Для гальванического элемента составить уравнение реакции

СХЕМА РАБОТЫ ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА И ТИПОВЫЕ ЗАДАЧИ

Фундаментальные законы физики и химии, и в том числе, закон сохранения массы и энергии вещества, находят свое подтверждение на уровне перемещения мельчайших частиц – электронов, массами которых в химии обычно пренебрегают.

Речь идет об окислительно-восстановительных процессах, сопровождающихся переходом электронов от одних веществ (восстановителей) к другим (окислителям). Причем вещества могут обмениваться электронами, непосредственно соприкасаясь друг с другом.

Однако существует множество случаев, когда прямого контакта веществ не происходит, а процесс окисления-восстановления все равно идет. А если он идет самопроизвольно, то при этом еще и энергия выделяется. Ее человек с успехом использует для выполнения электрической работы.

Реализуется такая возможность в гальваническом элементе, схема работы которого, а также расчеты, связанные с ним, рассматриваются в данной статье.

Простейший гальванический элемент: схема работы

Гальванический элемент – это прибор, позволяющий при посредстве химической реакции получить электрическую энергию.

Пластинка металла и вода: простые взаимоотношения

Давайте сначала разберемся, что происходит с пластинкой металла, если опустить ее в воду?

Процесс схож с диссоциацией соли: диполи воды ориентируются к ионам металла и извлекают их из пластины. Но почему же тогда не происходит растворения самой пластины в воде? Все дело в строении кристаллической решетки.

Кристаллы соли состоят из катионов и анионов, поэтому диполями воды извлекаются из решетки и те, и другие.

У металла же кристаллическая решетка представлена атомами-ионами. Внутри нее всегда происходит превращение атомов в катионы за счет отщепления валентных электронов и обратный процесс: катионы снова превращаются в атомы, присоединяя электроны. Электроны являются общими для всех ионов и атомов, присутствующих в кристаллической решетке металла.

Процессы внутри металлической кристаллической решетки в обобщенном виде можно показать так:

В итоге, вода, окружающая пластинку – это уже не собственно вода, а раствор, составленный из молекул воды и перешедших в нее из пластины ионов металла. На пластине же возникает избыток электронов, которые скапливаются у ее поверхности, так как сюда притягиваются гидратированные катионы металла.

Возникает так называемый двойной электрический слой.

Бесконечно катионы металла с пластины в раствор уходить не будут, поскольку существует и обратный процесс: переход катионов из раствора на пластину. И он будет идти до тех пор, пока не наступит динамическое равновесие:

На границе раздела «металлическая пластина – раствор» возникает разность потенциала, которая называется равновесным электродным потенциалом металла.

Пластинка металла и раствор его соли: к чему приводит такое соседство

А что произойдет, если металлическую пластинку поместить не в воду, а в раствор соли этого же металла, например, цинковую пластинку Zn в раствор сульфата цинка ZnSO4?

В растворе сульфата цинка уже присутствуют катионы цинка Zn 2+ . Таким образом, при погружении в него цинковой пластины возникнет избыточное количество этих катионов, и уже известное нам равновесие (см. выше) сместится влево. Все это приведет к тому, что отрицательный заряд на пластинке будет иметь меньшее значение, так как меньшее количество катионов с нее будет переходить в раствор. Как результат – более быстрое наступление равновесия и менее значительный скачок потенциала.

Потенциал металла в растворе его же соли в момент равновесия записывают так:

Металл, погруженный в раствор электролита, называют электродом, обратимым относительно катиона.

Цинк – достаточно активный металл. А если речь будет идти о медной пластинке Cu, погруженной в раствор, например, сульфата меди (II) CuSO4?

Медь – металл малоактивный. Двойной электрический слой, конечно же, появится и в этом случае. Но! Катионы из пластинки в раствор переходить не будут. Наоборот, катионы меди (II) Cu 2+ из раствора соли начнут встраиваться в кристаллическую решетку пластинки и создавать положительный заряд на ее поверхности. Сюда же подойдут сульфат-анионы SO4 2- и создадут вокруг нее отрицательный заряд. То есть распределение зарядов в данном случае будет совершенно противоположным, чем на цинковой пластинке.

Это общая закономерность: пластинки из малоактивных металлов при погружении в раствор их солей всегда заряжаются положительно.

Как устроен гальванический элемент Даниэля-Якоби, или Так где же все-таки электрический ток?

Известно, что электрический ток – это направленное движение заряженных частиц (электронов).

На активном металле скапливаются электроны, а поверхность малоактивного металла, заряжается положительно. Если соединить проводником (например, металлической проволокой) оба металла, то электроны с одного перейдут на другой, а двойной электрический слой перестанет существовать. Это будет означать возникновение электрического тока.

Причем, ток возникает за счет окислительно-восстановительного процесса: активный металл окисляется (так как отдает электроны малоактивному), а малоактивный металл восстанавливается (так как принимает электроны от активного). Металлы друг с другом не соприкасаются, а взаимодействуют через посредника: внешнего проводника. Данная схема и есть схема гальванического элемента. Именно так устроен и работает гальванический элемент Даниэля-Якоби:

В схеме элемента показан «солевой мостик». Он представляет собой трубку, в которой присутствует электролит, не способный взаимодействовать ни с электродами (катодом или анодом), ни с электролитами в пространствах у электродов. Например, это может быть раствор сульфата натрия Na2SO4. Подобный мостик нужен для того, чтобы уравновешивать (нейтрализовать) заряды, образующиеся в растворах гальванического элемента.

Таким образом, возникшая электрическая цепь замыкается: анод → проводник с гальванометром → катод → раствор в катодном пространстве → «солевой мостик» → раствор в анодном пространстве → анод.

Анод – электрод, на котором происходит окисление (цинковая пластинка):

Электроны цинка Zn отправляются по внешней цепи (то есть по проводнику) на катод.

Катод – электрод, на котором происходит восстановление (медная пластинка):

Катионы меди Cu 2+ , пришедшие на пластинку из раствора сульфата меди (II), получают электроны цинкового анода.

В общем виде весь процесс окисления-восстановления в гальваническом элементе выглядит так:

Для любого гальванического элемента можно составить запись в виде схемы. Например, для приведенного элемента Даниэля-Якоби она будет выглядеть так:

3 – скачок потенциала (граница раздела фаз);

4 – электролит в анодном пространстве;

5 – электролит в катодном пространстве;

6 – граница между растворами (солевой мостик).

Или сокращенно:

Типовые задачи на схему гальванического элемента: примеры решения

По вопросу, рассмотренному в данной статье, возможны два основных вида задач.

Задача 1. Составьте схему гальванического элемента, в котором протекает реакция:

Решение:

Задача 2. Напишите электродные и суммарные уравнения реакций, протекающих в гальваническом элементе:

Решение:

Итак, разобрав принцип работы гальванического элемента, мы научились записывать схему его работы и определять основные процессы на электродах.

Задачи к разделу Электродные процессы, Гальванический элемент

В настоящем разделе представлены типовые задачи на гальванические элементы: Определение ЭДС гальванического элемента, составление схемы гальванического элемента, определение энергии химической реакции в кДж.

Задача 1. Вычислите значение э.д.с. гальванического элемента:

(-) Mg / MgSO4 // CuSO4 / Cu (+)

Напишите процессы на аноде и катоде, реакцию, генерирующую ток, и определите в кДж энергию химической реакции, превращающуюся в электрическую.

Решение.

Дана схема гальванического элемента, из которой видно, что анодом является магний, а катодом — медь

(-) Mg / MgSO4 // CuSO4 / Cu (+)

А: Mg 0 -2e — = Mg 2+

К : Cu 2+ +2e — = Cu

Mg 0 + Cu 2+ = Mg 2+ + Cu

Вычислим ЭДС гальванического элемента:

ЭДС =0,337 + 2,37 = 2,71 В

ΔG 0 298 = -nFE = -2∙96500∙2,71 = — 523030 Дж = — 523 кДж

Задача 2. Рассчитайте ЭДС гальванического элемента, составленного из стандартного водородного электрода и свинцового электрода, погруженного в 0,01 М раствор PbCl2. На каком электроде идёт процесс окисления, а на каком — восстановление?

Решение.

В данной паре потенциал свинца имеет более отрицательное значение, поэтому анодом является свинец:

А: Pb 0 -2e — = Pb 2+

К: 2 H + +2 e — = H 2

Pb 0 + 2H + = Pb 2+ + H2

Определим электродный потенциал свинца:

E = -0,126 + (0,059/2)∙lg0,01 = -0,185 В

Вычислим ЭДС гальванического элемента:

ЭДС = 0 + 0,185 = 0,185 В

Задача 3. По уравнению токообразующей реакции составьте схему гальванического элемента:

Ni + СuSO4 = NiSO4 + Cu Напишите уравнения анодного и катодного процессов. Рассчитайте стандартную ЭДС.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Ni2+/Ni и E 0 Cu2+/Cu

В данной паре потенциал никеля имеет более отрицательное значение, поэтому анодом является никель:

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции:

ЭДС = 0,337 – (- 0,250) = 0,587 В

Задача 4. Составьте схему гальванического элемента из магния и свинца, погруженных в растворы их солей с концентрацией ионов:

[Mg 2+ ] = 0,001 моль/л, [Pb 2+ ] = 1 моль/л. Напишите уравнения реакций, протекающих на катоде и аноде. Рассчитайте стандартную ЭДС этого элемента.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg и E 0 Pb2+/Pb

В данной паре потенциал магния имеет более отрицательное значение и является анодом:

А: Mg 0 -2e — = Mg 2+

К: Pb 2+ +2 e — = Pb 0

Mg 0 + Pb 2+ = Mg 2+ + Pb 0

Составим схему гальванического элемента:

(-) Mg 0 |Mg 2+ || Pb 2+ |Pb 0 (+)

Применяя уравнение Нернста, найдем EPb2+/Pb и EMg2+/Mg заданной концентрации:

Рассчитаем стандартную ЭДС реакции

ЭДС = -0,126 – (-2,46) = 2,334 В

Задача 5. Как изменится (увеличится, уменьшится) или останется постоянной масса пластины из кобальта, погруженной в раствор, содержащий соли Fe (II), Mg, Ag (I). Напишите молекулярные уравнения реакций.

Решение.

Пользуясь таблицей стандартных электродных потенциалов, найдем E 0 Mg2+/Mg, E 0 Co2+/Co, E 0 Fe2+/Fe, E 0 Ag+/Ag

Протекание реакции возможно при условии, когда E 0 восст 0 ок.

В нашем случае восстановителем является кобальт и условие E 0 восст 0 ок соблюдается только для пары

Co 0 + Ag + = Co 2+ + Ag 0

Молекулярное уравнение, например:

В процессе пластина из кобальта будет растворяться, но одновременно на ее поверхности будет осаждаться серебро.

Из уравнения реакции видно, что при взаимодействии 1 моль кобальта, образуется 2 моль серебра.

Мольная масса кобальта M(Co) = 59 г/моль, мольная масса серебра M(Ag) = 108 г/моль.

Найдем массы металлов:

n = m/M, m = n∙M

m(Ag) = 2∙108 = 216 г.

Таким образом, масса осажденного серебра больше, чем масса растворенного кобальта, т.е. масса пластины из кобальта увеличится.

В случаях, когда пластина опущена в раствор соли железа или соли магния ее масса не изменится, т.к. кобальт не вытесняет эти металлы из их солей. Т.е. реакции не происходит и масса пластины остается неизменной.

Задача 6. Составьте схему гальванического элемента, уравнения полуреакций анодного и катодного процессов, молекулярное уравнение реакции, проходящей при работе гальванического элемента, анодом которого является никель. Подберите материал для катода. Рассчитайте стандартную ЭДС этого гальванического элемента.

Решение.

По условию задачи материал анода известен – никель. Электродный потенциал анода всегда имеет более отрицательное значение, т.е. анод состоит из более активного металла, чем катод.

Поэтому нам надо подобрать такой металл, значение потенциала которого, будет иметь большее значение, чем значение электродного потенциала никеля. Например, медь:

Составим уравнения полуреакций анодного и катодного процессов и молекулярное уравнение реакции, проходящей при работе гальванического элемента.

А: Ni 0 -2e — = Ni 2+

К: Cu 2+ +2 e — = Cu 0

Ni 0 + Cu 2+ = Ni 2+ + Cu 0

Ni 0 + CuSO4 = NiSO4 + Cu 0

Составим схему гальванического элемента:

(-) Ni 0 |NiSO4 || CuSO4|Cu 0 (+)

Рассчитаем стандартную ЭДС реакции

Для гальванического элемента составить уравнение реакции

7 ОСНОВЫ ЭЛЕКТРОХИМИИ

7.1 ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ. НАПРАВЛЕНИЕ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИЙ

Сущность этой реакции вытеснения сводится к восстановлению одним металлом иона второго. Например, в ряду металлов Zn , Fe , Cu , Ag каждый предыдущий вытесняет последующий из его солей, тогда как обратное вытеснение не наблюдается.

Процесс взаимодействия цинка с ионом меди по приведенной выше схеме можно разбить на две полуреакции :

Очевидно, что если бы удалось осуществить передачу электронов не непосредственно, а через металлический проводник, то по нему потек бы от цинка к меди поток электронов, т.е. электрический ток. На рисунке 6.1 показана схема гальванического элемента, т.е. установки, делающей возможной такую передачу электронов по проводу. В гальваническом элементе происходит непосредственное преобразование энергии химической реакции в электрическую энергию.

Рисунок 6.1 – Конструкция медно-цинкового гальванического элемента (элемент Даниэля-Якоби)

Сосуд А и соединяющая оба сосуда трубка В заполнены раствором ZnSO4, сосуд Б – раствором CuSO4. В первый из них опущена цинковая пластинка, во второй – медная. Если соединить обе пластинки проводом, то по нему в указанном стрелкой направлении начнут перемещаться электроны (потечет электрический ток). Трубка В обеспечивает замкнутость цепи, по ней перемещаются ионы SO4 2– . Электрод, на котором происходит процесс восстановления (на рисунке 6.1 – медный) называется катодом, а электрод, на котором осуществляется окисление (в рассмотренном примере – цинковый) – анодом В электротехнике принята противоположная система обозначений электродов: катодом называют отрицательный полюс источника тока, т.е. электрод, передающий электроны во внешнюю цепь (в данном случае цинковый). В учебном пособии электроды названы так, как это принято в электрохимии. .

В данном случае электродные процессы являются гетерогенными, т.к. окисленная и восстановленная формы находятся в разных фазах *. В более общем виде гетерогенный электродный процесс можно записать в виде:

Me (ВФ, тв . фаза) – ne – Me n + ( aq ) (ОФ, раствор)

На границе раздела фаз возникает двойной электрический слой, состоящий из катионов Me n + (в растворе) и электронов (в металле), что приводит к появлению потенциала E( Me n + / Me ). Его абсолютная величина определению не поддается, однако легко измеряется разность потенциалов катода и анода, которая называется электродвижущей силой (ЭДС) гальванического элемента Δ E = E к – Eа . Если в таких устройствах условно считать потенциал какого-то электрода равным нулю, то измерением ЭДС можно получить относительные значения других электродных потенциалов, что важно для сравнительной количественной характеристики электродов.

Условно за нуль принят потенциал стандартного водородного электрода, который состоит из платиновой пластинки, покрытой платиновой чернью и частично погруженной в раствор кислоты с активной концентрацией ионов водорода, равной 1 моль/л. Электрод омывается газообразным водородом под давлением 1,013 · 10 5 Па (1 атмосфера), что приводит к образованию системы:

2 H + + 2eH2

Для измерения электродных потенциалов металлов, например меди, составляют гальванический элемент, в котором вторым электродом служит стандартный водородный электрод. В основе работы составленного гальванического элемента лежит реакция

Cu 2+ + H2 → 2H + + Cu

На схеме гальванического элемента границы раздела фаз показывают одной вертикальной чертой, а электроды отделяют друг от друга двумя вертикальными чертами. Анод на схеме указывают слева, а катод – справа:

А (–) Pt (H2) | 2H + | | Cu 2+ | Cu (+) К

Катодом в этом случае является медный электрод. ЭДС гальванического элемента, измеренная при концентрации (активности) ионов меди 1 моль/л, равна 0,34 В и может быть выражена как Δ E = E(Cu 2+ / Cu )– E(2H + /H2). Так как E(2H + /H2) принят за нуль, то E(Cu 2+ / Cu )= Δ E =0,34 В при стандартных условиях. Если медь заменить цинком, то катодом будет водородный электрод. Тогда E(Zn 2+ / Zn )= – Δ E = –0,76В.

Электродные потенциалы металлов, измеренные по отношению к водородному электроду при стандартных условиях, т.е. активной концентрации ионов металла в растворе, равной 1 моль/л, и температуре 25 ° С (298 К), называют стандартными и обозначают Е ° . Так, Е ° (Cu 2+ / Cu )=0,34В, Е ° (Zn 2+ / Zn )= –0,76В. Ряд металлов, расположенных в порядке возрастания их стандартных электродных потенциалов, называется рядом напряжений. В основных чертах он имеет следующий вид:

K, Ca , Na , Mg , Al , Zn , Fe , Ni , Sn , Pb , H, Cu , Hg , Ag , Pt , Au

Ниже приведены основные следствия из ряда напряжений:

а) Каждый металл вытесняет из солей все другие, расположенные в ряду напряжений правее него.

б) Все металлы, расположенные левее водорода, вытесняют его из кислот, расположенные правее – не вытесняют.

в) Чем дальше друг от друга стоят два металла, тем большую ЭДС имеет построенный из них гальванический элемент.

Величина электродного потенциала зависит от концентрации В данном случае имеется в виду молярная концентрация (моль/л). ионов металла в растворе его соли [ Me n + ], их заряда ( n ) и температуры ( Т), что выражается уравнением Нернста:

;

здесь F – число Фарадея ( F=96485 96500 Кл/моль).

При Т=298 К можно применять упрощенную форму уравнения Нернста:

Величина ЭДС и изменение энергии Гиббса * для химического процесса, лежащего в основе работы гальванического элемента, связаны соотношением Δ G = – nF Δ E , где n – количество электронов, передаваемых от восстановителя к окислителю. Необходимо иметь в виду, что реакцию необязательно проводить в гальваническом элементе. Она может быть проведена, например, в пробирке. Единственным отличием будет то, что полуреакции окисления и восстановления не разделены по электродам, а происходят в одной области пространства. Следовательно, Δ G может вычисляться точно так же, т.е. через ЭДС гипотетического гальванического элемента, найденную из электродных потенциалов полуреакций. В качестве примера рассмотрим реакцию:

2 Fe 2+ + Cl2 → 2 Fe 3+ + 2 Cl –

Здесь n=2, т.к. молекула хлора принимает два электрона (по одному от каждого иона Fe 2+ ). Соотношение Δ G = – nF Δ E находит применение для определения Δ G окислительно-восстановительных реакций * в растворах по измеренной величине ЭДС гальванических элементов, в которых они могут протекать, а также для выяснения возможности работы гальванического элемента на той или иной химической реакции, если для нее изменение энергии Гиббса Δ G известно.


источники:

http://zadachi-po-khimii.ru/obshaya-himiya/zadachi-k-razdelu-elektrodnye-processy-galvanicheskij-element.html

http://www.chem-astu.ru/chair/study/genchem/r7_1.htm