Докажите что уравнение имеет один корень

Докажите что уравнение имеет один корень

Определение 1. Пусть функция определена в некоторой окрестности точки . Придавая независимой переменной приращение х , невыводящее за пределы окрестности, получим новое значение + х , также принадлежащее окрестности . Тогда значение функции заменится новым значением , то есть получит приращение

Если существует предел отношения приращении функции у к вызвавшему его приращению независимой переменной х при стремлении х к 0, т.е. , то он называется производной функции в точке х и обозначается .

Операция вычисления производной называется операцией дифференцирования.

Образно говоря, равенство означает, что производная функции в точке х равна скорости изменения переменной у относительно переменой в указанной точке.

Определение 2. Функция , заданная в некоторой окрестности точки R называется дифференцируемой в этой точке, если ее приращение , представимо в этой окрестности в виде , где — постоянная, О( х) — бесконечно малая более высокого порядка, чем х.

Линейная функция (аргумента х ) называется дифференциалом функции в точке х и обозначается df(x или dy .

Таким образом, у = dy + О( х) , .

Можно доказать следующую теорему:

Теорема 1. Функция дифференцируема в некоторой точке в том и только том случае, когда в этой точке имеет конечную производную.

Учитывая определение 2 и утверждение теоремы, в качестве определения дифференцируемой функции может быть принято следующее:

Определение 3. Если функция у имеет производную в точке , то говорят, что при данном значении функция дифференцируема.

То есть существование производной функции в точке х равносильно ее дифференцируемости в этой точке.

Теорема 2 . Если функция дифференцируема в некоторой точке, то она непрерывна в этой точке.

Обратная теорема не верна: существуют функции, непрерывные в некоторой точке, но не дифференцируемые в этой точке.

Если функция определена в некоторой окрестности точки , принимает в этой точке наибольшее (наименьшее) в рассматриваемой окрестности значение и имеет в точке х производную, то эта производная равна нулю.

1) непрерывна на отрезке [ ]

2) имеет в каждой точке интервала конечную производную,

3) принимает равные значения на концах отрезка [ ], то есть f(a) = f(b) , то существует, по крайней мере, одна такая точка , что .

Если функция непрерывна на отрезке [ ] и в каждой точке интервала имеет конечную или определенного знака бесконечную производную, то существует такая точка , что f(b) — f(a) = f ( (b — a).

Используя теорему Лагранжа, можно доказать следующие теоремы:

Условие постоянства функции

Теорема 3. (Условие постоянства функции) Пусть функция определена и непрерывна на промежутке Х и во всех его внутренних точках имеет конечную производную . Для того, чтобы была на указанном отрезке постоянной, необходимое и достаточное условие внутри Х.

Если две функции и определены и непрерывны в промежутке Х и внутри него имеют конечные производные и , причем (внутри Х), то эти функции на всем промежутке Х отличаются лишь на постоянную: (C = const).

Теорема 4. (Признак монотонности функций)

Для того чтобы дифференцируемая на интервале функция возрастала (убывала) на этом интервале, необходимо и достаточно, чтобы ее производная была во всех точках интервала неотрицательна (неположительна).

Если производная функция во всех точках интервала положительна (отрицательна), то функция строго возрастает (строго убывает) на этом интервале.

Если функции и непрерывны на отрезке [ ] и в каждой точке интервала имеют конечные производные , , причем для , а f(а) g(а) , тогда для любой точки выполняется неравенство .

На основании утверждения теоремы 5 для того, чтобы доказать неравенство f(x) 0 при х 0 , достаточно доказать, что f(0) 0 и (х) 0 при х 0 . А для того, чтобы доказать неравенство при , можно воспользоваться второй производной и при и т.д.

С помощью производной можно также определить число корней того или иного уравнения. Один из возможных приемов основан на следующей теореме:

Если функция определена и непрерывна на отрезке и во всех его внутренних точках имеет конечную производную, то между любыми двумя корнями этой функции, расположенными на отрезке, имеется хотя бы 1 корень ее производной.

Рассмотренные теоретические положения используются при решении задач.

Задача 1. Докажите тождество 3 arcsin x — arccos( 3 4 ) = , если .

Решение. Рассмотрим функцию 3 arcsinx — arccos( 3 4 на отрезке [ ]. Докажем, что f(х) = с, с = const. Для этого достаточно доказать, что (т.3)

Если , то следовательно, и . Для определения значения вычислим значение функции в произвольной точке интервала . Пусть , тогда и .

Вычислим значение функции на концах заданного отрезка.

Таким образом, тождество верно при любом .

Задача 2. Найдите сумму .

Решение. Представив искомую сумму в виде , заметим, что .

Используя формулу суммы членов геометрической прогрессии, получим,

Итак, искомая сумма имеет вид .

Используя полученную формулу, можно, например, вычислить

Задача 3. Найдите сумму:

Решение. Используя результат, полученный в примере 2, заметим, что

Задача 4. Решите уравнение:

Решение. Очевидно, что — корень уравнения. Докажем, что уравнение других корней не имеет. Рассмотрим функцию

Для функции точка является точкой минимума, в которой функция принимает наименьшее значение. Значит, для всех , отличных от нуля, > .

Задача 5. Решите уравнение:

Преобразуем уравнение к виду:

Рассмотрим функции и при .

Сравним множества значений этих функций. Очевидно, что .

Найдем с использованием производной.

Функция непрерывна на промежутке и имеет на нем единственную критическую точку , в которой достигает своего наибольшего значения.

Следовательно, решение уравнения находим из решения системы:

Рассмотрим функцию , при .

Функция непрерывна на промежутке и является возрастающей, . — является точкой минимума функции , в которой функция принимает наименьшее значение, ровное нулю. Следовательно, для всех > .

Таким образом, исходное уравнение имеет единственный корень .

Задача 6. Докажите, что уравнение может иметь не более трех различных корней.

Решение. Рассмотрим функцию . Функция является дифференцируемой на R . Предположим, что функция имеет более трех различных корней, например, четыре. Тогда должна иметь не более трех различных корней (т.6), то есть обращается в нуль не менее трех раз.

Функция дифференцируема на R . Ее производная обращается в нуль не менее двух раз. Тогда имеет не менее двух нулей, а ее производная не менее одного нуля. Но функция нулей не имеет. Получили противоречие. Значит, сделанное предположение неверно, функция более трех различных корней иметь не может. Таким образом, заданное уравнение может иметь не более трех различных корней.

Производную можно использовать при доказательстве и решении неравенств.

Задача 7. Доказать, что при 0$»>.

Доказательство. Докажем справедливость следующих неравенств:

0. \end —>

0. \end«>(1)

Для доказательства неравенства (2) рассмотрим функцию

Квадратное уравнение. Дискриминант. Теорема Виета.

теория по математике 📈 уравнения

Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b 2 –4ac

    Если D>0, то уравнение имеет два различных

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Теорема Виета

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

Данное уравнение является квадратным. Но в его условии присутствует квадратный

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

х 2 − 2 х − 24 = 0

Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

pазбирался: Даниил Романович | обсудить разбор | оценить

Элективный курс «Исследование корней квадратного уравнения» (9-й класс)

Разделы: Математика

Класс: 9

Программа

1. Квадратное уравнение и его корни. (2 ч.)

Определение квадратного уравнения. Дискриминант квадратного уравнения. Корни квадратного уравнения. Понятие о решение задачи с параметром.

2. Теория Виета. (2 ч.)

Формулировка теоремы Виета для полного и приведённого квадратного уравнения. Теорема, обратная теореме Виета. Решение задач на применение теоремы Виета и обратной ей.

3. Существование корней квадратного уравнения (2 ч.)

Зависимость числа корней квадратного уравнения от дискриминанта.
Решение задач на количество корней квадратного уравнения в зависимости от значения параметра.

4. Расположение корней квадратного уравнения. (4 ч.)

Графическая характеристика расположения корней квадратного уравнения на числовой прямой по отношению к фиксированному числу. Работа с таблицей. Решение задач. Практикум по решению задач на расположение корней квадратного уравнения.

5. Решение квадратных уравнений с параметром (2 ч.) Что значит решить уравнение с параметром. Решение уравнений.

6. Решение задач. Зачёт. (6 ч.)

I. Квадратное уравнение и его корни

Квадратным уравнением называется уравнение вида ах 2 + bх + с = 0, где х – переменная, а, b, с – некоторые числа, а =/= 0. В зависимости от дискриминанта D = b 2 – 4ac квадратное уравнение может иметь два корня (D > 0), один корень (D = 0) и не иметь корней (D 2 + рх + q = 0. О квадратном уравнении, имеющем единственный корень, иногда говорят, что оно имеет корень двойной кратности или оно имеет два равных корня.

1. При каких значениях m ровно один из корней уравнения равен 0:

2..При каких значениях а корни уравнения равны по модулю, но противоположны по знаку:

3.При каких значениях к оба корня уравнения равны 0:

4. Найти корни квадратного уравнения ах 2 + + с = 0, если а) а + b + с = 0; б) а – b + с = 0.

Указание к решению: а) надо использовать то, что х = 1 является корнем данного уравнения.

5. При каком значении а уравнения х 2 + ах + 1 = 0 и х 2 + х + а = 0 имеют общий корень?

6. Доказать, что при любом значении а уравнение (а – 3) х 2 + (а + 2) х + 1 = 0 имеет два корня.

II. Теорема Виета

Зависимость между корнями и коэффициентами квадратного уравнения выражает теорема Виета.

Пусть х1 и х2 – корни квадратного уравнения ах 2 + + с = 0, тогда х1 + х2 = – b/a, х1х2 = c/a. Для приведённого квадратного уравнения х 2 + рх + q = 0, если х1 и х2 – корни этого уравнения, то х1 + х2 = – p, х1х2 = q.
Справедливо утверждение, обратное теореме Виета: если числа m и n таковы, что их сумма равна – р, а произведение равно q, то эти числа являются корнями уравнения х 2 + рх + q = 0.

1. Не вычисляя корней уравнения 3х 2 + 8х – 1 = 0, найти:

2. Пусть х1 и х2 – корни уравнения 2х 2 – 7х – 3 = 0. Составить квадратное уравнение, корнями которого являются числа:

3. При каком значении параметра а один из корней уравнения х 2 – 3,75х + а = 0 является квадратом другого?

4. При каком значении параметра а один из корней уравнения х 2 – (3а + 2)х + а 2 = 0 в девять раз больше другого?

5 . Корни х1 и х2 уравнения х 2 + рх + 12 = 0 обладают свойством х2х1 = 1. Найти р.

6. При каком значении параметра а уравнение х 2 + (а 2 + а – 2)х + а = 0 имеет корни, сумма которых равна 0?

7. При каком значении параметра а уравнение (а – 1)х 2 + (2а + 3)х + 2 + а = 0 имеет корни одного знака?

Ответ: [ – 2,125; – 2) (1; + ).

8. При каком значении параметра а корни уравнения ах 2 + (2а – 1)х + а – 2 = 0 отрицательны и их сумма меньше – 5?

9. При каком значении параметра р корни уравнения (р – 2)х 2 + 2рх + р + 4 = 0 разных знаков и их сумма отрицательна?

III. Существование корней квадратного уравнения

Для того чтобы квадратное уравнение ах 2 + + с = 0 имело корни необходимо и достаточно чтобы дискриминант уравнения был больше или равен нулю. Как правило, в случае необходимости доказать, что заданное квадратное уравнение имеет решение, начинают с вычисления его дискриминанта, с тем чтобы затем доказать его неотрицательность. Но существуют способы, которые основываются на очевидных графических соображениях. Так, если а > 0, то для доказательства того, что уравнение ах 2 + bx + с = 0 имеет два решения, достаточно указать одну точку х0, в которой f(x0) = ах0 2 + bx0 + c 3 – 2а 2 )х 2 – (а 3 – а + 2)х + а 2 + 1 = 0 имеет решение.

Решение. Обозначим левую часть данного уравнения через f(x). Сразу видно, что f(0) = a 2 + 1 > 0 при любом а. Утверждение задачи будет доказано , если мы найдём х1, для которого f(x1) 2 + a – 1 2 – 23(а – 3)х + а 2 – 3а + 2 = 0 имеет решение? Определить знаки корней в зависимости от а.

Решение. Если а 2 – 3а + 2 0 и х2 > 0, необходимо и достаточно выполнения неравенств:

Аналогично рассматриваются другие случаи.

3. При каких значениях параметра а уравнение а(а + 3)х 2 + (2а + 6)х – 3а – 9 = 0 имеет более одного корня?

Комментарий к решению. Данное уравнение – квадратное, если а =/= 0, а =/= 3. Квадратное уравнение имеет более одного корня, если D/4 = (а + 3) 2 – а(а + 3)( – 3а – 9) > 0
Однако решение полученного неравенства не является окончательным решением задачи. Мы должны еще рассмотреть случай, когда исходное уравнение является линейным с бесконечным множеством решений. Проверка случаев а = 0 и а = – 3 позволяет обнаружить, что линейное уравнение имеет бесконечное множество решений при а = – 3.

Ответ: < – 3> ( – 1/3;0) (0; + )

4. При каком значении параметра а уравнение (а – 2)х 2 + (4 – 2а)х + 3 = 0 имеет единственный корень?

Комментарий к решению. Если а = 2, то уравнение превращается в линейное, которое не имеет корней. Если а =/= 0, то уравнение квадратное и имеет единственный корень при нулевом дискриминанте. D = а 2 – 7а + 10 = 0 при а = 2 или а = 5. Значение а = 2 исключается, т.к. противоречит условию, что исходное уравнение – квадратное.

5. При каком значении параметра а уравнение (а – 1)х 2 + (а + 4)х + а + 7 = 0 имеет единственное решение?

6. При каком значении параметра а уравнение (2а – 5)х 2 – 2(а – 1)х + 3 = 0 имеет единственное решение?

7. При каком значении параметра а уравнение имеет единственное решение?

IV. Расположение корней квадратного уравнения

Для решения задач этого пункта существует таблица (см. Приложение), но нет необходимости заучивать её, надо понять принцип построения таблицы и уметь проводить необходимые рассуждения в конкретных задачах.

1. При каком значении параметра а один корень уравнения х 2 – (3а + 2)х + 2а – 1 = 0 больше 1, а другой меньше 1?

Решение. Решение легко получается на основании графического соображения. График функции у = х 2 – (3а + 2)х + 2а – 1 представляет собой параболу, ветви которой направлены вверх. По условию эта парабола должна пересекать ось X, причем отрезок [х1; х2] должен содержать внутри себя точку 1. Следовательно, значение квадратного трехчлена х 2 – (3а + 2) х + 2а – 1 при х = 1 должно быть отрицательным. Это условие является необходимым и достаточным для того, чтобы выполнялось неравенство х1 – 2.

В общем случае для того, чтобы уравнение f(х) = ах 2 + вх + с = 0 имело бы один корень меньше А, а другой больше А, необходимо и достаточно выполнения неравенства аf(A) 2 – 3ах + 2 = 0 больше 1/2.

Комментарий к решению. Если а = 2, то х = 2/3 (2/3 > 1/2). Если а =/= 2, то уравнение – квадратное. Введем обозначение f(x) = (2 – а)х 2 – 3ах + 2, хв = 3а/2(2 – а), D = а(17а – 16). Тогда для выполнения условия примера необходимо и достаточно одновременное выполнение следующих условий: D > 0, хв > 1/2, (2 – а)f(1/2) > 0. Решая эту систему, получим: 16/7 2 – 2(а + 3)х + 4а = 0 имеет 2 корня, один из которых меньше 2, а другой больше 3.

Комментарий к решению. Так как речь идет о двух корнях, то рассматриваемое уравнение должно быть квадратным, то есть, а =/= 2. Рассмотрим функцию f(х) = (а – 2)х 2 – 2(а + 3)х + 4а, (а =/= 2). Ее графиком является парабола, которая по условию задачи пересекает ось ОX один раз на интервале ( – ; 2) и один раз на интервале (3; + ). Для решения примера необходимо и достаточно решить систему неравенств:

Ответ: 2 2 – (3а + 1)ха – 2 = 0 лежат в промежутке ( – 1;2)?

5. Найти все значения а, при которых ровно один корень уравнения х 2 + 2ах + 3а – 2 = 0 удовлетворяет условию х 2 – 6х + а = 0 имеет два различных действительных корня, из которых только один принадлежит интервалу (1;7).

Комментарий к решению. Дискриминант уравнения D = в 2 – 16. Найдя промежутки знакопостоянства дискриминанта, получим ответ: если в 4, то х = (в ± в 2 – 16)/2; если в = ±4, то х = в/2;если – 4 2 – 2ах + 2а – 3 = 0.

Комментарий к решению. Рассмотрим два случая: а = 2 и а =/= 2. В первом случае исходное уравнение принимает вид – 4х + 1 = 0. Это линейное уравнение с одним корнем х = 0,25. Во втором случае получим квадратное уравнение с дискриминантом D = – 4(a – 1)(a – 6). Найдём промежутки знакопостоянства дискриминанта и его нулевые точки.

В результате решения получаем ответ:

3.. Решить уравнение (2а – 1)х 2 – (3а + 1)х + а – 1 = 0.

Ответ: если а = 0,5, то х = – 0,2; если – 9 – 84 0,5 то х = (3а + 1 + а 2 + 18а – 3)/(2а – 1)

4. Решить уравнение ах 2 – (1 – 2а)х + 2 – а = 0.

Ответ: если а = 0, то х = – 2; если а 0, то х1,2 = (1 – 2а ± 4а + 1)/2а.

5. Решить уравнение (х 2 – 5х + 6)/(ха) = 0

Ответ: если а = 2, то х = 3; если а = 3, то х = 2; если а =/= 2, а =/= 3, то х = 2 или х = 3.

VI. Разные задачи

1. Найти все значения а, при которых уравнения ах 2 + (3 + 4а)х + 2а 2 + 4а + 3 = 0 имеет только целые корни.

Решение. Пусть а = 0, тогда из уравнения следует, что 3х + 3 = 0, х = – 1. Поэтому а = 0 удовлетворяет условию задачи. Пусть а =/= 0, тогда уравнение равносильно уравнению х 2 + (4 + 3/а)х + 2а + 4 + 3/а = 0. Если х1 и х2 – целые корни нового уравнения, то – 4 – 3/а и 2а + 4 + 3/а – целые числа (теорема Виета), откуда следует, что их сумма, то есть 2а – целое число. Пусть 2а = n, где n Z, тогда а = n/2, 3/а = 6/n, причем 6/n – целое число, то есть n может принимать значения из чисел ±1; ±2; ±3; ±6. Проверка показывает, что только при n = – 1 и n = 3 все корни исходного уравнения являются целыми числами.

2. Найти все значения а, при которых уравнение х 2 + (а + 2)х + 1 – а = 0 имеет 2 действительных корня х1 и х2 такие, что х1х2 2 + (а + 2)х + 1 – а и заметим, что если условия задачи выполняются, то f( – 4) > 0, f(4) > 0, f(0) > 0. Получили систему:

Решая систему, получаем 1 2 – 3ах + 4а = 0 в зависимости от а?

Ответ: если – 1 2 + | х – 1| = 0

Ответ: если а 0, то корней нет.

Ответ: если а 0, то корней нет.

Ответ: если а 3, то корней нет; если а = ±3, то один корень; если – 3 2 – рх + 2р 2 – 3р = 0 равен нулю?

2. При каком значении параметра р корни уравнения 3х 2 + (р 2 – 4р)х + р – 1 = 0 равны по модулю, но противоположны по знаку?

3. При каком значении параметра а оба корня уравнения 2х 2 + (3а 2 – | а |)ха 3 – 3а = 0 равны нулю?

4. Не вычисляя корней уравнения 2х 2 – 5х – 4 = 0 найти:

5. Пусть х1 и х2 – корни уравнения 4х 2 – 6х – 1 = 0. Составить квадратное уравнение, корнями которого являются числа:

6. В уравнении 5х 2 – ах + 1 = 0 определить а так, чтобы разность корней равнялась единице.

Ответ: ±5.

7. При каких значениях параметра а отношение корней уравнения х 2 – (а + 3)х + 6 = 0 равно 1,5?

8. При каких значениях параметра а сумма корней уравнения (2а + 1)х 2 + (а + 1)х + а = 0 положительна?

9. При каких значениях параметра а корни уравнения (а + 1)х 2 + (2 – а)х + а + 6 = 0 положительны?

10. При каких значениях параметра а корни уравнения (а – 1)х 2 + (2а + 3)х + 2 + а = 0 имеют одинаковые знаки?

Ответ: [ – 2,125; – 2) (1; + ).

11. При каких значениях параметра а оба корня уравнения 4х 2 + (3а + 4)х – 3 = 0 лежат в промежутке ( – 2 ; 1)?

12. При каких значениях параметра а уравнение (а – 1)х 2 = (а + 1)ха имеет единственное решение, удовлетворяющее условию 0 2 – 6х + 1 = 0;
б) ах 2 = 4;
в) х 2 – ах = 0;
г) ах 2 + 8 = 2х 2 + 4а.

14. Решить уравнение (а – 1)х 2 + 2(2а + 1)х + (4а + 3) = 0.

Ответ: если а – 4/5 и а =/= 1, то х1,2 = ( – (2а + 1) ± 5а + 4)/(a – 1).

Литература

  1. Макарычев Ю.Н. Миндюк Н.Г. Алгебра 8. Дополнительные главы к школьному учебнику. Москва. «Просвещение». 2005.
  2. Галицкий М.Л., Гольдман А.М., Звавич Л.И. Сборник задач по алгебре 8 – 9. Москва. «Просвещение». 2005.
  3. Шарыгин И.Ф. Факультативный курс по математике 10. Москва. «Просвещение». 2004.
  4. Литвиненко В.Н., Мордкович А. Г. Практикум по решению математических задач. Москва. «Просвещение». 1998.
  5. Евсеева А.И. Уравнения с параметрами. Математика в школе. 2003 г. № 7.
  6. Шабунин М.И. Уравнения и системы уравнений с параметрами. Математика в школе. 2003 №3.
  7. Мещерякова Г.П. Задачи с параметрами, сводящиеся к квадратным уравнениям. Математика в школе. 2001 г. № 5.
  8. Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. Москва-Харьков. «Илекса», «Гимназия». 2002.


источники:

http://spadilo.ru/kvadratnoe-uravnenie-i-diskriminant/

http://urok.1sept.ru/articles/521000