe(CN)6] 3+ , [Cr(H2O)3Cl2] + .

При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

Таблица. Характеристика растворов KI в различных растворителях

Концентрация электролита, С, моль/л Температура

t, о С

Растворитель Тип электролита
0,0125Н2ОНеассоциированный (сильный)
525Н2ОИонный ассоциат
0,00125С6Н6Ассоциированный (слабый)

Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α

Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

Диссоциация электролитов

Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

HCl → H + + Cl —

Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

NaOH → Na + + OH —

Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

NaHSO3 → Na + + HSO3

Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

HSO3 — → H + + SO3 2-

Аналогичным образом происходит диссоциация основных солей:

Mg(OH)Cl → MgOH + + Cl —

Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

MgOH + → Mg 2+ + OH —

Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

[Fe(CN)6] 3- → Fe 3+ + 6CN —

Константа диссоциации

При растворении слабого электролита К А в растворе установится равновесие:

КА ↔ К + + А —

которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации :

Kд = [К + ] · [А — ] /[КА] (2)

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н + больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 — 4 , а К(HCN) = 4,9·10 — 10 .

Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α и концентрацией электролита c уравнением Оствальда:

Кд = (α 2· с)/(1-α) (3)

Для практических расчетов при условии, что α

Кд = α 2· с (4)

Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

ΔGT 0 = — RTlnKд (5)

Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

Примеры решения задач

Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

Следовательно, концентрации ионов К + и РО4 3- равны соответственно 0,075М и 0,025М.

Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН — (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 — 5 .

Решение. Уравнение диссоциации электролита:

Концентрации ионов: [NH4 + ] = α С ; [OH — ] = α С , где С – исходная концентрация NH 3 ·H 2 О моль/л. Следовательно:

Kд = αС · αС /(1 — αС)

Кд α 2 С

Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH 3 ·H 2 О . Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

α = √( Кд / С) = √(1,76× 10 — 5 / 0,03 ) = 0,024 или 2,4 %

[OH — ] = αС, откуда [OH — ] = 2,4·10 — 2 ·0,03 = 7,2·10 -4 моль/л.

Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

Решение. Уравнение диссоциации кислоты:

CH3CОOH → СН3СОО — + Н + .

α = [Н + ] / Сисх(CH3CОOH)

откуда [Н + ] = 9,4·10 — 2 ·0,002 = 1,88·10 -4 М.

Kд = [Н + ] 2 / Сисх(CH3CОOH)

Константу диссоциации можно также найти по формуле: Кд ≈ α 2 С .

Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10 — 4 . Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

Решение.

Кд = α 2 С , откуда получаем С исх (HNO 2 ) = 4,6·10 — 4 /(5·10 — 2 ) 2 = 0,184 М.

Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

Решение. Уравнение диссоциации муравьиной кислоты

В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н + и СООН — в водном растворе приведены ниже:

Вещество, ионНСООНН +СООН —
ΔGT 0 , кДж/моль— 373,00— 351,5

Изменение энергии Гиббса процесса диссоциации равно:

ΔGT 0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

lnKд = — Δ GT 0 /RT= — 21500/(8,31 298) = — 8,68

Откуда находим: Kд = 1,7× 10 — 4 .

Задачи для самостоятельного решения

1. К сильным электролитам в разбавленных водных растворах относятся:

  1. СН3СOOH
  2. Na3PO4
  3. NaCN
  4. NH3
  5. C2H5OH
  6. HNO2
  7. HNO3

13.2. К слабым электролитам в водных растворах относятся:

3. Определите концентрацию ионов NH4 + в 0,03 М растворе (NH4)2Fe(SO4)2;

4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

а) уменьшении концентрации HCOOH;

б) увеличении концентрации HCOOH;

в) добавлении в раствор муравьиной кислоты HCOONa;

г) добавлении в раствор муравьиной кислоты НCl.

8. Константа диссоциации хлорноватистой кислоты равна 5× 10 — 8 . Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н + в этом растворе.

0,002М; 1× 10 — 5 М.

9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH 3·H 2О, чтобы степень диссоциации NH 3·H 2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10 — 5 .

10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10 — 4 .


источники:

http://pandia.ru/text/80/375/24286-7.php

http://chemege.ru/el-dissociaciya/