Длина ребра пирамиды уравнение прямой

Длина ребра пирамиды уравнение прямой

Внимание! Если вы делали заказ после 19.08.2021, вход в новый Личный кабинет — тут

Неправильный логин или пароль.

Укажите электронный адрес и пароль.

Пожалуйста, укажите электронный адрес или номер телефона, который вы использовали при регистрации. Вам будет отправлено письмо со ссылкой на форму изменения пароля или SMS сообщение с новым паролем.

Инструкция по изменению пароля отправлена на почту.

Чтобы зарегистрироваться, укажите ваш email и пароль

Нажимая кнопку «Зарегистрироваться» вы даете согласие на обработку персональных данных в соответствии с политикой конфеденциальности.

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Пирамида в геометрии — элементы, формулы, свойства с примерами

Вы уже знакомы с пирамидой, т. е. многогранником, одна грань которого является многоугольником, а остальные грани-треугольники имеют общую вершину.

Треугольные грани пирамиды, имеющие общую вершину, называют боковыми гранями, а эту общую вершину — вершиной пирамиды. Ребра боковых граней, сходящиеся в вершине пирамиды, называют боковыми ребрами пирамиды. Многоугольник, которому не принадлежит вершина пирамиды, называют основанием пирамиды (рис. 107).

Пирамиды разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Пирамида, изображенная на рисунке 107, — пятиугольная, а на рисунке 108, — восьмиугольная. Треугольную пирамиду называют еще тетраэдром. У тетраэдра все грани являются треугольниками (рис. 109).

Перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания, называется высотой пирамиды. На рисунке 108 показана высота

Плоскость, проходящая через два боковых ребра пирамиды, не принадлежащие одной грани, называется диагональной плоскостью, а сечение пирамиды диагональной плоскостью — диагональным сечением. На рисунке 111 показано диагональное сечение шестиугольной пирамиды.

Пирамида, основанием которой является правильный многоугольник, а основание ее высоты совпадает с центром этого многоугольника, называется правильной пирамидой (рис. 112).

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды.

Отметим, что в правильной пирамиде:

  • боковые ребра равны;
  • боковые грани равны;
  • апофемы, равны;
  • двугранные углы при основании равны;
  • двугранные углы при боковых ребрах равны;
  • каждая точка высоты равноудалена от вершин основания;
  • каждая точка высоты равноудалена от ребер основания;
  • каждая точка высоты равноудалена от боковых граней.

Отметим, что если в пирамиде равны все:

  • боковые ребра, то около ее основания можно описать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 113);
  • двугранные углы при основании, то в это основание можно вписать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 114).

Боковые грани составляют боковую поверхность пирамиды, а боковые грани вместе с основанием — полную поверхность пирамиды.

Вы знаете, что боковая поверхность правильной пирамиды равна произведению полупериметра ее основания и апофемы.

Теорема 1.

Если пирамиду пересечь плоскостью, параллельной основанию, то:

  • а) боковые ребра и высота разделяются на пропорциональные части;
  • б) в сечении получается многоугольник, подобный основанию;
  • в) площади сечения и основания относятся как квадраты их расстояний от вершины пирамиды.

Используя рисунок 115, докажите эту теорему самостоятельно.

Секущая плоскость, параллельная основанию пирамиды, разделяет ее на две части (рис. 116). Одна из этих частей также является пирамидой, а другая — многогранником, который называется усеченной пирамидой.

Параллельные грани усеченной пирамиды называются ее основаниями (рис. 117). Основания усеченной пирамиды — подобные многоугольники, стороны которых попарно параллельны, поэтому ее боковые грани являются трапециями.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-либо точки одного основания пирамиды к плоскости другого основания.

Усеченная пирамида называется правильной, если она является частью правильной пирамиды. Высота боковой грани правильной усеченной пирамиды называется апофемой усеченной пирамиды. На рисунке 118 показана четырехугольная правильная усеченная пирамида и одна из ее апофем.

Теорема 2.

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований и апофемы:

Доказательство:

Пусть есть правильная -угольная усеченная пирамида (рис. 119). Пусть и — соответственно периметры нижнего и верхнего оснований и — апофема пирамиды.

Боковая поверхность данной пирамиды состоит из равных трапеций. Пусть и — основания одной из этих трапеций, тогда ее площадь равна . Учитывая, что боковая поверхность пирамиды состоит из таких трапеций, получим, что

Теперь установим формулу для вычисления объема пирамиды.

Тела, имеющие равные объемы, называются равновеликими.

Теорема 3.

Треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Доказательство:

Пусть есть две треугольные пирамиды с равновеликими основаниями и равными высотами (рис. 120). Разделим высоты одной и другой пирамид на долей и через точки деления проведем плоскости, параллельные основаниям. Этим самым пирамиды разделяются на частей. Для каждой части первой пирамиды построим наибольшие по объему призмы, целиком содержащиеся в пирамиде, а для каждой части другой пирамиды — наименьшие по объему призмы, целиком содержащие эту часть.

Пусть и — объемы первой и второй пирамид, a и — суммарные объемы призм, построенных для этих пирамид. При счете от оснований пирамид призма в -й части первой пирамиды равновелика призме для -й части второй пирамиды, так как у этих призм равновелики основания и равные высоты. Поэтому объем больше объема на объем первой призмы, у которой основанием является основание второй пирамиды, а высота равна , где — высота пирамиды (см. рис. 120), т.е. , или , где — площадь основания пирамиды. Теперь учтем, что , a . Поэтому , или . При увеличении значения переменной значение выражения стремится к нулю, а это означает, что , или

Такие же рассуждения можно провести, если первую и вторую пирамиды поменять ролями. В результате получим неравенство

Из неравенств (1) и (2) следует, что .

Теорема 4.

Объем пирамиды равен третьей доле произведения площади ее основания и высоты:

Доказательство:

Пусть есть треугольная пирамида (рис. 121). Достроим ее до призмы с основанием (рис. 122). Отделим от призмы данную пирамиду, получится четырехугольная пирамида (рис. 122 и 123). Диагональная плоскость разделяет ее на две пирамиды и , у которых одна и та же высота, проведенная из вершины , и равные основания и . Поэтому, в соответствии с теоремой 3, пирамиды и равновелики. Сравним пирамиду с данной пирамидой . У них равные основания и и высоты, проведенные из вершин и , поэтому эти пирамиды также равновелики. Получается, что все три пирамиды , и равновелики. Поскольку объем призмы равен произведению площади основания и высоты призмы , которая равна высоте пирамиды , то объем пирамиды , т. е. третьей части призмы , равен третьей доле этого объема, т. е. .

Пусть теперь есть произвольная пирамида (рис. 124). Через диагонали основания , выходящие из одной вершины , проведем диагональные сечения, они разделят данную пирамиду на треугольные пирамиды . Поскольку все они имеют общую высоту , то

Пример:

Найдем объем усеченной пирамиды, нижнее и верхнее основания которой имеют площади и , а высота равна (рис. 125).

Для этого достроим данную усеченную пирамиду до полной. Пусть высота дополнительной пирамиды равна . Искомый объем можно найти как разность объемов полной и дополнительной пирамид:

Чтобы найти высоту , используем установленное в теореме 1 утверждение о том, что площади сечений пирамиды относятся как квадраты их расстояний от вершины:

Решим это уравнение, учитывая, что и — положительные числа:

Таким образом, объем усеченной пирамиды равен третьей доле произведения высоты пирамиды и суммы площадей и оснований пирамиды и их среднего геометрического .

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Конус в геометрии
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Стереометрия — формулы, определение и вычисление

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy

http://www.evkova.org/piramida