Для электрической цепи составить систему уравнений

Расчет электрической цепи по закону Кирхгофа

Содержание:

Законы Кирхгофа

Уравнения, описывающие поведение электрической цепи, составляют на основе законов Кирхгофа. Они определяют связь между токами и напряжениями элементов, образующих цепь. Уравнения, составленные согласно этим законам, называют уравнениями Кирхгофа.

Первый закон Кирхгофа определяет баланс токов в узлах электрической цепи.

Он формулируется следующим образом:

Алгебраическая сумма токов ветвей, сходящихся в узле электрической цепи, равна нулю:

В уравнении (3.1) токи, направленные от узла, записывают с положительным знаком. Токи, направленные к узлу, записывают со знаком минус.

Система уравнений по первому закону Кирхгофа, записанная для всех узлов цепи, линейно зависима. В этом легко убедиться, сложив все уравнения. Поскольку ток каждой ветви входит в два уравнения с разными знаками, сумма тождественно равна нулю. Поэтому число независимых уравнений по первому закону Кирхгофа равно , где — число узлов цепи.

Второй закон Кирхгофа устанавливает баланс напряжений в контуре цепи:

Алгебраическая сумма напряжений ветвей в контуре равна нулю:

Если напряжение ветви совпадает с направлением обхода контура, то напряжению приписывают знак плюс, если же нет — знак минус. Перенесем напряжения источников напряжения, равные ЭДС этих источников, в правую часть. Уравнение (3.2) примет вид

В соответствии с последним равенством алгебраическая сумма напряжений ветвей в контуре электрической цепи равна алгебраической сумме ЭДС источников.

Число независимых уравнений, записанных по второму закону Кирхгофа, равно числу независимых контуров. Число таких контуров определяется формулой , где — число ветвей.

Возможно вам будут полезны данные страницы:

Порядок составления уравнений но законам Кирхгофа

1. Необходимо сначала выбрать положительные направления токов и напряжений ветвей. Положительное направление тока показывают стрелкой на выводе элемента. Положительное направление напряжения показывают стрелкой, расположенной рядом с элементом. Полярности напряжений резисторов выбирают согласованными с направлениями токов. Направления токов источников напряжения выбирают совпадающими с направлениями ЭДС.

2. Записываем уравнения по первому закону Кирхгофа для узлов.

3. Выбираем направления обхода контуров и записываем уравнения по законам Кирхгофа. Сопротивление проводника, соединяющего элементы, очень мало по сравнению с сопротивлением резистора и игнорируется. Ячейки внутренней цепи удобно выбирать в качестве независимых цепей. Можно воспользоваться и другим способом: выбрать по порядку контуры, так, чтобы каждый следующий контур содержал, по меньшей мере, одну ветвь, не входящую в предыдущие контуры.

4. Решаем полученную систему уравнений и определяем токи и напряжения цепи.

5. После определения токов и напряжений необходимо выполнить проверку. Для этого вычисленные значения переменных подставляют в одно из уравнений, составленных по законам Кирхгофа.

При составлении уравнений в качестве неизвестных рассматривают либо токи, либо напряжения резистивных элементов.

В первом случае уравнения цепи составляют относительно неизвестных токов резистивных элементов и напряжений на источниках тока. Напряжения на резистивных элементах, входящие в уравнения по второму закону Кирхгофа, выражают через токи по закону Ома. Такой способ составления уравнений называют токов ветвей.

Число совместно решаемых уравнений в методе токов ветвей можно сократить, если контуры выбирать так, чтобы они не включали источники тока. В этом случае неизвестными будут только токи резистивных элементов, и по второму закону Кирхгофа достаточно составить уравнений, где — количество источников тока.

Во втором случае уравнения цепи составляются относительно напряжений резистивных элементов и токов источников напряжения. Токи резисторов представляют произведением проводимости на напряжение на резисторе. Этот способ составления уравнений называют методом напряжений ветвей.

В дальнейшем для решения задач мы будем использовать в основном метод токов ветвей.

Пример 3.1. Записать уравнения Кирхгофа для цепи, показанной на рис. 3.1.

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. Неизвестными являются токи резистивных элементов . Поэтому необходимо составить пять уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Число уравнений по второму закону Кирхгофа равно двум.

Запишем уравнения по первому закону Кирхгофа для узлов 1, 2, 3. Контуры I и II выберем так, чтобы они не включали источник тока, иначе в системе уравнений появится дополнительная переменная — напряжение источника тока. Направления обхода контуров выберем совпадающими с направлением движения часовой стрелки. В результате получим систему из пяти уравнений с пятью неизвестными токами:

Узел 1: ;

Узел 2: ;

Узел З: ;

Контур I:

Контур II:

Для решения системы уравнений целесообразно использовать математические пакеты, например MathCAD или Matlab.

Напряжение на зажимах источника тока можно затем найти, записав уравнения для контуров, включающих или

Пример задачи с решением 3.2.

Рассчитать токи в цепи, изображенной на рис. 3.2. Номиналы элементов: ,

Решение. Сначала выберем направления токов резистивных элементов и пронумеруем узлы. В рассматриваемой схеме шесть неизвестных токов , следовательно, необходимо составить шесть независимых уравнений. Цепь содержит четыре узла; это означает, что по первому закону Кирхгофа можно составить три уравнения. Еще три уравнения составим по второму закону Кирхгофа. Наличие источника тока учитывалось при определении числа уравнений по второму закону Кирхгофа.

Составим уравнения по первому закону Кирхгофа для узлов 1, 2 и 3. Уравнения по второму закону Кирхгофа запишем для контуров I, II, III. Направление обхода контуров выбираем по часовой стрелке.

В результате получим систему из шести уравнений с шестью неизвестными токами:

В матричной форме записи:

Решением системы уравнений являются следующие значения токов:

Знак минус в численных значениях токов означает, что направление токов при заданных условиях выбрано навстречу истинному.

На странице -> решение задач по электротехнике собраны решения задач и заданий с решёнными примерами по всем темам теоретических основ электротехники (ТОЭ).

Услуги:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Правила Кирхгофа для электрической цепи, понятным языком

Формулировка правил

Сразу необходимо внести ясность. Хотя во многих технических текстах используется слово закон, на самом деле это правило. В чем различие? Закон основывается на фундаментальных истинах, фактах, правило несет более абстрактное понимание. Чтобы это лучше понять рассмотрим основы этого метода.

Из-за сложности вычислений его лучше использовать там, где схема имеет узлы и контуры. Узлом называется место соединения более двух цепей. Это как если взять три и более обычных нитки и связать их вместе. Контуром называется замкнутая цепь, включающая в себя три и более таких узла.

Отдельная ветвь может содержать сколько угодно резисторов, под которыми подразумеваются нагрузки с активным сопротивлением. Все они объединяются в один общий резистор, так как это упрощает решение задачи. Также в цепи может быть один или несколько источников питания, которые также объединяются в один элемент, либо их может и не быть. Тогда цепь будет состоять только из сопротивления.

Контур всегда начинается и заканчивается одним и тем же узлом. Поскольку узлы обозначаются латинскими или русскими буквами, то в уравнении будет на одну букву больше, чем самих соединений. Например, участок состоит из узлов A, B, C, D. Тогда обозначение этой петли будет следующим: A, B, C, D, A. На самом деле, начинать отсчет можно с любой буквы петли, например, C, D, A, B, C, просто в первом варианте легче будет не запутаться.

Определения

Как уже было сказано ветвь – это отрезок электрической цепи, в которой направление движения заряда происходит в одну сторону. Сходящиеся в узле ветви имеют разное направление токов. Контур может состоять из нескольких внутренних контуров, ветви и узлы которых также относятся к этому контуру. Сам закон Кирхгофа по существу содержит два правила, относящиеся к узлу и контуру. Самым главным и сложным является составление уравнений, учитывающих все составляющие этой формулы.

Первый закон

Первое правило говорит о сохранении заряда. Согласно ему, в узле напряжение должно быть равно нулю. Это возможно только в том случае, если все входящие токи в эту точку заходят через одни ветви, а выходят через другие. Соотношение входящих и выходящих токов может быть разным, но суммарная составляющая положительных и отрицательных потенциалов всегда одинакова.

Предположим, в узел входят токи по трем ветвям, а выходят по двум. Суммарная величина входящих токов будет точно равняться суммарной величине выходящих. Если отобразить это математически, то сумма положительных векторов I1, I2 и I3 будет равняться сумме отрицательных векторов I4 и I5.

Второй закон

Это правило связано с сохранением энергии в контуре. Другими словами, энергия источников э. д. с, входящих в контур или рассматриваемый участок, равна падению напряжения на сопротивлениях этого участка. Если выбранный участок не имеет источников питания, то суммарное падение напряжения на всех нагрузках будет равно нулю. Прежде чем переходить к расчетам, следует ознакомиться еще с некоторыми моментами.

Первый закон Кирхгофа

Первый закон Кирхгофа гласит, что в ветвях образующих узел электрической цепи алгебраическая сумма токов равна нулю(токи входящие в узел считаются положительными, выходящие из узла отрицательными).

Пользуясь этим законом для узла A (рисунок 1) можно записать следующее выражение:


Рисунок 1 — Первый закон Кирхгофа

I1 + I2 − I3 + I4 − I5 − I6 = 0.

Попытайтесь самостоятельно применить первый закон Кирхгофа для определения тока в ветви. На приведенной выше схеме изображены шесть ветвей образующие электрический узел В, токи ветвях входят и выходят из узла. Один из токов i неизвестен.

Запишите выражение для узла В

I1 + I2 + I3 + I4 + I5 − i = 0 I1 – I2 + I3 − I4 + I5 − i = 0 I1 + I2 + I3 − I4 + I5 − i = 0

Второй закон Кирхгофа.

Второй закон Кирхгофа:в контуре электрической цепи алгебраическая сумма эдс равна алгебраической сумме падений напряжения на всех сопротивлениях данного контура.

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii, Ri – ток и сопротивление i-й ветви.

Применение второго закона Кирхгофа

Для контура ABСDE, изображенного на рисунке 4, стрелками указаны положительные направления токов (произвольно). Составим уравнение согласно второму закону Кирхгофа. Для этого произвольно зададимся направлением обхода контура по часовой или против часовой стрелки. В данном примере направление обхода контура выберем по часовой стрелке.


Рисунок 4

При составлении уравнений по второму закону Кирхгофа, ЭДС записывается со знаком “+”, если ее направление совпадает с направлением произвольно выбранного обхода контура. В противном случае ЭДС записывается со знаком “-”.

Падения напряжения записываются со знаком “+”, если направление тока в нем совпадает с направлением обхода.

Начнём с эдс E1, так как её направление совпадает с обходом контура — записываем её со знаком “+” перед знаком равно.

Контур ABСDE E1 =

E2 направленна против обхода контура записываем со знаком “-” перед знаком равно.

Контур ABСDE E1 − E2=

Так как больше ЭДС в контуре ABСDЕ нет — левая часть уравнения готова.

В правой части уравнения указываются падения напряжения контура, так как направления токов I1 и I2 совпадает с обходом контура – записываем падения напряжения со знаком “+”.

Контур ABСDЕE E1 − E2 = I1*R1 + I2*R2

Направление тока I3 не совпадет с обходом контура:

Контур ABСDE E1 − E2 = I1*R1 + I2*R2 − I3*R3.

Уравнение для контура готово.

Законы Кирхгофа являются основой для расчета электрической цепи, вот несколько методов применяющие данные законы.

Расчеты электрических цепей с помощью законов Кирхгофа

Частота вращения: формула

Для выполнения подобных расчётов электрических цепей существует определённый алгоритм, при котором вычисляются токи для каждой ветви и напряжения на выводах всех элементов, включённых в ЭЦ. Для того чтобы рассчитать любую схему, придерживаются следующего порядка:

  1. Разбивают ЭЦ на ветви, контуры и узлы.
  2. Стрелками намечают предполагаемые направления движения I в ветвях. Произвольно намечают направление, по которому при написании уравнений обходят контур.
  3. Пишут уравнения, применяя первое и второе правило Кирхгофа. При этом учитывают правила знаков, а именно:
  • «плюс» имеют токи, втекающие в узел, «минус» – токи, вытекающие из узла;
  • Е (ЭДС) и снижение напряжения на резисторах (R*I) обозначают знаком «плюс», если ток и обход совпадают по направлению, или «минус», если нет.
  1. Решая полученные уравнения, находят нужные величины токов и падения напряжений на резистивных элементах.

Информация. Независимыми узлами называют такие, которые отличаются от других как минимум одной новой веткой. Ветви, содержащие ЭДС именуют активными, без ЭДС – пассивными.

В качестве примера можно рассмотреть схему с двумя ЭДС и рассчитать токи.

Пример схемы для расчёта с двумя E

Произвольно выбирают направление токов и контурного обхода.

Намеченные направления на схеме

Составляются следующие уравнения с применением первого и второго закона Кирхгофа:

  • I1 – I3 – I4 = 0 – для узла a;
  • I2 + I4 – I5 = 0 – для узла b;
  • R1*I1 + R3*I3 = E1 – контур acef;
  • R4*I4 — R2*I2 – R3*I3 = — E2 – контур abc;
  • R6*I5 + R5*I5 + R2*I2 = E2 – контур bdc.

Уравнения решаются с помощью методов определителей или подстановки.

Особенности составления уравнений для расчёта токов и напряжений

В первую очередь выбирается участок, который необходимо исследовать. Затем на каждой ветке произвольно устанавливается стрелка показывающая направление движения тока. Это нужно для того, чтобы потом не ошибиться. При расчете неточность направления будет исправлена. Каждую стрелку обозначают буквой I с индексом. Удобнее будет рассматривать участок, если стрелки находятся в непосредственной близости от точки соединения цепей. Источники питания и резисторы тоже обозначают, а у общего резистора добавляют сопротивление.

Внутри участка также произвольно показывают направление обхода, ориентируясь на возможные потенциалы. Оно необходимо для сравнения направления движения тока. Это сравнение покажет, какой знак должен стоять у числа. Если оба направления совпадают, ставят знак + и знак – если направления противоположны.

Число поставленных задач должно соответствовать количеству выбранных неизвестных. Допустим, имеется три цепи и необходимо вычислить их токи, значит, составленных формул также должно быть три. Получается, что в новом уравнении должен быть хотя бы один новый элемент, которого нет в предыдущих задачах.

Значение для электротехники

Правила Кирхгофа являются дополнением к другим законам. Основная сложность состоит в нахождении участков, поскольку их границы не всегда легко обнаружить. После ограничения нужной области необходимо выделить все неизвестные. Составление задач уже относительно легкое дело. Решаются они как обычные уравнения.

Поэтому, несмотря на первые трудности, эти правила все же легче составить и решить, чем использовать, допустим, закон Ома. Поэтому они широко используются в электротехнике. Чтобы понять, как на практике применить описанный способ, рассмотрим один пример.

Значение в математике

Имеется контур, состоящий из четырех цепей. В первой содержится источник питания ε1 с внутренним сопротивлением источника r1, во второй какая-то нагрузка R1. Третья имеет источник питания и нагрузку. Четвертая состоит из нагрузки. Точки B и F являются узлами. Стрелки возле них показывают предположительное направление тока. Стрелка внутри участка показывает направление обхода. Необходимо найти ток в цепях: AK, AB, BF, CD. По идее нужно составить четыре уравнения, но поскольку ε1 и R1 единственные на участке KAB, то их объединим в одну цепь. Выходит, нужно составить три уравнения.

Первое берется из первого правила: I1 + I2 + I3 = 0. Поскольку I1, I2 втекают в узел B, они имеют положительный знак, а I3 вытекает из него, то имеет отрицательный знак. Подставляем в уравнение и получаем I1 + I2 – I3 = 0, или в таком виде I1 + I2 = I3. Второе и третье уравнение берем из второго правила. Для этого используем контур BCDFB и преобразуем формулировку в математическое решение: ε2 = I2 × R2 + I3 × R3. Для участка ACDKA получаем соответственно ε1 = I1 × R1 + I3 × R3. Для наглядности вынесем их отдельно.

ε1 = I1 × R1 + I3 × R3

ε2 = I2 × R2 + I3 × R3

Получилось три задачи. Определимся с номиналами. Первый источник питания равен 6 В, второй – 12 В. Хотя так поступать нельзя, потому что параллельные источники питания должны быть одинаковыми, но нам это пригодится для получения важного урока. Первое сопротивление равно 2 Ом, второе – 4 Ом, третье – 8 Ом.

Осталось вставить данные в уравнения и получаем: для второго номера 6 = 2I1 + 8I3, для третьего номера 12 = 4I2 + 8I3. Дальше избавляемся от общего неизвестного I3. Согласно первому пункту, он равен I1 + I2. Подставляем вместо него эту сумму и получаем: 6 = 2I1 + 8(I1 + I2), 12 = 4I2 + 8(I1 + I2). Раскрываем скобки и складываем одинаковые неизвестные: 6 = 10I1 + 8I2; 12 = 12I2 + 8I1. Чтобы найти I1, нужно избавиться от I2. Для этого первое уравнение умножаем на 12, а второе на 8 и получаем: 72 = 120I1 + 96I2; 96 = 96I2 + 64I1. От первого отнимаем второе и записываем остаток -24 = 56I1, или I1 = -24/56 = -6/14 А. Почему ток отрицательный?

Потому что источники питания разные. На втором источнике напряжение выше, чем на первом, поэтому ток идет в обратном направлении. Находим I2, для этого значение I1 вставляем в любое из последних уравнений: 96 = 96I2 – 64 24/56. Разделим левую и правую часть на 96 и получим: 1 = I2 – (64×24)/(96×56) или дробную часть переносим влево, меняя знак. I2 = 1(64×24)/(96×56), после всех сокращений получаем 1 4/14 А. Для нахождения I3 воспользуемся первым номером: I3 = I1 + I2. I3 = -24/56 + 1 4/14 = 1(4×56)/(14×56) – (24×14)/(56×14) = 1 224/784 -336/784 = 1008/784 -336/784 = 672/774 ≈ 0,87А. Получили I1 = -6/14 А, I2 = 1 4/14 А, I3 ≈ 0,87А.

Закон Кирхгофа в химии

Когда в ходе химреакции система меняет свою теплоёмкость, вместе с тем меняется и температурный коэффициент возникающего в результате этого процесса теплового эффекта. Применяя уравнение, вытекающее из этого закона, можно рассчитывать тепловые эффекты в любом диапазоне температур. Дифференциальная форма этого уравнения имеет вид:

  • ∆Cp – температурный коэффициент;
  • d∆Q – изменение теплового эффекта;
  • dT – изменение температуры.

Важно! Коэффициент определяет, как изменится тепловой эффект при изменении температуры на 1 К (2730С).

Теорема Кирхгофа для термодинамики

Третье уравнения Максвелла, а также принцип сохранения зарядов позволили Густаву Кирхгофу создать два правила, которые применяются в электротехнике. Имея данные о значениях сопротивлений резисторов и ЭДС источников питания, можно рассчитывать протекающий I или приложенное U для любого элемента цепи.

Алгебраическая сумма разностей потенциалов

Закон напряжения по Густаву Кирхгофу — второй закон этого автора, используемый для анализа электрической схемы. Вторым законом Кирхгофа утверждается, что для последовательного замкнутого контура алгебраическая сумма всех напряжений по кругу любой замкнутой цепи равна нулю. Утверждение обусловлено тем, что контур цепи является замкнутым проводящим путём, где потери энергии исключаются. Другими словами, алгебраическая сумма разностей потенциалов замкнутого контура теоретически равняется нулю:

Следует обратить внимание: под термином «алгебраическая сумма» имеется в виду учёт полярностей и признаков источников ЭДС, а также падения напряжений по кругу контура. Эта концепция закона Кирхгофа, известная как «сохранение энергии», как движение по кругу замкнутого контура или схемы, утверждает логику возврата к началу цепи и к первоначальному потенциалу без потери напряжения по всему контуру.


Следовательно, любое падение напряжения по кругу контура теоретически равно потенциалу любых источников напряжения, встречающихся на этом пути.

Отсюда следует вывод: применяя Второй закон Кирхгофа к определенному элементу электрической схемы, важно обращать особое внимание на алгебраические знаки падений напряжения на элементах (источниках ЭДС), иначе вычисления оборачиваются ошибкой.

Одиночный контурный элемент — резистор

Простым примером с резистором предположим — ток протекает в том же направлении, что и поток положительного заряда. В этом случае поток тока через резистор протекает от точки A до точки B. Фактически — от положительной клеммы до отрицательной клеммы. Таким образом, поскольку движение положительного заряда отмечается в направлении аналогичном направлению течения тока, на резистивном элементе зафиксируется падение потенциала, которое приведет к падению минусового потенциала на резисторе (— I * R).

Если же поток тока от точки B до точки A протекает в противоположном направлении относительно потока положительного заряда, тогда через резистивный элемент отметится рост потенциала, поскольку имеет место переход от минусового потенциала к потенциалу плюсовому, что даёт падение напряжения (+ I * R). Таким образом, чтобы правильно применить закон Кирхгофа по напряжению к электрической цепи, необходимо точно определить направление полярности. Очевидно, знак падения напряжения на резисторе зависит от направления тока, протекающего через резистор.

Направление потока тока по замкнутому контуру допустимо определять либо по часовой стрелке, либо против часовой стрелки, и любой вариант допустим к выбору. Если выбранное направление отличается от фактического направления тока, соответствие закону Кирхгофа получится корректным и действительным, но приведет к результату, когда алгебраический расчёт будет иметь знак минус. Чтобы лучше понять эту концепцию, логично рассмотреть ещё один пример с одним контуром цепи на соответствие Второму Закону Кирхгофа.

Одиночный контур электрической цепи

Второй закон Кирхгофа утверждает — алгебраическая сумма разностей потенциалов любого замкнутого контура равна нулю. Демонстрационная схема действия Второго закона Кирхгофа для замкнутого контура с двумя резисторами и одним источником ЭДС. Если принять условие, что два резистора R1 и R2 соединены последовательно, оба элемента являются частью одного контура. Соответственно, одинаковый ток протекает через каждый из резисторов.

Таким образом, падение напряжения на резисторе R1 = I * R1 и падение напряжения на резисторе R2 = I * R2, дают напряжение по Второму закону Кирхгофа:

Очевидно: применение Второго закона Кирхгофа к одиночному замкнутому контуру даёт формулу эквивалентного или полного сопротивления для последовательной цепи. Допустимо расширить эту формулу, чтобы найти значения падений потенциалов по кругу контура:

Vr1 = V * (R1 / R1 + R2)

Vr2 = V * (R2 / R1 + R2)

Есть три резистора номинальным сопротивлением 10, 20, 30 Ом, соответственно. Все три резистивных элемента соединены последовательно к 12-вольтовому аккумулятору.

Интересно по теме: Как проверить стабилитрон.

  • общее сопротивление,
  • ток цепи,
  • ток через каждый резистор,
  • падение напряжения на каждом резисторе.

Рассчитаем общее сопротивление:

Ro = R1 + R2 + R3 = 10Ω + 20Ω + 30Ω = 60Ω

I = V / Ro = 12 / 60 = 0,2A (200 мА)

Ток через каждый резистор:

I * R1 = I * R2 = I * R3 = 0,2A (200 мА)

Падение потенциала на каждом из резисторов:

VR1 = I * R1 = 0.2 * 10 = 2В

VR2 = I * R2 = 0.2 * 20 = 4В

VR3 = I * R3 = 0.2 * 30 = 6В

Таким образом, Второй закон Кирхгофа справедлив, учитывая что индивидуальные падения напряжения, отмеченные по кругу замкнутого контура, в итоге составляют сумму напряжений.

Что такое правило напряжений Кирхгофа (второй закон Кирхгофа)?

Принцип, известный как правило напряжений Кирхгофа (открытое в 1847 году немецким физиком Густавом Р. Кирхгофом), можно сформулировать следующим образом:

«Алгебраическая сумма всех напряжений в замкнутом контуре равна нулю»

Под алгебраической я подразумеваю, помимо учета величин, учет и знаков (полярностей). Под контуром я подразумеваю любой путь, прослеживаемый от одной точки в цепи до других точек в этой цепи, и, наконец, обратно в исходную точку.

Демонстрация закона напряжений Кирхгофа в последовательной цепи

Давайте еще раз посмотрим на наш пример последовательной схемы, на этот раз нумеруя точки цепи для обозначения напряжений:


Рисунок 1 – Демонстрация закона напряжений Кирхгофа в последовательной цепи

Если бы мы подключили вольтметр между точками 2 и 1, красный измерительный провод к точке 2 и черный измерительный провод к точке 1, вольтметр зарегистрировал бы значение +45 вольт. Для положительных показаний на дисплеях цифровых счетчиков знак «+» обычно не отображается, а скорее подразумевается. Однако для этого урока полярность показаний напряжений очень важна, поэтому я буду явно показывать положительные числа:

Когда напряжение указывается с двойным нижним индексом (символы «2-1» в обозначении «E2-1»), это означает напряжение в первой точке (2), измеренное по отношению ко второй точке (1). Напряжение, указанное как «Ecd», будет означать значение напряжения, показанное цифровым мультиметром с красным измерительным проводом в точке «c» и черным измерительным проводом в точке «d»: напряжение в точке «c» относительно точки «d».


Рисунок 2 – Значение Ecd

Если бы мы взяли тот же вольтметр и измерили падение напряжения на каждом резисторе, обходя цепь по часовой стрелке с красным измерительным проводом нашего мультиметра на точке впереди и черным измерительным проводом на точке позади, мы получили бы следующие показания:


Рисунок 3 – Определение напряжений в последовательной цепи

Нам уже должен быть знаком общий для последовательных цепей принцип, утверждающий, что отдельные падения напряжения в сумме составляют общее приложенное напряжение, но измерение падения напряжения таким образом и уделение внимания полярности (математическому знаку) показаний открывает еще один аспект этого принципа: все измеренные напряжения в сумме равны нулю:

В приведенном выше примере контур образован следующими точками в следующем порядке: 1-2-3-4-1. Не имеет значения, с какой точки мы начинаем или в каком направлении движемся при следовании по контуру; сумма напряжений по-прежнему будет равна нулю. Чтобы продемонстрировать это, мы можем той же цепи подсчитать напряжения в контуре 3-2-1-4-3:

Этот пример может быть более понятен, если мы перерисуем нашу последовательную схему так, чтобы все компоненты были представлены на одной прямой линии:


Рисунок 4 – Изменение представления последовательной цепи

Это всё та же последовательная схема, только с немного перераспределенными компонентами. Обратите внимание на полярность падений напряжения на резисторах по отношению к напряжению батареи: напряжение батареи отрицательное слева и положительное справа, тогда как все падения напряжения на резисторах ориентированы в другую сторону (положительное слева и отрицательное справа). Это потому, что резисторы сопротивляются потоку электрического заряда, проталкиваемого батареей. Другими словами, «толкание», прилагаемое резисторами против потока электрического заряда, должно происходить в направлении, противоположном источнику электродвижущей силы.

Здесь мы видим, что цифровой вольтметр покажет на каждом компоненте в этой цепи, если черный провод будет слева, а красный провод – справа:


Рисунок 5 – Измерение напряжений в последовательной цепи

Если бы мы взяли тот же вольтметр и измерили напряжение между комбинациями компонентов, начиная с единственного R1 слева и продвигаясь по всей цепочке компонентов, мы увидели бы, как напряжения складываются алгебраически (до нуля):


Рисунок 6 – Измерение суммы напряжений в последовательной цепи

Тот факт, что последовательные напряжения складываются, не должен быть тайной, но мы заметили, что полярность этих напряжений имеет большое значение в том, как эти значения складываются. При измерении напряжения на R1 – R2 и R1 – R2 – R3 (я использую символ «двойное тире» «–» для обозначения последовательного соединения между резисторами R1, R2 и R3), мы видим, как измеряются бо́льшие значения напряжений (хотя и отрицательные), потому что полярности отдельных падений напряжения имеют одинаковую ориентацию (плюс слева, минус справа).

Сумма падений напряжения на R1, R2 и R3 равна 45 вольт, что соответствует выходному напряжению батареи, за исключением того, что полярность напряжения батареи (минус слева, плюс справа) противоположна падениям напряжения на резисторах, поэтому при измерении напряжения на всей цепочке компонентов мы получаем 0 вольт.

То, что мы должны получить ровно 0 вольт на всей линии, тоже не должно быть тайной. Глядя на схему, мы видим, что крайняя левая часть линии (левая сторона R1, точка номер 2) напрямую соединена с крайней правой частью линии (правая сторона батареи, точка номер 2), что необходимо для завершения схемы.

Поскольку эти две точки соединены напрямую, они являются электрически общими друг с другом. Таким образом, напряжение между этими двумя электрически общими точками должно быть равно нулю.

Демонстрация закона напряжений Кирхгофа в параллельной цепи

Правило напряжений Кирхгофа (второй закон Кирхгофа) будет работать вообще для любой конфигурации схемы, а не только для простых последовательных цепей. Обратите внимание, как это работает для следующей параллельной схемы:


Рисунок 7 – Параллельная схема из резисторов

При параллельной схеме напряжение на каждом резисторе равно напряжению питания: 6 вольт. Суммируя напряжения вдоль контура 2-3-4-5-6-7-2, мы получаем:

Обратите внимание, что конечное (суммарное) напряжение я обозначил как E2-2. Поскольку мы начали наше пошаговое прохождение по контуру в точке 2 и закончили в точке 2, алгебраическая сумма этих напряжений будет такой же, как напряжение, измеренное между той же точкой (E2-2), которое, конечно, должно быть равно нулю.

Справедливость закона Кирхгофа о напряжениях независимо от топологии цепи

Тот факт, что эта цепь является параллельной, а не последовательной, не имеет ничего общего со справедливостью закона Кирхгофа о напряжениях. В этом отношении схема может быть «черным ящиком» (конфигурация ее компонентов полностью скрыта от нашего взгляда) с набором открытых клемм, между которыми мы можем измерить напряжение, – и правило напряжений Кирхгофа всё равно останется верным:


Рисунок 8 – Справедливость закона Кирхгофа напряжениях независимо от топологии схемы

Попробуйте на приведенной выше диаграмме выполнить обход в любом порядке, начиная с любого вывода, и вернувшись к исходному выводу, и вы обнаружите, что алгебраическая сумма напряжений всегда равна нулю.

Более того, «контур», который мы отслеживаем для второго закона Кирхгофа, даже не обязательно должен быть реальным путем протекания тока в прямом смысле этого слова. Всё, что нам нужно сделать, чтобы соответствовать правилу напряжений Кирхгофа, – это начинать и заканчивать в одной и той же точке цепи, подсчитывая падения напряжения и полярности при переходе между точками. Рассмотрим следующий абсурдный пример, проходя по «контуру» 2-3-6-3-2 в той же параллельной резисторной цепи:


Рисунок 9 – Параллельная схема из резисторов

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):


Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи

Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:

E4-3 + E9-4 + E8-9 + E3-8 = 0

E4-3 + 12 + 0 + 20 = 0


Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3
Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4
Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9
Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8

Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:


Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3

Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:


Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта.

Уравнения электрического равновесия цепей

Содержание:

Уравнения электрического равновесия цепей:

Любую электрическую цепь можно рассматривать как систему с одним или несколькими входами и одним или несколькими выходами (рис. 1.38). Если к входам цепи приложить внешнее воздействие

Задача анализа электрической цепи состоит в определении реакции цепи у (t) на заданное внешнее воздействие х (t).

Задача синтеза цепи заключается в нахождении цепи по заданной реакции цепи у (t) на некоторое внешнее воздействие х (t).

Исходными данными в задаче анализа являются эквивалентная схема цепи с параметрами всех входящих в нее элементов и описание внешнего воздействия х (t), задаваемого в виде совокупности токов и напряжений идеализированных неуправляемых источников. В результате анализа определяется отклик у (t) в виде совокупности токов и напряжений всех или некоторых ветвей цепи. В частном случае задача анализа может сводиться к определению соотношений между реакциями цепи на отдельных выходах и воздействиями приложенными к определенным входам. Такие соотношения называются характеристиками (системными функциями, функциями) цепи. В зависимости от того, какая величина— частота или время — является аргументом в выражениях, описывающих соотношения между откликом и внешним воздействием, различают частотные и временные характеристики цепи. Определение и исследование частотных характеристик представляют собой задачу анализа цепи в частотной области; нахождение временных характеристик — задачу анализа цепи во временной области.

Исходными данными в задаче синтеза являются описания внешнего воздействия х (t) и ее отклика у (t). В результате синтеза необходимо найти эквивалентную схему цепи и параметры всех входящих в нее элементов. В частном случае задача синтеза может сводиться к нахождению цепи, обеспечивающей заданные соотношения между внешним воздействием на цепь и ее реакцией т. е. к нахождению цепи по ее характеристикам.

Анализ и синтез электрических цепей в определенной степени взаимосвязаны, в частности методы синтеза базируются на использовании общих свойств характеристик различных классов цепей, которые изучаются в процессе анализа. Поэтому изложению методов синтеза цепей будет предшествовать рассмотрение общих методов анализа цепей и знакомство с характеристиками некоторых классов цепей при различных внешних воздействиях.

Понятие об уравнениях электрического равновесия

Математически задача анализа электрической цепи сводится к составлению и решению системы линейно независимых уравнений, в которых в качестве неизвестных фигурируют токи и напряжения ветвей исследуемой цепи. Уравнения, решение которых позволяет определить токи и напряжения ветвей электрической цепи, называются уравнениями электрического равновесия цепи. Очевидно, что число уравнений электрического равновесия должно быть равно количеству неизвестных токов и напряжений.

В общем случае в цепи, содержащей р ветвей и q узлов, имеется 2р неизвестных токов и напряжений ветвей. Используя законы Кирхгофа, для такой цепи можно составить m = q— 1 независимых уравнений баланса токов и n = р — q + 1 независимых уравнений баланса напряжений. В сочетании с компонентными уравнениями (уравнениями ветвей) получаем 2р линейно независимых уравнений, что достаточно для определения неизвестных токов и напряжений ветвей.

Если в рассматриваемой цепи имеется ветвей, в которых содержатся идеализированные источники тока (токи этих ветвей заданы, а напряжения неизвестны), и ветвей, составленных только из идеализированных источников напряжения (напряжения этих ветвей известны), то общее число неизвестных токов и напряжений уменьшается до Для определения этих неизвестных нужно составить лишь линейно независимых уравнений (m + n = р уравнений на основании законов Кирхгофа и компонентных уравнений для ветвей, не содержащих указанных источников).

Таким образом, используя компонентные уравнения и топологические уравнения, составленные на основании законов Кирхгофа, всегда можно сформировать систему уравнений электрического равновесия, число уравнений в которой достаточно для определения всех неизвестных токов и напряжений. Будем называть такую систему уравнений основной системой уравнений электрического равновесия цепи.

На практике для анализа цепей используют различные методы составления уравнения электрического равновесия, в частности методы токов ветвей, напряжений ветвей, контурных токов, узловых напряжений, переменных состояния. Все они базируются на использовании различных приемов, позволяющих преобразовать основную систему уравнений электрического равновесия и уменьшить по сравнению с 2р или число одновременно решаемых уравнений.

Как было показано ранее, уравнения (1.37) и (1.40) являются алгебраическими, а компонентные уравнения идеализированных пассивных элементов могут быть как алгебраическими (1.9), (1.10), так и дифференциальными (1.13), (1.22) или интегральными (1.16), (1.23).

Вследствие этого уравнения электрического равновесия цепи, составленные любым методом, представляют собой в общем случае систему интегродифференциальных уравнений.

Пример 1.7.

Составим основную систему уравнений электрического равновесия цепи, схема и топологический граф которой изображены на рис. 1.39, а и б соответственно. Для этой цепи р=6, q = 4, — 1 и = 1. Общее число неизвестных токов и напряжений ветвей Используя законы Кирхгофа, можно составить m = q — 1 = 3, уравнения баланса токов:

3 уровня баланса напряжений:

Кроме того, имеем уравнений ветвей, нес одержащих идеализированных источников:

В результате получаем систему из 10 линейно независимых уравнений для определения 10 неизвестных токов и напряжений:

Система уравнений электрического равновесия цепи, составленная любым методом, может быть путем дифференцирования и последовательного исключения неизвестных сведена к одному дифференциальному уравнению для любого из неизвестных токов и напряжений, называемому дифференциальным уравнением цепи. В частном случае это может быть алгебраическое уравнение, которое можно рассматривать как дифференциальное уравнение нулевого порядка. Дифференциальное уравнение цепи содержит фундаментальную информацию о характере имеющих место в цепи электрических процессов и является основой для классификации электрических цепей.Тип дифференциального уравнения цепи полностью определяется ее топологией и характером входящих в нее идеализированных элементов.

Пример 1.8.

Применяя указанные преобразования к основной системе уравнений электрического равновесия цепи (рис. 1.39, а), получим дифференциальное уравнение этой цепи, составленное относительно напряжения

Здесь —постоянные коэффициенты, определяемые параметрами пассивных элементов цепи;

Функция времени, определяемая параметрами независимых источников напряжения и тока.

Таким образом, уравнение цепи, изображенной на рис. 1.39, является линейным неоднородным дифференциальным уравнением 2-го порядка с постоянными коэффициентами

Классификация электрических цепей

Электрические цепи, составленные из идеализированных элементов, могут быть классифицированы по ряду признаков:

по топологическим особенностям: планарные (плоские) и непланарные (объемные), разветвленные и неразветвленные, простейшие (одноконтурные, двухузловые) и сложные (многоконтурные, многоузловые);

по энергетическим свойствам: активные (содержащие идеализированные активные элементы) и пассивные (не содержащие идеализированных активных элементов);

по числу внешних выводов: двухполюсники и многополюсники; и др.

Классификация цепей по этим признакам не носит принципиального характера и используется, в основном, с целью упорядочения терминологии.

Фундаментальный характер имеет классификация цепей в зависимости от вида дифференциального уравнения цепи. Идеализированные электрические цепи, процессы в которых описываются обыкновенными дифференциальными уравнениями, называются цепями с сосредоточенными параметрами. Цепи такого типа используют в качестве упрощенных моделей реальных электрических цепей и их элементов на сравнительно низких частотах, когда длина волны электромагнитных колебаний существенно больше размеров исследуемого устройства. При этих условиях в исследуемых устройствах и их элементах удается выделить конечное число’ участков, в которых преобладает какой-то один из основных эффектов — запасание энергии электрического или магнитного полей, преобразование электрической энергии в другие виды энергии или преобразование энергии сторонних сил в электрическую. Токи рассматриваемой реальной цепи, являясь функциями времени, имеют одинаковые мгновенные значения в пределах каждого из выделенных участков. Заменяя эти участки идеализированными активными или пассивными элементами, получают идеализированную цепь, содержащую конечное число элементов, значения параметров которых конечны.

Таким образом, цепи с сосредоточенными параметрами представляют собой идеализированные цепи, моделирующие реальные устройства или их элементы при условиях, когда можно предположить, что каждый из основных электрических эффектов сосредоточен в конечном числе пространственно локализуемых областей.

Когда длина волны электромагнитных колебаний соизмерима с размерами исследуемого устройства или его элементов, пространственно локализовать области, в которых сосредоточены только эффекты одного типа, не удается. Это связано с тем, что даже при бесконечно малой длине выделяемых участков, в пределах каждого из них имеют место одновременно несколько из перечисленных основных эффектов, причем значения токов в пределах выделенных участков изменяются от одного сечения к другому.

При этих условиях цепи, моделирующие реальные устройства или их элементы, содержат бесконечно большое число идеализированных элементов, параметры которых имеют бесконечно малые значения. Процессы в таких цепях описываются дифференциальными уравнениями в частных производных. Идеализированные электрические цепи, процессы в которых описываются дифференциальными уравнениями в частных производных, называются цепями с распределенными параметрами.

Следует подчеркнуть, что термины «цепь с распределенными параметрами» и «цепь с сосредоточенными параметрами» применимы только к идеализированным (моделирующим) цепям и не должны использоваться для характеристики реальных цепей.

В зависимости от условий и требуемой точности исследования каждый элемент реальной цепи и, следовательно, каждая реальная цепь в целом могут быть заменены моделирующей цепью с сосредоточенными или распределенными параметрами. Например, конденсатор любого типа конструктивно представляет собой две проводящие обкладки 1 и 3, разделенные слоем диэлектрика 2 (рис. 1.40). В области частот, когда длина волны электромагнитных колебаний значительно превышает геометрические размеры обкладок, он может быть представлен одной из моделирующих цепей с сосредоточенными параметрами, схемы которых приведены на рис. 1.11. На более высоких частотах, когда длина волны электромагнитных колебаний сравнима с геометрическими размерами обкладок, но существенно больше расстояния между ними, необходимо учитывать, что процессы запасания энергии электрического и магнитного полей, а также необратимое преобразование электрической энергии в другие виды энергии имеют место вдоль всей длины обкладок конденсатора. В этом случае эквивалентная схема элементарного участка конденсатора длиной dx состоит из индуктивности и емкости характеризующих процессы запасания энергии магнитного и электрического полей, а также сопротивления и проводимости утечки учитывающих потери энергии в конденсаторе (рис. 1.41, а). Эквивалентная схема всего конденсатора должна состоять из бесконечно большого числа таких секций. Следовательно, идеализированная цепь, моделирующая конденсатор в рассматриваемом диапазоне частот, представляет собой цепь с распределенными параметрами.

На примере цепи, эквивалентная схема которой изображена на рис. 1.41, а, покажем, что электрические процессы в цепях с распределенными параметрами описываются дифференциальными уравнениями в частных производных. Действительно, ток i = i (х, t) и напряжение u = u (х, t) рассматриваемой цепи являются функциями времени t и координаты х.

Приращения тока и напряжения на участке цепи длиной dx

Полагая, что параметры элементов моделирующей цепи не зависят от токов и напряжений и выражая их через погонные (т. е. приходящиеся на единицу длины) параметры

составим уравнения баланса токов и напряжений элементарного участка цепи:

Пренебрегая величинами второго порядка малости, уравнения (1.57), (1.58) можно преобразовать к виду

Решая уравнения (1.59), (1.60) при соответствующих начальных граничных условиях, можно определить токи и напряжения цепи моделирующей коденсатор в рассматриваемом режиме.

Отметим, что уравнениям (1.59), (1.60) может быть поставлена в соответствие более простая эквивалентная схема элементарного участка цепи (рис. 1.41, б). Аналогичный вид имеют высокочастотные схемы замещения и ряда других элементов, входящих в состав радиоэлектронных устройств, в частности двухпроводных и коаксиальных линий передачи.

В зависимости от числа координат, вдоль которых происходит изменение тока и напряжения и вдоль которых «распределены» параметры цепи, различают одномерные, двухмерные и трехмерные цепи с распределенными параметрами. В теории цепей рассматривают, в основном, одномерные цепи с распределенными параметрами, процессы в которых описываются дифференциальными уравнениями типа (1.59), (1.60).

Параметры рассмотренных ранее идеализированных линейных пассивных элементов не зависят от значений токов и напряжений соответствующих элементов и, следовательно, от интенсивности внешнего воздействия на цепь, определяемой токами действующих в цепи независимых источников тока и напряжениями действующих в цепи независимых источников напряжения. Связь между током и напряжением линейных идеализированных пассивных элементов описывается линейными алгебраическими, дифференциальными или интегральными уравнениями, иными словами, компонентные уравнения этих элементов являются линейными.

Параметры нелинейных пассивных элементов зависят от токов или напряжений соответствующих элементов, а следовательно, и от интенсивности внешнего воздействия. Компонентные уравнения нелинейных идеализированных пассивных элементов — нелинейные.

В зависимости от вида компонентного уравнения идеализированные активные элементы также делятся на линейные и нелинейные. К линейным идеализированным активным элементам относят независимые в линейно управляемые зависимые источники тока и напряжения, к нелинейным — нелинейно управляемые зависимые источники тока г напряжения.

Цепь с сосредоточенными или распределенными параметрами, составленная только из линейных идеализированных элементов, называется линейной. Дифференциальное уравнение такой цепи — линейное. Если в состав цепи входит хотя бы один нелинейный пассив ими или активный элемент, то она называется нелинейной, а процессы в ней описываются нелинейными дифференциальными уравнениями.

Параметры линейных идеализированных пассивных элементов и коэффициенты управления линейно управляемых источников могут либо иметь постоянные значения, либо изменяться во времени под действием некоторых факторов, непосредственно не связанных с токами или напряжениями этих элементов (например, емкость конденсатора может изменяться во времени вследствие изменения расстояния между обкладками; индуктивность катушки можно изменять путем перемещения сердечника). Идеализированные элементы первого типа называют линейными элементами с постоянными параметрами, элементы второго типа — линейными элементами с переменными параметрами. Параметрические изменение параметров происходит с частотой. линейным а м а элементы, у близкой к частоте токов или напряжений этих элементов, следует отличать от регулируемых элементов —конденсаторов переменной емкости, вариометров, подстроечных конденсаторов и др., у которых изменение параметров производится весьма медленно и только в процессе настройки или регулировки соответствующего устройства.

При составлении уравнений электрического равновесия параметрам регулируемых элементов приписывают некоторые фиксированные значения, а сами элементы относят к элементам с постоянными параметрами.

Цепи, составленные только из линейных элементов с постоянными параметрами, называются линейными цепями с постоянными параметрами или линейными инвариантными во времени цепями. Процессы в линейных инвариантных во времени цепях описываются линейными уравнениями с постоянными коэффициентами.

Линейные цепи, содержащие хотя бы один элемент с переменными параметрами, называются линейными параметрическими цепями. Процессы в линейных параметрических цепях описываются линейными уравнениями с переменными коэффициентами.

В общем случае дифференциальное уравнение линейной цепи с сосредоточенными параметрами имеет следующий вид:

где у — искомая реакция цепи (ток или напряжение какой-либо ветви); — коэффициенты, определяемые параметрами пассивных элементов и коэффициентами управления управляемых источников. В дифференциальном уравнении линейной инвариантной во времени цепи эти коэффициенты постоянны, в дифференциальном уравнении линейной параметрической цепи, по крайней мере, один из них является функцией времени.

Правая часть уравнения (1.61) есть линейная комбинация функций, описывающих внешнее воздействие на цепь х (t), и их производных. При выключении всех источников она становится равной нулю.

Значение v характеризует порядок сложности цепи (порядок цепи) и равно числу реактивных элементов (емкостей и индуктивностей), энергетическое состояние которых может быть задано независимо (подробнее этот вопрос будет рассмотрен в гл. 6). Различают цепи нулевого порядка (не содержащие реактивных элементов), первого, второго и более высоких порядков.

Для линейных уравнений вида (1.61) сформулирована теорема наложения (теорема суперпозиции). Если f(t) где являются решениями уравнений

то является решением уравнения (1.61).

Математически это значит, что решение линейного уравнения (1.61) со сложной правой частью можно выразить через решения уравнений (1.62) с более простой правой частью.

На теореме наложения базируется широко используемый в теории цепей принцип наложения (принцип суперпозиции): реакция у (t) линейной цепи на сложное воздействие х (t) представляющее собой линейную комбинацию более простых воздействий равна линейной комбинации реакций вызванных каждым из простых воздействий в отдельности, у (t) В частности, если внешним воздействиям соответствуют реакции то внешнему воздействию х (t) соответствует реакция а внешнему воздействию где А = const, реакция у(t) = Применение принципа наложения существенно облегчает исследование процессов в линейных электрических цепях, он лежит в основе многих широко используемых методов анализа.

Состояние теории цепей в значительной степени определяется степенью разработанности теории и методов решения соответствующих дифференциальных уравнений. К настоящему времени разработаны общие методы решения только линейных дифференциальных уравнений с постоянными коэффициентами, поэтому наиболее законченный вид имеет теория линейных инвариантных во времени цепей, которые в дальнейшем будем называть просто линейными цепями.

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Линейные цепи при гармоническом воздействии
  • Нелинейные резистивные цепи
  • Преобразование схем электрических цепей
  • Установившиеся процессы в линейных электрических цепях
  • Линии с распределенными параметрами
  • Идеализированные пассивные элементы
  • Идеализированные активные элементы
  • Топологии электрических цепей

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://otransformatore.ru/raznoe/pravila-kirhgofa-dlya-elektricheskoj-tsepi-ponyatnym-yazykom/

http://www.evkova.org/uravneniya-elektricheskogo-ravnovesiya-tsepej