Для схемы после коммутации характеристическое уравнение имеет

Законы коммутации и начальные условия (стр. 1 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5 6

1. Законы коммутации и начальные условия.

В общем случае переходный процесс занимает некоторое (теоретически бесконечно большое) время. Например, можно услышать как постепенно снижается до нулевой громкость звука работающего радиоприемника при отключении его от источника электропитания.

Любой установившийся режим характеризуется определенным запасом энергии магнитного и электрического полей в каждый момент времени

, (1.1)

где ik (ul) — мгновенный ток (напряжение) в катушке Lk (на конденсаторе Cl ); k и l — индексы суммирования.

В переходном режиме происходит изменение запасенной в цепи энергии и это изменение не может происходить скачкообразно (мгновенно), так как скачкообразное изменение энергии потребует бесконечно больших мощностей P = dW / dt в цепи, что лишено физического смысла.

На основании этого вывода и соотношения (1.1) могут быть сформулированы два закона коммутации при конечных по величине воздействиях в цепи.

1. Ток в любом индуктивном элементе является непрерывной функцией времени и не может изменяться скачком, в частности для момента коммутации t = 0

iL(0+) = iL(0-) = iL(0) ,(1.2)

где t = 0- — момент времени непосредственно предшествующий моменту коммутации; t = 0+ — момент времени сразу после мгновенной коммутации.

2. Напряжение на любом емкостном элементе является непрерывной фуекцией времени и не может изменяться скачком. В частности для момента коммутации

uC(0+) = uC(0-) = uC(0) ,(1.3)

Таким образом, токи в индуктивностях и напряжения на емкостях в начальный момент t = 0+ после коммутации имеют те же значения, что и непосредственно перед коммутацией при t = 0- и затем плавно изменяются. Заметим, что токи и напряжения на резисторах, а также токи через емкости и напряжения на индуктивностях могут изменяться скачкообразно, так как с ними непосредственно не связана запасаемая в цепи энергия.

Значения напряжений на емкостях и токов в индуктивностях цепи в момент коммутации, т. е. в начальный момент, образуют независимые начальные условия задачи. Независимые начальные условия определяют начальный запас энергии в цепи. Различают задачи с нулевыми начальными условиями, когда для всех емкостей uC(0+) = 0 и для всех индуктивностей iL(0+) = 0, и с ненулевыми, когда указанные требования нарушаются хотя бы в одном из реактивных элементов. Независимые начальные условия могут быть заданы или рассчитаны с применением законов коммутации.

Начальные значения токов в ветвях без катушек индуктивности или напряжений на элементах, не являющихся конденсаторами, называются зависимыми начальными условиями. Они определяются по независимым начальным условиям с применением законов Кирхгофа или других методов расчета для момента времени t = 0+.

2.Классический метод анализа переходных процессов

Классический метод анализа переходных процессов основан на составлении системы дифференциальных и алгебраических уравнений с использованием уравнений для элементов и законов Кирхгофа для мгновенных токов и напряжений в цепи:

Для определения интересующей реакции систему исходных уравнений путем исключения остальных переменных приводят к одному линейному уравнению n-го порядка с постоянными коэффициентами:

,(1.4)

где i(t) — искомая переменная; f(t) — правая часть, обусловленная возмущающими силами, т. е. функциями источников.

Напомним известные из курса математики сведения о решении линейных дифференциальных уравнений. Общее решение линейного дифференциального уравнения (1.4) определяется в виде суммы двух составляющих:

i(t) = iсв(t) + iвын(t

Первая составляющая называется свободной или собственной и определяется как общее решение соответствующего однородного уравнения, которое получается из (1.4) путем приравнивания нулю правой части f(t) = 0:

(1.6)

Для определения общего решения (1.6) составляется характеристическое уравнение, которое получается из (1.6) путем замены k — той производной на pk. При этом сама искомая переменная заменяется на единицу. Характеристическое уравнение

pn + bn-1pn-1 + . +b1p + b0 = 0(1.7)

является алгебраическим уравнением степени n и его корни pk определяют общее решение однородного дифференциального уравнения:

, (1.8)

где Ak — постоянные интегрирования.

Решение (1.8) записано для случая различных корней pk. Входящие в (1.8) n постоянных интегрирования определяются по известным независимым начальным условиям.

Заметим, что в однородном дифференциальном уравнении (1.6) правая часть приравнивается нулю, что означает отсутствие в цепи внешнего воздействия, т. е. источника. Поэтому токи и напряжения в ветвях цепи будут определяться только параметрами и свойствами самой цепи, а также начальным запасом энергии. Физически очевидно, что для реальных цепей собственная составляющая iсв(t) при отсутствии источников должна стремиться со временем к нулю. Эта составляющая существует во время переходного процесса.

Вторая составляющая iвын(t) решения (1.5) называется вынужденной и представляет собой частное решение неоднородного дифференциального уравнения (1.4) (с ненулевой правой частью). Из математики известно, что вид частного решения определяется видом правой части уравнения. В частности, если правая часть f(t) — константа, то и частное решение ищется в виде константы. Если правая часть является гармонической функцией с определенными частотой, амплитудой и начальной фазой, то и частное решение будет гармонической функцией той же частоты, для которой нужно определить амплитуду и начальную фазу.

Таким образом, вынужденная составляющая обусловлена воздействием источников в цепи и при t ®Ґ искомая переменная i(t) ® iвын(t). Поэтому вынужденная составляющая называется установившейся и определяется как установившееся значение (в случае постоянной вынуждающей силы) или как установившаяся функция (в случае гармонической вынуждающей силы) для искомой переменной в цепи после коммутации

iвын(t) = iуст(t) (1.9)

Необходимо отметить, что определение вынужденной составляющей в случае воздействия сигналов более сложной формы, чем упомянутые выше, представляет достаточно сложную задачу.

В заключении приведем рекомендуемый порядок расчета переходных процессов классическим методом.

1. Определить независимые начальные условия iLk(0+) и uCk(0+) с использованием законов коммутации.

2. Для цепи после коммутации составить систему уравнений Кирхгофа с использованием уравнений для элементов.

3. Полученную систему разрешить относительно искомой переменной. При этом получится одно дифференциальное уравнение n-ой степени, где n равно общему числу индуктивностей и емкостей, в которых можно задавать независимые начальные условия.

4. Определить решение полученного дифференциального уравнения

(1.10)

где iвын(t)=iуст(t) — вынужденная (установившаяся) составляющая; pk — корни характеристического уравнения; Ak — постоянные интегрирования, определяемые из начальных условий.

3. Переходный процесс в r, L – цепи при включении на источник постоянного напряжения

3. a)ri+Ldi/dt=E b)z(jw)=r+jwL

Lp+r=0 jwp

0=pL+rp=-r/L

4.Отключение rl цепи от источника пост напряж

3. z(jw)=r1+r2 +jwL z(jw)=z(p) r1+r2+ph=0

4. 4. iL(t)=iLуст + Aept iL(0)=AE/r1 iL(t)=E/r1*e-(r1+r2)/2

5.Включение rL цепи на синусоидальном токе

2. iLуст(t)=e(t)=Emsin(wt+)

iLmaxуст(t)=Imaxsin(wt+)

iLуст(0)=Imaxуст*sin()

iL(t)=Imaxsin(wt+)+Aept

0=Imaxустsin()

A=-Imaxустsin()

iL(t)=Imaxуст*sin(wt+)-Imsin()e-rt/L

7.Характеристическое уравнение. Корни характеристического уравнения. Постоянные времени. Время переходного процесса.

Характеристическое уравнение имеет вид:

ri+L=E

p=-

Для определения вида свободной составляющей необходимо составить и решить характеристическое уравнение: z(p)=0.Для записи характеристического уравнения необходимо нарисовать схему, в которой все источники ЭДС и тока следует заменить на их же внутреннее сопротивление, а сопротивление индуктивности и емкости принять соответственно равным Pl и ,далее необходимо разорвать любую ветвь данной схемы, записать ее исходное сопротивление относительно точек разрыва, прировнять его нулю, решить и определить корни p, если корни получились действительными отрицательными, то своб. составляющая искомой функции:

,где m-количество корней уравнения;

-корни;-постоянные интегрируемые.

Если корни характер. уравнения получились комплексно сопряженными, то своб. сост. будет иметь вид:

где -частота свободных колебаний;

-начальная фаза свободных колебаний.

8.Время переходного процесса. Определение практически tпп. Расчет времени переходного процесса.

Время переходного процесса зависит от коэфициента затухания .Величина, обратная ,называется постоянной времени и представляет собой время, в течении которого значение свободной составляющей переходного процесса уменьшится в e=2,72 раза. Величина зависит от схемы и параметров. Так для цепи с последовательным соединением r и L = ,а при последовательном соединениии

R и C =Rc.

95% окончания переходного процесс 3.

Кривые свободных составляющих переходного процесса проще всего построить, задавая времени t значения 0, ,2…..Если вещественных корней несколько, то результирующая кривая получается путем суммирования ординат отдельных слагаемых (рис.1.)

9.10,Переходный процесс в r, С – цепи при включении на источник постоянного напряжения. Анализ произвести классическим методом; привести аналитические выражения для UC(t); iC(t); графики. (Классический метод).

Уравнение состояния rC-цепи после коммутации следующее:

(1) ,или rC (2)

Его решение:

Емкость С после замыкания ключа при tзарядится до установившегося значения .Свободная составляющая

Поскольку начальные условия нулевые, согласно закону коммутации при t=0,или 0=A ,откуда A=-E.

Решение уравнения (2) примет вид:

+E=E(1-)

где =rC

Ток в цепи i(t)=C

Графики изменения напряжения и тока i(t) приведены на рисунке 1 и 2. Из рисунков видно, что напряжение на конденсаторе возростает по экспоненциальному закону от 0 до E, сила тока же в момент коммутации скачком достигает значения E/r, а затем убывает до нуля.

11.12.Переходный процесс в r, C – цепи при подключении к источнику синусоидального напряжения. Анализ произвести классическим методом; привести аналитические выражения для UC(t); iC(t); графики. (Классический метод).

Уравнение состояния rC-цепи в переходном режиме следующее

rC.

Решение этого уравнения:

где =rC

Так цепь линейна, то при синусоидальном воздействиии в установившемся режиме напряжение на емкоститакже будет изменяться по синусоидальному закону с частотой входного воздействия, Поэтому для определения = воспользуемся методом комплексных амплитуд:

;

где =;

Учитывая, что j=,получаем:

Постоянную интегрирования А свободной составляющей

найдем из начальных условий в цепи с учетом закона коммутации:

.При t=0 последнее выражение имеет вид

0=A+

Откуда A=-

Cложив составляющие и ,получим окончательное выражение для напряжения на емкости в переходном режиме :

=+= (1)

Анализ выражения (1) показывает, что переходный процесс в rC-цепи при синусоидальном воздействии зависит от начальной фазы ЭДС источника в момент коммутации и от постоянной времени rC-цепи.

Если ,то =0 и в цепи сразу после коммутации наступит установившийся режим, т.е.

==.

При напряжение =- , т. е. напряжение на емкости сразу после коммутации может достигать почти удвоенного значения положительного знака, а затем постепенно приближаться к = .

Разность фаз приведет уравнение (1) к виду:

=.

Отличие данного режима от предыдущего состоит в том, что напряжение на емкости сразу после коммутации может достичь почти удвоенного значения отрицательного знака.

Для расмотренной Rc-цепи с источником синусоидального тока в установившемся режиме начальная фаза входного напряжения никакой роли не играет, но в переходном процессе ее влияние существенно.

13.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Периодический процесс. Аналитические выражения для i(t), графики. (Классический метод).

Корни действительные, отрицательные, разные.

<

t=0 il(0)*r+L +Uc(0)=E A1=-A2=()

il(t)= ()

il(t)= ()

14.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Критический процесс. Аналитические выражения для i(t), графики. (Классический метод).

p1=p2=-δ=

il(t)=iуст+(B1+B2*t)*

il(t)= ()

Если корни получились действительные, отрицательные, равные, значит процесс критический.

15.Переходный процесс в r, L, C – цепи при подключении к источнику постоянного напряжения. Колебательный процесс. Аналитическое выражение для i(t), графики. (Классический метод).

Pt= -δ±j*ωсв ωсв=

Корни отрицательные действительные, частью комплексносопряженные.

il(t)=iуст+(M*cos ωсв t+N*sin ωсв t)*

il(t)= *=*

16. Переходный процесс в r, L, C – цепи при подключении к источнику синусоидального напряжения. Апериодический процесс. Аналитическое выражение для i(t), графики. (Классический метод).

2.

φ=arctg

17.Переходный процесс в r, L, C – цепи при подключении к источнику синусоидального напряжения. Колебательный процесс. Математическое описание i(t), графики. (Классический метод).

2.

φ=arctg

При Туст прямое преобразование Лапласа=>i(p) u(p)=>решение алгебраическ. Уравнений=>обратное пр-ние Лапласа=>искомые изображения=>графики i(t) u(t)

Прямое преобразование Лапласа.

Пусть некоторая ф. f(t)=0 t 0 |f(t)| =e f(t)=f(p)

20.Прямое преобразование Лапласа. Примеры получения изображений для элементарных функций

Прямое преобразование Лапласа.

Пусть некоторая ф f(t)=0 t 0 |f(t)| =e f(t)=f(p)

Примеры получения изображений для элементарных ф-ий.

f(p)= 1dt=\p|0=1\p; I(t)=1\p;

Классический метод расчета переходных процессов в линейных цепях

1. Возникновение переходных процессов и законы коммутации

2. Способы получение характеристического уравнения

3. Особенности переходных процессов в цепях с одним реактивным элементом

4. Переходные процессы в цепях с двумя разнородными реактивными элементами
5. Временные характеристики цепей
6. Расчет реакции линейной цепи на входное воздействие произвольного вида с применением временных характеристик цепи

Список используемых источников

1. Возникновение переходных процессов и законы коммутации

Для изучения темы а необходимо знать расчет установившихся режимов, т.е. таких, когда все токи и напряжения либо постоянные, либо периодически повторяющиеся функции времени, но в любой схеме могут происходить подключения и отключения ветвей (происходит коммутация). Обозначают коммутацию: . В линейных цепях коммутация считается идеальной, т.е.:

1) ключ представляет собой либо разрыв, либо провод;

2) длительность перехода из одного состояния в другое равна нулю. Момент времени сразу после коммутации обозначают либо , а момент времени непосредственно перед коммутацией соответственно обозначают , . После коммутации цепь стремится под действием источников схемы прийти к новому установившемуся режиму, но для этого ей требуется время. Процессы, происходящие в цепи после коммутации, называются переходными процессами.

Почему этот переход не может произойти мгновенно? Дело в том, что в цепи имеются элементы L и C, в которых запасается определенная величина энергии WL =L 2 /2 и WC =Cu 2 /2 соответственно. В новом установившемся режиме будет другой запас энергии, и, т.к. скорость изменения энергии есть подводимая к элементу мощность, получается, что требуется конечное время на изменение этого запаса энергии (т.к. источников бесконечной мощности в реальной цепи нет). Из выражения для WL и WC и того факта, что в цепях не развивается бесконечная мощность, вытекают два фундаментальных условия, без которых невозможно рассчитать ни один переходной процесс – это законы коммутации.

,

т.к. P , L — конечное число, L — конечное число, то — скачка быть не может. Отсюда вытекает один из законов коммутации: ток в индуктивности не может измениться скачком, поэтому при коммутации: . Дифференцируя dWC /dt, приходим ко 2-ому закону коммутации: напряжение на ёмкости не может измениться скачком, поэтому при коммутации: . Т.к. = L L , , то можно использовать и такие функции: , .

Про остальные величины, в том числе и про скорость изменения любых токов и напряжений при коммутации заранее ничего не известно и их приходится рассчитывать. Т.к. и форма изменения токов и напряжений неизвестна, приходится использовать самые общие выражения: , . Тогда уравнения, описывающие цепь после коммутации, оказываются дифференциальными. В линейной цепи – это линейные дифференциальные уравнения (ЛДУ). Существуют различные методы решения таких уравнений, и соответственно различают различные методы расчета переходных процессов.

2 Способы получение характеристического уравнения

Классический метод основан на решении ЛДУ методом вариации произвольных постоянных. Любая система ЛДУ может быть сведена к одному уравнению n –ого порядка. В цепях по схеме после коммутации порядок определяется так: n = nL + nC – nОК – nОС , где nL – число L; nC – число C; nОК – число особых контуров, т.е. таких, которые состоят только из емкостей и источников ЭДС; nОС – число особых сечений (в простейшем случае, это узлы схемы, к которым подключены только ветви с источником тока или с индуктивностями).

Решение уравнения представляют в виде суммы частного решения неоднородного уравнения (ЛНДУ) и общего решения линейного однородного дифференциального уравнения (ЛОДУ). Частное решение определяется видом правой части уравнения. В цепях в правой части уравнения стоят источники энергии схемы после коммутации. Физический смысл частного решения уравнения в цепях – это новый установившийся режим, к которому будет стремиться схема после коммутации под действием источников. Поэтому частное решение ЛНДУ называют принужденной составляющей режима. Общее решение ЛОДУ физического смысла не имеет. В противоположность принужденной составляющей, его называют свободной составляющей переходного процесса. Свободная составляющая записывается в виде суммы слагаемых, число и вид которых определяются корнями характеристического уравнения.

После записи решения необходимо рассчитать произвольные постоянные, вошедшие в выражение общего решения. Это можно сделать, если известны начальные условия. Начальные условия – это значения искомой функции времени и необходимого числа её производных по времени в начале переходного процесса, т.е. при t=0.

Все начальные условия делят на две группы:

— независимые начальные условия, это L (0) и uC (0), которые находятся по законам коммутации, с помощью вычисленных ранее L (0 ) и uC (0 ) в схеме до коммутации;

— все остальные начальные условия – зависимые. Их приходится искать из цепи после коммутации в переходном режиме по законам Кирхгофа для мгновенных значений токов и напряжений при t=0 с помощью независимых начальных условий. Имея необходимое число начальных условий и рассматривая решение и его производные по времени в момент , получают систему линейных алгебраических уравнений (СЛАУ) из которой находят произвольные постоянные.

В соответствии с изложенным, порядок расчета переходного процесса классическим методом может быть таким:

1) рассматривают установившийся режим схемы до коммутации и находят L (0 ) и uC (0 );

2) рассматривают цепь после коммутации в новом установившемся режиме и находят принужденную составляющую переходного процесса;

3) тем или иным способом получают характеристическое уравнение и находят его корни в соответствии с которыми определяют вид свободной составляющей;

4) записывают решение в виде суммы принужденной и свободной составляющих.Если характеристическое уравнение n – ого порядка, то формируется система линейных алгебраических уравнений (СЛАУ) n — ого порядка, включающая (n-1) производную решения. Переписывают СЛАУ для ;

5) рассматривают цепь после коммутации в переходном режиме; рассчитывают необходимые начальные условия (ННУ);

6) подставляют ННУ в СЛАУ при и находят произвольные постоянные;

7) записывают полученное решение.

Способы получения характеристического уравнения

Существуют различные способы получения характеристического уравнения.

Если цепь описывается всего одним уравнением, то его алгебраизируют: d/dt заменяют на p, dt заменяют на 1/p, правую часть обращают в ноль и получают характеристическое уравнение.

Если режим в цепи описывается системой из нескольких уравнений, то методом подстановки их сводят к одному и поступают точно также как описано выше (обычно так не делает).

Систему уравнений по законам Кирхгофа для цепи после коммутации алгебраизируют и составляют определитель системы, и приравняв его к нулю, получают характеристическое уравнение.

Воспользуемся этим способом.

Пусть схема после коммутации имеет вид:

, ,

Если в схеме нет управляемых источников и взаимных индуктивностей, то проще всего поступить так: в схеме после коммутации все источники заменить их внутренним сопротивлением, вместо индуктивности L написать pL, вместо емкости C написать .

а) Если в полученной схеме нет ветви без сопротивления, томожно разомкнуть любую ветвь полученной пассивной схемы и относительно точек разрыва записать выражение для нахождения .

б) Если в полученной схеме есть ветви без сопротивления, то размыкать надо именно ту ветвь, в которой ищется переходный ток или напряжение и относительно точек разрыва записывают .

Характеристическое уравнение имеет вид:

.

Для рассмотренного выше примера получим:

Выражение для свободной составляющей содержит столько слагаемых, сколько есть корней, а слагаемые имеют такой вид:

а) каждому простому вещественному корню соответствует слагаемое .

Если два корня, то процесс апериодический.

б) двум комплексно-сопряженным корням: и соответствует A1 e Px 1 t +A2 e Px 2 t , где A1 , A2 – получаются комплексными числами, причем комплексно-сопряженными числами. Поэтому с помощью формулы Эйлера этот результат можно записать в другом виде (где не будет j): .

По этому выражению не очень удобно строить графики. Используя формулы тригонометрии его можно преобразовать (либо в sin, либо в cos): Ce — t sin( c t+ 1 )=De — t cos( c t+ 2 ) – затухающий во времени гармонический процесс – колебательный процесс.

в) среди корней есть m одинаковы[ (если таких корней два, то переходный процесс называется критическим).

;

Пример: Дано: E=40В, R1=R2=400 Ом, L=5Гн, C=5 мкФ. Найти .

1) В схеме до коммутации стоит постоянный источник, следовательно, ток в установившемся режиме постоянный.

t Rкр то подкоренное выражение положительно, и получим два вещественных различных корня. Если R Rкр (два вещественных различных корня) и тогда решение для тока запишется в виде:

,

,

и при t = 0 получаем два уравнения для расчёта произвольных постоянных:

Из (1): , и подставляя в (2):

График проще построить по частям (принуждённая составляющая и каждое слагаемое свободной составляющей, а затем сложить).

Говорят, что это апериодический процесс.

Аналогично можно получить выражения и графики для напряжения на электродах:

,

при

Графики имеют в этом случае точно такой же вид, как и в предыдущем случае, но в первом случае процессы идут медленнее, чем во втором. Этот случай называется критическим переходным процессом.

Вся реакция определяется сложением этих двух графиков.

10 -3 ≤t -3 xвых =5∙h(t)+10∙h(t-10 -3 )

t≥2∙10 -3 xвых =5∙h(t)+10∙h(t -10 -3 ) -18∙h(t -2∙10 -3 ).

Все такие задачи решаются с помощью h(t).

1) Входной сигнал в некоторый момент времени имеет скачки, а между

этими моментами времени плавно изменяется по тому-то закону (или вообще плавно изменяется без скачков).

Представим себе, что этот сложный сигнал приближенно м.б. составлен из нескольких скачкообразных воздействий (первое воздействие имеет амплитуду xвх (0) и возникает в момент t=0, второе воздействие возникает в некоторый момент t1 и имеет амплитуду xвх (t1 )-xвх (0)=∆xвх (t1 ), третий сигнал поступает в момент t2 и имеет амплитуду ∆xвх (t2 ) и т.д.). Значит можно написать, что для некоторого момента t:

В сумме учитывая все те ступеньки, которые возникли до нашего момента времени t. Если ступеньки брать помельче, выражение будет получаться поточнее, но все равно приближенно. Получим теперь точное выражение. В нашем случае:

Если бы функция имела скачки не только в момент 0, но и в какие-то другие моменты. Пришлось бы для каждого интервала времени в котором функция непрерывна, записывать свои выражения отличающиеся друг от друга наличием реакции на скачки случившиеся до рассмотрения момента времени t.

Пример: Есть h(t)=0,5e -500 t . Надо найти реакцию цепи на входное воздействие.

Описывает входное воздействие аналитически. В нашем случае можно считать, что в интервале от 0 до 10 -3 Uвх1 (t)=a+b∙t:

30=10+b∙10 -3 ; a=10; b=2∙10 4 .

Uвх2 (t)=15+A∙e — t / τ ; τ=8∙10 -4 ; t/τ=10 -3 /8∙10 -4 ;

Теперь для каждого интервала времени записываем свое выражение:

.

Берем интеграл, приводим подобные члены, строим графики. Но в рамках курса ТОЭ РГРТУ требуется ответ до состояния

Применение импульсных характеристик

1) g(t)= -1 ,

3) = ,

Пусть , ,

тогда = -1 =

Фактически это есть другая форма интеграла Дюамеля, которая может быть получена используя связь g(t) и h(t). Порядок применения получения выражения такой же, но при численном нахождении интеграла удобней использовать собственно интеграл Дюамеля.

Применение передаточной функции

Если известно H(p) и xвх (t), можно записать изображение xвх (p), вычислить xвых (p)=H(p)xвх (p) и перейти к оригиналу.

Особенно удобно применять H(p)тогда, когда xвх (t) имеет простой вид, позволяющий легко записать изображение xвх (p) либо сразу для всего сигнала, либо разложение его на более простые компоненты и воспользовавшись принципом положения.

, ,

, , ,

, ,

,

,

Этот входной сигнал можно представить в виде совокупности двух более простых. Тогда

,

2) Для t≥10 -2 , t -2

3) .

Теперь умножая на H(p) находим изображающие реакции и затем переходим к оригиналу.

Список используемых источников

1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.

2. В.П. Попов. Основы теории цепей. Учебник для вузов. -М.: Высшая школа, 1985. 496 с.

3. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)

4. Электротехника и электроника: Методические указания к расчетно-графической работе / Рязан. гос. радиотехн. акад.; Сост. Г.В. Спивакова. Рязань, 2005. 16 с. (№3665)

5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.

6. Матханов П.Н. Основы анализа электрических цепей. Нелинейные цепи: Учеб. для электротехн. спец. вузов. –2-е изд., перераб. и доп. –М.: Высш. шк., 1986. –352 с.

7. Каплянский А.Е. и др. Теоретические основы электротехники. Изд. 2-е. Учеб. пособие для электротехнических и энергетических специальностей вузов. –М.: Высш. шк., 1972. -448 с.

8. Теоретические основы электротехники. Т. 1. Основы теории линейных цепей. Под ред. П.А. Ионкина. Учебник для электротехн. вузов. Изд. 2-е, перераб. и доп. –М.: Высш. шк., 1976. –544 с.

Для схемы после коммутации характеристическое уравнение имеет

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.

При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

  1. Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.
  2. Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.
  3. Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.
  4. Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.
  5. Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Классический метод расчета

Классический метод расчета переходных процессов заключается в непосредственном интегрировании дифференциальных уравнений, описывающих изменения токов и напряжений на участках цепи в переходном процессе.

В общем случае при использовании классического метода расчета составляются уравнения электромагнитного состояния цепи по законам Ома и Кирхгофа для мгновенных значений напряжений и токов, связанных между собой на отдельных элементах цепи соотношениями, приведенными в табл. 1.

Таблица 1. Связь мгновенных значений напряжений и токов на элементах электрической цепи

;

при наличии магнитной связи с катушкой, обтекаемой током ,

;

Для последовательной цепи, содержащей линейные резистор R, катушку индуктивности L и конденсатор С, при ее подключении к источнику с напряжением u (см. рис. 1) можно записать

Резистор (идеальное активное сопротивление)
Катушка индуктивности (идеальная индуктивность)
Конденсатор (идеальная емкость)
.(1)

Подставив в (1) значение тока через конденсатор

,

получим линейное дифференциальное уравнение второго порядка относительно

.

В общем случае уравнение, описывающее переходный процесс в цепи с n независимыми накопителями энергии, имеет вид:

,(2)

где х – искомая функция времени (напряжение, ток, потокосцепление и т.п.); — известное возмущающее воздействие (напряжение и (или) ток источника электрической энергии); — к-й постоянный коэффициент, определяемый параметрами цепи.

Порядок данного уравнения равен числу независимых накопителей энергии в цепи, под которыми понимаются катушки индуктивности и конденсаторы в упрощенной схеме, получаемой из исходной путем объединения индуктивностей и соответственно емкостей элементов, соединения между которыми являются последовательными или параллельными.

В общем случае порядок дифференциального уравнения определяется соотношением

,(3)

где и — соответственно число катушек индуктивности и конденсаторов после указанного упрощения исходной схемы; — число узлов, в которых сходятся только ветви, содержащие катушки индуктивности (в соответствии с первым законом Кирхгофа ток через любую катушку индуктивности в этом случае определяется токами через остальные катушки); — число контуров схемы, ветви которых содержат только конденсаторы (в соответствии со вторым законом Кирхгофа напряжение на любом из конденсаторов в этом случае определяется напряжениями на других).

Наличие индуктивных связей на порядок дифференциального уравнения не влияет.

Как известно из математики, общее решение уравнения (2) представляет собой сумму частного решения исходного неоднородного уравнения и общего решения однородного уравнения, получаемого из исходного путем приравнивания его левой части к нулю. Поскольку с математической стороны не накладывается каких-либо ограничений на выбор частного решения (2), применительно к электротехнике в качестве последнего удобно принять решение , соответствующее искомой переменной х в установившемся послекоммутационном режиме (теоретически для ).

Частное решение уравнения (2) определяется видом функции , стоящей в его правой части, и поэтому называется принужденной составляющей. Для цепей с заданными постоянными или периодическими напряжениями (токами) источников принужденная составляющая определяется путем расчета стационарного режима работы схемы после коммутации любым из рассмотренных ранее методов расчета линейных электрических цепей.

Вторая составляющая общего решения х уравнения (2) – решение (2) с нулевой правой частью – соответствует режиму, когда внешние (принуждающие) силы (источники энергии) на цепь непосредственно не воздействуют. Влияние источников проявляется здесь через энергию, запасенную в полях катушек индуктивности и конденсаторов. Данный режим работы схемы называется свободным, а переменная свободной составляющей.

В соответствии с вышесказанным, общее решение уравнения (2) имеет вид

(4)

Соотношение (4) показывает, что при классическом методе расчета послекоммутационный процесс рассматривается как наложение друг на друга двух режимов – принужденного, наступающего как бы сразу после коммутации, и свободного, имеющего место только в течение переходного процесса.

Необходимо подчеркнуть, что, поскольку принцип наложения справедлив только для линейных систем, метод решения, основанный на указанном разложении искомой переменной х, справедлив только для линейных цепей.

Начальные условия. Законы коммутации

В соответствии с определением свободной составляющей в ее выражении имеют место постоянные интегрирования , число которых равно порядку дифференциального уравнения. Постоянные интегрирования находятся из начальных условий, которые принято делить на независимые и зависимые. К независимым начальным условиям относятся потокосцепление (ток) для катушки индуктивности и заряд (напряжение) на конденсаторе в момент времени (момент коммутации). Независимые начальные условия определяются на основании законов коммутации (см. табл. 2).

Таблица 2. Законы коммутации

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и , что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации – в ветви с катушкой индуктивности ток в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

второй закон коммутации – напряжение на конденсаторе в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа . Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при .

Пример. Определить токи и производные и в момент коммутации в схеме на рис. 3, если до коммутации конденсатор был не заряжен.

В соответствии с законами коммутации

и .

На основании второго закона Кирхгофа для момента коммутации имеет место

,

и .

Для известных значений и из уравнения

определяется .

Значение производной от напряжения на конденсаторе в момент коммутации (см. табл. 1)

.

Корни характеристического уравнения. Постоянная времени

Выражение свободной составляющей общего решения х дифференциального уравнения (2) определяется видом корней характеристического уравнения (см. табл. 3).

Таблица 3. Выражения свободных составляющих общего решения

Вид корней характеристического уравнения

Выражение свободной составляющей

Корни вещественные и различные

Корни вещественные и

Пары комплексно-сопряженных корней

Необходимо помнить, что, поскольку в линейной цепи с течением времени свободная составляющая затухает, вещественные части корней характеристического уравнения не могут быть положительными.

При вещественных корнях монотонно затухает, и имеет место апериодический переходный процесс. Наличие пары комплексно сопряженных корней обусловливает появление затухающих синусоидальных колебаний (колебательный переходный процесс).

Поскольку физически колебательный процесс связан с периодическим обменом энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, комплексно-сопряженные корни могут иметь место только для цепей, содержащих оба типа накопителей. Быстроту затухания колебаний принято характеризовать отношением

,

которое называется декрементом колебания, или натуральным логарифмом этого отношения

,

называемым логарифмическим декрементом колебания, где .

Важной характеристикой при исследовании переходных процессов является постоянная времени t , определяемая для цепей первого порядка, как:

,

где р – корень характеристического уравнения.

Постоянную времени можно интерпретировать как временной интервал, в течение которого свободная составляющая уменьшится в е раз по сравнению со своим начальным значением. Теоретически переходный процесс длится бесконечно долго. Однако на практике считается, что он заканчивается при

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. –М.: Энергия- 1972. –240с.


источники:

http://zinref.ru/000_uchebniki/02800_logika/011_lekcii_raznie_27/1349.htm

http://toehelp.ru/theory/toe/lecture24/lecture24.html