Доказать что прямые пересекаются составить уравнение

2.3. Типовые задачи

В разделе 1 было получено уравнение плоскости проходящей через точку М0(x0,y0,z0) и с вектором нормали , где A2+B2+C2>0:

A(x – x0) + B(y – y0) + C(z – z0)=0. (*)

Рассмотрим теперь другие способы задания плоскости в пространстве.

Задача 1. Написать уравнение плоскости π, проходящей через три заданные точки М1(x1,y1,z1), М2(x2,y2,z2) и М3(x3,y3,z3) (рис. 5).

Решение: Чтобы написать уравнение искомой плоскости, достаточно знать координаты какой-либо точки на плоскости и координаты вектора нормали (уравнение (*). Точкой на плоскости может быть любая из заданных точек М1, М2 или М3, а вектором нормали может быть векторное произведение векторов [].

Поставленную задачу можно решить другим способом. Пусть М(x, y,z) — текущая точка на плоскости π. Тогда векторы =(x-x1,y-y1,z-z1), =(x2-x1,y2-y1,z2-z1) и =(x3-x1,y3-y1,z3-z1) лежат на плоскости π (компланарны). Условие компланарности этих векторов (равенство нулю их смешанного произведения) задает уравнение искомой плоскости π:

. (21)

Пример. Написать уравнение плоскости, проходящей через точки М1(1,1,1), М2(3,2,-1) и М3(4,1,0).

Для решения задачи воспользуемся вторым способом. Уравнение плоскости запишем в виде (21)

.

Разложив определитель по первой строке, получим

Или

– уравнение искомой плоскости с .

Заметим, что векторное произведение векторов =(2,1,–2) и =(3,0,–1) коллинеарно вектору нормали .

.

Задача 2. Написать уравнение плоскости π, проходящей через точку М0(x0,y0,z0) и прямую L (рис. 6): , если точка M0 не лежит на прямой L (иначе плоскость однозначно не определена). Точка М1(x1,y1,z1) принадлежит L, вектор – направляющий вектор.

Решение: Заданной точкой в уравнении (*) может быть любая из точек М1 или М0. Вектором нормали может служить векторное произведение векторов и :

=(A, B,C).

Задача 3. Написать уравнение плоскости, проходящей через две параллельные прямые.

и

Т. M1 (x1,y1,z1),

Т. M2 (x2,y2,z2) ,

Вектор – направляющий вектор прямых L1,L2 (рис. 7).

Вновь используем уравнение (*).

Точка на плоскости – любая из точек М1 или М2; вектором нормали =(A, B,C) может быть векторное произведение [,].

Задача 4. Доказать, что две прямые L1, L2 лежат в одной плоскости (пересекаются) и составить уравнение этой плоскости.

Решение задачи рассмотрим на примере.

Пусть и .

1. Проверим, лежат ли прямые L1 и L2 в одной плоскости. Для этого убедимся, что векторы , и компланарны.

Запишем параметрически заданную прямую L2 в каноническом виде

,

здесь М2(7,2,1) – точка на прямой L2, – ее направляющий вектор.

На прямой L1: М1(1,-2,5); . Вектор =(6,4,–4) (рис. 8).

Условием компланарности является равенство нулю смешанного произведения

,

Т. к. в полученном определителе две строки совпадают (при вычислении определителя общие множители первой строки и последнего столбца вынесены за знак определителя).

Итак, мы убедились, что прямые L1 и L2 пересекаются.

Точка плоскости π – любая из точек М1, М2 (возьмем, например, точку М1(1,–2,5)).

Вектор нормали =(А, B,C)= []== – 2+16+13.

Уравнение искомой плоскости π:

– 2(x – 1) + 16(y + 2) + 13(z – 5) = 0, или

2x – 16y – 13z + 31 = 0.

Задача 5. Определить взаимное расположение прямой L, заданной как пересечение двух непараллельных плоскостей:

L:

И плоскости π: A3x+B3y+C3z+D3=0.

Решение: Возможны следующие случаи:

А) прямая L и плоскость π не пересекаются (прямая параллельна плоскости и не имеет общих точек с плоскостью);

Б) прямая L пересекается с плоскостью в единственной точке;

В) прямая L лежит в плоскости – бесчисленное множество общих точек.

Эти задачи фактически были рассмотрены в разделе 2, когда прямая задавалась параметрическими или каноническими уравнениями.

Вообще говоря, нет надобности переходить от общего уравнения прямой к каноническому. Алгебраически задача сводится к исследованию и решению (если это возможно) системы уравнений

. (22)

Решение этой системы определяет координаты общих точек прямой и плоскости.

Воспользуемся методом Крамера. Обозначим определитель системы (22)

А определитель Δ1, Δ2, Δ3, полученные из Δ с помощью столбца свободных членов, соответственно:

.

Если определитель , то система (22) имеет единственное решение, и оно определяется по формулам Крамера:

,

Имеет место случай (б).

Если определитель , а хотя бы один из определителей Δ1, Δ2 или Δ3 отличен от нуля, система (22) не имеет решения (не совместна). Геометрически это означает, что прямая и плоскость не имеют общих точек (параллельны) – случай (а).

Если же все определители Δ =Δ1=Δ2=Δ3=0, то система (22) имеет бесчисленное множество решений. Прямая L целиком лежит на плоскости π (случай в)).

Задача 6. Определить точку Q, симметричную точке M0(x0,y0,z0), относительно плоскости

Решение. Запишем алгоритм решения задачи.

1. Составим уравнение прямой L, проходящей через точку M0(x0,y0,z0) и перпендикулярной плоскости π. Направляющим вектором этой прямой послужит вектор нормали

.

2. Найдём точку пересечения M1(x1,y1,z1) прямой L и плоскости π (см. раздел 2).

3. Точка M1 является серединой отрезка M0Q, и координаты точек M0, M1 и Q связаны формулами: x1=,y1=,z1=, откуда найдем координаты точки Q(x0,y0,z0)
(рис. 9):

XQ=2×1 – x0, yQ=2y1 – y0, zQ=2z1 – z0.

Аналогично решается и следующая задача.

Задача 7. Найти точку Q, симметричную точке M0(x0,y0,z0) относительно прямой

.

1. Составим уравнение плоскости, проходящей через точку M0(x0,y0,z0) перпендикулярно прямой L. Вектором нормали к этой плоскости (A, B,C) возьмем направляющий вектор =(l, m,n) прямой L.

π: l(x – x0) + m(y – y0) + n(z – z0)=0.

2. Найдем точку пересечения M1(x1,y1,z1) прямой L и плоскости π (см. раздел 2).

3. Точка M1 – середина отрезка M0Q, координаты точки Q определяются так же, как и в задаче 6.

Уравнение плоскости, которая проходит через две пересекающиеся или две параллельные прямые

В данном материале мы расскажем, как правильно вычислить уравнение плоскости, которая проходит через 2 пересекающиеся или параллельные прямые. Начнем с формулировки основного принципа, а потом, как всегда, разберем несколько задач, где можно применить этот принцип на практике.

Как найти уравнение плоскости, проходящей через пересекающиеся прямые?

Для того чтобы вывести это уравнение, нам понадобится вспомнить одну теорему. Она звучит так:

Через две пересекающиеся прямые может проходить только одна плоскость.

Доказательство этого утверждения основано на двух аксиомах:

  1. через три точки с разными координатами, которые не лежат на одной прямой, проходит только одна плоскость;
  2. если у нас есть две точки прямой с разными координатами, расположенные в некоторой плоскости, то все точки этой прямой находятся в этой плоскости.

В итоге мы можем утверждать, что с помощью указания двух пересекающихся прямых мы можем задать определенную плоскость в трехмерном пространстве.

Далее нам нужно доказать, что плоскость, которая проходит через две определенные прямые, совпадет с той, что проходит через три заданные точки, две из которых находятся на тех самых прямых.

Допустим, у нас есть две прямые a и b с пересечением в некой точке M . Теперь расположим на первой прямой две точки М 1 и М 2 . У них должны быть разные координаты, но при этом одна из них может совпадать с точкой пересечения. На второй прямой отметим точку М 3 (но она совпадать с точкой M не должна). Теперь нам надо показать, что плоскость, проходящая через М 1 М 2 М 3 , – это та же самая плоскость, что проходит через пересекающиеся прямые a и b .

Посмотрим на схему:

Поскольку мы имеем точки прямой a , которые находятся в плоскости М 1 М 2 М 3 ( М 1 и М 2 ), то, используя аксиому, которую мы приводили выше, можно утверждать, что все точки этой прямой находятся в данной плоскости. Все точки прямой b тоже будут находиться в ней, поскольку там расположены две несовпадающие точки данной прямой ( М и М 3 ). Таким образом, мы доказали, что плоскости, в которых лежат данные прямые, совпадают.

Теперь перейдем непосредственно к формулировке уравнения плоскости, которая проходит через пересекающиеся прямые. Возьмем a и b , которые заданы в прямоугольной системе координат O x y z в трехмерном пространстве и являются пересекающимися. Напишем уравнение плоскости, которая проходит через эти прямые.

Все решение можно свести к нахождению уже изученного уравнения плоскости, проходящей через три точки. Сначала нам надо найти координаты двух точек M 1 и M 2 , которые расположены на пересекающихся прямых, и точки M 3 , которая находится на другой прямой и не является точкой их пересечения. Для этого можно использовать разные способы. Так, мы можем составить параметрические уравнения для первой прямой в пространстве. В итоге получим:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ

Отсюда можно вывести координаты x 1 , y 1 , z 1 точки M 1 , если λ = 0 . Для М 2 эти данные можно вычислить, если придать параметру любое действительное значение, отличное от нуля, например, единицу.

Далее мы можем составить такие же параметрические уравнения для второй прямой и, используя некоторое значение параметра, высчитать координаты М 3 . Важно проверить, чтобы она не лежала в точке пересечения прямых и вообще не находилась на прямой a .

Итак, мы нашли координаты всех нужных точек – М 1 , М 2 и М 3 . Переходим к написанию уравнения плоскости, которая через них проходит. Запишем:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Теперь найдем определитель матрицы x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 и получим общее уравнение для нужной нам плоскости, которая будет проходит через две заданные прямые a и b .

Как найти уравнение плоскости, проходящей через параллельные прямые?

Для этого нам понадобится вспомнить теорему, которая формулируется так:

Через две параллельные прямые проходит только одна плоскость.

Ее можно доказать, используя аксиому о единственной плоскости, которая проходит через три точки, а также утверждение о двух параллельных прямых (если одна из параллельных прямых пресекает некоторую плоскость, то это же делает и другая).

Итак, возможно задать плоскость в пространстве, если указать две параллельные прямые, которые в ней находятся.

Очевиден тот факт, что плоскость, которая проходит через 2 параллельные прямые и плоскость, которая проходит через три точки, две из которой лежат на одной из этих прямых, будут совпадать.

После этого мы можем найти уравнение плоскости, проходящей через две заданные параллельные прямые.

У нас есть прямоугольная система координат в трехмерном пространстве, которая обозначается O x y z . Составим уравнение плоскости, которая проходит через параллельные прямые a и b .

Сводим задачу опять же к нахождению уравнения для плоскости с тремя точками. В самом деле, можно определить, какие точно координаты будут иметь М 1 и М 2 , лежащие на одной из параллельных прямых, и М 3 , расположенная на другой прямой. После этого просто запишем нужное нам уравнение для плоскости, проходящей через три точки M 1 ( x 1 , y 1 , z 1 ) , M 2 ( x 2 , y 2 , z 2 ) , M 3 ( x 3 , y 3 , z 3 ) в следующем виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0

Это и есть нужное нам уравнение плоскости, проходящей через заданные параллельные прямые.

Примеры задач на нахождение подобных уравнений

Таким образом, для того чтобы составить уравнение плоскости, которая проходит через 2 пересекающиеся или параллельные прямые, требуется вычислить координаты трех точек, которые расположены на этих прямых (две точки на одной прямой и третья на другой). Посмотрим, как это принцип реализуется на практике.

У нас задана прямоугольная система координат в трехмерном пространстве. Расположенная в ней прямая a проходит через точку M 1 ( — 3 , 1 , — 4 ) и пересекает координатную прямую O y в точке M 2 ( 0 , 5 , 0 ) . Составьте уравнение плоскости, которая будет проходить через пересекающиеся a и O y .

Решение

Изначально у нас заданы координаты двух точек, которые расположены на исходной прямой. Для составления уравнения нам нужна третья. Возьмем точку начала координат O ( 0 , 0 , 0 ) . Она расположена на O y и не совпадает с координатами двух точек, которые были заданы в условии. Та плоскость, что будет проходить через них, и есть та, для которой нам надо вывести уравнение. Запишем его в координатном виде:

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 0 y — 0 z — 0 — 3 — 0 1 — 0 — 4 — 0 0 — 0 5 — 0 0 — 0 = 0 ⇔ ⇔ x y z — 3 1 — 4 0 5 0 = 0 ⇔ 20 x — 15 z = 0 ⇔ 4 x — 3 z = 0

Ответ: 4 x — 3 z = 0 .

Возьмем более сложный пример, где координаты нужных точек не будут столь очевидными.

У нас есть две пересекающиеся прямые a и b , которые заданы с помощью уравнений.

x — 7 4 = y — 7 5 = z + 5 — 6 x — 3 1 = y — 2 — 3 = z — 1 5

Составьте уравнение плоскости, которая проходит через них.

Решение

Начнем с вычисления координат трех необходимых точек. Две из них расположены на прямой a , третья – на b .

Прямая в условии задана с помощью канонических уравнений в пространстве вида x — 7 4 = y — 7 5 = z + 5 — 6 , следовательно, она будет проходить через точку x — 7 4 = y — 7 5 = z + 5 — 6 .

Для вычисления координат второй точки нам надо записать параметрическое уравнение:

x — 7 4 = y — 7 5 = z + 5 — 6 ⇔ x = 7 + 4 · λ y = 7 + 5 · λ z = — 5 — 6 · λ

Если мы примем λ = 1 , то сможем подсчитать координаты второй точки:

x = 7 + 4 · λ y = 7 + 5 · λ z = — 5 — 6 · λ ⇔ x = 11 y = 12 z = — 11

Мы получили, что M 2 ( 11 , 12 , — 11 ) .

Понятно, что прямая, заданная с помощью уравнения x — 3 1 = y — 2 — 3 = z — 1 5 , будет проходить через точку M 3 ( 3 , 2 , 1 ) . Перед вычислениями надо проверить, не лежит ли она в точке пересечения прямых. Для этого надо подставить ее координаты во второе уравнение:

3 — 7 4 = 2 — 7 5 = 1 + 5 — 6 ⇔ — 1 ≡ — 1 ≡ — 1

Мы видим, что канонические уравнения прямой свелись к тождествам. Тогда наша третья точка лежит именно в месте пересечения прямых, значит, нам надо взять еще одну, которая будет находится на прямой b . Для этого также запишем параметрические уравнения:

x — 3 1 = y — 2 — 3 = z — 1 5 ⇔ x = 3 + μ y = 2 — 3 · μ z = 1 + 5 · μ

Высчитаем нужные координаты, приняв μ = 1 .

x = 3 + 1 y = 2 — 3 · 1 z = 1 + 5 · 1 ⇔ x = 4 y = — 1 z = 6 ⇔ M 3 ( 4 , — 1 , 6 )

Далее мы можем переходить непосредственно у формулированию уравнения нужной нам плоскости, которая будет проходить через M 1 ( 7 , 7 , — 5 ) , M 2 ( 11 , 12 , — 11 ) , M 3 ( 4 , — 1 , 6 ) :

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 7 y — 7 z — ( — 5 ) 11 — 7 12 — 7 — 11 — ( — 5 ) 4 — 7 — 1 — 7 6 — ( — 5 ) = 0 ⇔ ⇔ x — 7 y — 7 z + 5 4 5 — 6 — 3 — 8 11 = 0 ⇔ 7 x — 26 y — 17 z + 48 = 0

Ответ: 7 x — 26 y — 17 z + 48 = 0 .

Очевидно, что процесс вычисления координат нужных нам точек занимает больше всего времени при решении подобных задач.

Нам осталось разобрать пример плоскости, которая проходит через две прямые, являющиеся параллельными.

Составьте уравнение плоскости, которая проходит через две параллельные прямые. Они выражены с помощью уравнений x = 2 · λ y = 1 + λ z = — 1 — λ и x — 3 2 = y 1 = z + 5 — 1 .

Решение

Вычисляем координаты двух нужных точек по параметрическим уравнениям, приняв λ = 0 и λ = 1 .

λ = 0 : x = 2 · 0 y = 1 + 0 z = — 1 — 0 ⇔ x = 0 y = 1 z = — 1 ⇔ M 1 ( 0 , 1 , — 1 ) λ = 1 : x = 2 · 1 y = 1 + 1 z = — 1 — 1 ⇔ x = 2 y = 2 z = — 2 ⇔ M 2 ( 2 , 2 , — 2 )

У нас получается, что прямая x — 3 2 = y 1 = z + 5 — 1 будет проходить через точку M 3 ( 3 , 0 , — 5 ) .

Переходим к уравнению плоскости для трех точек М 1 , М 2 и М 3 :

x — x 1 y — y 1 z — z 1 x 2 — x 1 y 2 — y 1 z 2 — z 1 x 3 — x 1 y 3 — y 1 z 3 — z 1 = 0 ⇔ x — 0 y — 1 z — ( — 1 ) 2 — 0 2 — 1 — 2 — ( — 1 ) 3 — 0 0 — 1 — 5 — ( — 1 ) = 0 ⇔ ⇔ x y — 1 z + 1 2 1 — 1 3 — 1 — 4 = 0 ⇔ — 5 x + 5 y — 5 z — 10 = 0 ⇔ x — y — z + 2 = 0

Ответ: x — y — z + 2 = 0 .

Пересечение прямых, угол и координаты пересечения

IP76 > Пересечение прямых, угол и координаты пересечения

Не такая тривиальная задача, скажу я вам. Всякий раз, когда возникает необходимость посчитать координату пересечения пары прямых, каждая из которых задана парой точек, снова беру блокнот и вывожу пару формул. И всякий раз – блин, ну это уже когда-то было, опять надо что-то делать с параллельными прямыми, опять появляется пакостная строго вертикальна линия, когда на (x1-x2) никак не разделить и т.д.

Поэтому – в подборку теории и практики, пригодится, сэкономим блокнот, спасем дерево.

Коэффициенты А, B, C

Все помним со школы формулу:

Тоже самое, но с претензией на образование (некоторые индивидуумы утверждают, что существует такая, и только такая, и никакая другая, формулировка):

Те же фаберже, только сбоку.

В теории надо составить и решить систему уравнений для первой и второй линии, где переменными будут X и Y точки пересечения.

Загвоздка в том, что мы не знаем коэффициенты для обеих линий.

В нашем случае известны координаты двух точек, по которым проходит линия. Поэтому мне, как последователю геометрического агностицизма, более привлекательная следующая формула:

Путем несложных операций приходим к следующей записи:

Глядя на вариант в исполнении высшего образования, получаем следующие формулы для нахождения коэффициентов:

Пока все идет отлично, нигде вероятного деления на ноль не встретилось.

Итак, мы можем легко найти два набора коэффициентов для первой и второй прямых. Переходим к системе уравнений.

Система уравнений

Как правило, подобная система уравнений решается путем выражения одной переменной через другую, подстановкой во второе уравнение, получая таким образом уравнение одной переменной. Далее переменная находится, подставляется, решается. Или определяется, что система решения не имеет.

Но нас интересует метод Крамера. Потому что с помощью этого метода можно получить сразу значения для обеих переменных, без дополнительных телодвижений.

Сразу же запишем метод под нашу систему.

Имеем следующую систему:

Исходя из метода, решение выглядит так:

Ага! Вот и возможное деление на ноль, скажете вы. И правильно! В этой, в высшей степени непозволительной ситуации, когда знаменатель равен нулю, решения нет, прямые либо параллельны, либо совпадают (что, впрочем, частный случай параллельности). В коде, естественно, этот момент надо учитывать.

Практика 1

Частные случаи

  • Прямые параллельны: ∆ab = 0
    • (A1B2 – B1A2 = 0);
  • Прямые совпадают: ∆ab = ∆X = ∆Y = 0
    • (A1B2 – B1A2 = 0) И (A1C2 — A2C1 = 0) И (C1B2 -B1C2 = 0);
  • Прямые перпендикулярны:
    • (A1 A2 + B1 B2 = 0).

Рис.2. Пересечение перпендикулярных прямых Рис.3. Параллельные прямые не пересекаются

Принадлежность точки отрезку

В общем случае, чтобы определить принадлежность точки отрезку, надо установить две вещи:

  1. Точка принадлежит прямой, проходящей через конечные точки отрезка. Для этого достаточно подставить значение X и Y в уравнение прямой и проверить получившееся равенство. В нашем случае, этот пункт уже выполнен, т.к. точка пересечения априори принадлежит обеим прямым.
  2. Проверить факт нахождения точки между концами отрезка.

Займемся пунктом 2. Данный факт можно установить двумя способами:

  • Логически, т.е. (x1 = x >= x2). На случай «вертикальности» линии добавить проверку на Y:
    • (y1 = y >= y2).
  • Арифметически. Сумма отрезков |x-x1| + |x-x2| должна быть равна длине отрезка |x1-x2|. Аналогично, на случай «вертикальности» , добавить проверку:
    • |y-y1| + |y-y2| = |y1-y2|

Практика показывает, что арифметический способ быстрее примерно в 3 раза. Когда-то я считал, что операции сравнения самые быстрые. Это давно уже не так.

Задача нахождения принадлежности точки P(x,y) отрезку, заданного двумя точками с координатами P1(x1, y1) и P2(x2, y2) подробно рассмотрена в отдельной статье.

Угол пересечения прямых

Угол пересечения прямых — это угол пересечения направляющих векторов. Т.е., взяв уже знакомые ранее точки p1 и p2, получим направляющий вектор V(p1,p2), и аналогично второй вектор M(p3,p4). В теории мы должны вычислить достаточно «затратную» функцию, с корнями, квадратами, дробями и арккосинусом.

Давайте не будем останавливаться на ней, она долгая, нудная и в нашем случае ненужная. Рассмотрим вектор:

Рис.4. Вектор V(p1,p2)

α — угол наклона вектора к оси X, который можно найти, как:

Что-то знакомое? Да это ни что иное, как коэффициенты в уравнении прямой от образованных фанатов. Может они и правы в своем испепеляющем фанатизме…

Одним словом, коэффициенты (расстояния) у нас уже есть по обеим прямым.

Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p3,p4)

Судя по рисунку, угол между векторами, это сумма углов наклона векторов к оси X. Ммм… не совсем так, на самом деле это разность.

Рис.6. Пересекающиеся векторы в положительной Y

По рисунку явно видно, что угол между векторам это γ = (βα).

В предыдущем примере все правильно, просто знаки углов разные, т.к. находятся по разные стороны от оси X, а формула работает та же.

От теории к практике

Теперь в плане практического применения. Мне нужно точно знать, откуда, куда и в каком направлении этот угол. В теории, углом между прямыми считается наименьший из пары γ и (180-γ). Так вот, нам это не надо. Какой угол получится – такой нам и нужен.

Поэтому, под углом между векторами понимаем угол от вектора V(p1,p2) к вектору M(p3,p4). Если знак угла – отрицательный, понимаем, что он против часовой стрелки, иначе – по часовой стрелке.

Следует заметить, что, зная коэффициенты, для нахождения угла пересечения, координаты уже не нужны. Листинг таков:


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenie-ploskosti-kotoraja-prohodit-cherez-dve-p/

http://ip76.ru/theory-and-practice/cross-lines/