Доклад на тему уравнения с модулем

Исследовательская работа по математике на тему: «Способы решения линейных уравнений, содержащих знак модуля».

Понятие «модуль» широко применяется во многих разделах школьного курса математики, например, в изучении абсолютной и относительной погрешностей приближенного числа; в геометрии и физике будут изучаться понятия вектора и его длины (модуля вектора). Понятия модуля применяется в курсах высшей математики, физики и технических наук, изучаемых в высших учебных заведениях. Несмотря на то, что тема «Модуль числа» проходит «красной нитью» через весь курс школьной и высшей математики, для ее изучения по программе отводится очень мало времени (в 6 классе -2 часа, в 8 классе — 4 часа).

Исходя из всего вышесказанного, возникает проблема: найти разнообразные методы в обучении решению задач с модулем.

Практически у каждого обучающегося вызывают затруднения задания, содержащие модуль. Это один из самых трудных материалов, с которыми школьники сталкиваются на экзаменах (в заданиях ЕГЭ это задания С5 и С6).

Считаю, что эта тема требует более глубокого исследования, так как она прослеживается в различных заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, в заданиях вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ.

Указанные обстоятельства обусловили мой выбор темы исследовательской работы.

Основной целью работы считаю получение расширенной информации о модуле числа, его применении, а также о различных способах решения уравнений, содержащих знак абсолютной величины.

Цель исследовательской работы определяет следующие задачи:

— показать необходимость более глубокого рассмотрения темы «Решение линейных уравнений, содержащих знак модуля» в школьной программе;

— разработать алгебраический метод решения линейных уравнений, содержащих знак модуля;

— разработать графический методы решения линейных уравнений, содержащих знак модуля.

Я предположила, что в результате исследования я смогу показать своим одноклассникам и друзьям, что решение уравнений с модулями не являются одним из сложнейших заданий.

Формулирование цели исследовательской работы определяет:

объект исследования – решение уравнений, содержащих знак абсолютной величины;

предмет исследования – алгебраический и графический методы решения линейных уравнений, содержащих знак модуля.

Реферат: Алгебраическое и графическое решение уравнений, содержащих модули

Цель работы: хотя уравнения с модулями ученики начинают изучать уже с 6-го – 7-го класса, где они проходят самые азы уравнений с модулями. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досканального исследования. Я хочу получить более широкие знания о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, програмировании и других точных науках.

В архитектуре-это исходная еденица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике-это термин, применяемый в различных облостях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, сродержащее переменные.

Уравнение с модулем-это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль-абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

1. Если число a положительно, то -a отрицательно, т. е. -a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2=(x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4  15=36 – 60= -24 02 р.к.

Проверка: |1 – 6|=|12 – 5  1 + 9| |3 – 6|=|32 – 5  3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпритации модуля для решения уравнений.

Геометрический смысл модуля разности величин-это расстояние между ними. Например, геометрический смысл выражения |x – a | -длина отрезка координатной оси, соединяющей точки с абсцисами а и х . Перевод алгеб-раической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпритации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпри-тации модуля, левая часть уравнения представляет собой сумму расстояний от некторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпритации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет являтся не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b  a  a  x  b

|x – a| — |x – b|=b – a, где b  a  x  b

4.3. Графики простейших функций, содержащих знак абсолютной величины

Под простейшими функциями понимают алгебраическую сумму модулей линейных выражений. Сформулируем утверждение, позволяющее строить графики таких функций, не раскрывая модули ( что особенно важно, когда модулей достаточно много ): «Алгебраическая сумма модулей n линейных выражений представляет собой кусочно- линейную функцию, график которой состоит из n +1 прямолинейного отрезка. Тогда график может быть построен по n +2 точкам, n из которых представляют собой корни внутримодульных выражений, ещё одна — произвольная точка с абсциссой, меньшей меньшего из этих корней и последняя — с абсциссой, большей большего из корней.

1)f(x)=|x — 1| Вычисляя функции в точках 1, 0 и 2, получаем график, состоящий из двух отрезков(рис.1)

2) f(x)=|x — 1| + |x – 2| Вычисляя значение функиции в точках с абсциссами 1, 2, 0 и 3, получаем график, состоящий из двух отрезков прямых.(рис.2)

3) f(x)=|x — 1| + |x – 2| + |x – 3| Для построения графика вычислим значения функции в точках 1, 2, 3, 0 и 4 (рис.3)

4) f(x)=|x — 1| — |x – 2| График разности строится аналогично графику суммы, тоесть по точкам 1, 2, 0 и 3.

рис1. рис2. рис3. рис4.

4.4.Решение нестандартных уравнений, содержащих модули.

Пример9. Решить уравнение 3| x + 2 | + x2 + 6x + 2 = 0.

Рассмотрим два случая.

Пример10. Решить уравнение | 4 – x | + | (x – 1)(x – 3) | = 1.

Учитывая, что | 4 – x | = | x – 4 |, рассмотрим четыре случая.

так как

4)

4)

Построим графики функций y = |(x–1)(x–3)| и y=1–|x–4 |

1)в Гy = |(x–1)(x–3)| подставим значение х=1 и х=3. Мы получим у=0,

тоесть пересечение графика с осью ОХ. При х равном нулю у=3, тоесть график пересекается с осью ОУ в точке (0 ;3). И при х=4 у также равен 3- мы получили первый график.

2) y=1–|x–4 | Найдем пересечение с осью ОХ, для этого решим простое уравнение: 1-|x-4|=0

x — 4=1 или x — 4=-1

Следовательно данный график пересекает ось ОХ в точках 5 и 3.

При х=4 у=1 и ак видно из графика: графики обеих функций пересекаются в одной точке 3

Пример11. Решить уравнение | x2 + 3x | = 2(x + 1).

Уравнение равносильно системе

Ответ:

Пример12.Решить уравнение х2 — 4х +|x — 3| +3=0

Для освобождения от знака абсолютной величины разобьем числовую прямую на две области и будем искать решения исходного уравнения в каждой из этих областей отдельно:

__________x 3__________________|____________x 0два различ. корня

x=0 –посторонний корень, так как x1= (5- 1 )/2 =2

не удовлетворяет промежутку. x2=(5 + 1)/2=3

x=3 — посторонний корень, так как

не удовлетворяет промежутку.

Значит, исходное уравнение имеет два решения х1=2 и х2=3

Пример13. Решить уравнение | 2x + 8 | – | x – 5 | = 12.

Раскрытие пары модулей приводит к трем случаям (без x + 4  0, x – 5 0).

Пример 14. Решить уравнение .

Напишем равносильную смешанную систему:

Пример 15 Решить графически уравнение |1 – x| — |2x + 3| + x + 4=0

Представим уравнение в виде |1 – x| — |2x + 3| =-х – 4

Построим два графика у=|1 – x| — |2x + 3| и у=-х – 4

Критические точки: х=1, х=-1.5

(1 – х) ________+________|______ +____________|_____-______ >

а) х 0 и (2х + 3) 0 и (2x +3) 0, т.е функция примет вид

у=1 – х – 2х -3, у=-3х – 2 –графиком является прямая, проходящая через две точки (0; -2), (-1; 1).

в)При х1, (1 – х)0 и (2х + 3)>0, т.е. функция примет вид у= -1 + х – 2х – 3,

у= -х – 4 –графиком является прямая, проходящая через две точки (0; -4),

График функции у= — х – 4 совпадает с графиком у=|1 – x| — |2x + 3|, при х1,

Поэтому решением являются все х1 и х= -4

Построим числовую прямую так, чтобы по определению модуля знак абсолютной величины числа можно будет снять. Для этого найдем критические точки: 1- х=0 и 2х – 3 =0,

Доклад по теме » Решение уравнений, содержащих модуль».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Выступление на конференции.

Тема: «Решение уравнений , содержащих модуль».

Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досконального исследования. Я хочу получить более широкие знания о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово (омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике -это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем -это уравнение, содержащие переменную под знаком абсолютной величины (под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль -абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

3.Определения модуля. Свойства модуля.

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

Следствие 1. Из теоремы следует, что |-a| = |a|.

Следствие 2. Для любого действительного числа a справедливы неравенства

Теорема 2. Абсолютная величина любого действительного числа a равна арифметическому квадратному корню из

Эта теорема дает возможность при решении некоторых задач заменять |a| на

Геометрически |a| означает расстояние на координатной прямой от точки, изображающей число a, до начала отсчета.

Если то на координатной прямой существует две точки a и -a, равноудаленной от нуля, модули которых равны.

Если a = 0, то на координатной прямой |a| изображается точкой 0 (см. рис.)

4.Способы решения уравнений, содержащих модуль

Для решения уравнений, содержащих знак абсолютной величины, буду основываться на определении модуля числа и свойствах абсолютной величины числа. Решу несколько примеров одним и тем же способом и посмотрим, какой из способов окажется проще для решения уравнений, содержащих модуль.

Пример 1. Решим аналитически и графически уравнение |x — 2| = 3.

Рассуждать будем, исходя из определения модуля. Если выражение, находящееся под модулем неотрицательно, т. е. x — 2 0, тогда оно «выйдет» из под знака модуля со знаком «плюс» и уравнение примет вид: x — 2 = 3. Если значения выражения под знаком модуля отрицательно, тогда, по определению, оно будет равно: или x — 2=-3

Таким образом, получаем, либо x — 2 = 3, либо x — 2 = -3. Решая полученные уравнения, находим:

Ответ:

Теперь можно сделать вывод: если модуль некоторого выражения равен действительному положительному числу a, тогда выражение под модулем равно либо a, либо .

Одним из способов решения уравнений, содержащих модуль, является графический способ. Суть этого способа заключается в том, чтобы построить графики данных функций. В случае, если графики пересекутся, точки пересечений данных графиков будут являться корнями нашего уравнения. В случае, если графики не пересекутся, мы сможем сделать вывод, что уравнение корней не имеет. Этот способ, вероятно, реже других применяют для решения уравнений, содержащих модуль, так как, во-первых, он занимает достаточно много времени и не всегда рационален, а, во-вторых, результаты, полученные при построении графиков, не всегда являются точными.

Другой способ решения уравнений, содержащих модуль- это способ разбиения числовой прямой на промежутки. В этом случае нам нужно разбить числовую прямую так, что по определению модуля, знак абсолютной величины на данных промежутках можно будет снять. Затем, для каждого из промежутков мы должны будем решить данное уравнение и сделать вывод, относительно получившихся корней(удовлетворяют они нашему промежутку или нет). Корни, удовлетворяющие промежутки и дадут окончательный ответ.

Установим, при каких значениях x, модуль равен нулю:

Получим два промежутка, на каждом из которых решим уравнение (см. рис. 9):

Получим две смешанных системы:

(1) (2)

Решим каждую систему:

(1) (удовлетворяет данному промежутку)

(2) (удовлетворяет данному промежутку)

Ответ:

Для решения уравнения графическим способом, надо построить графики функций и

Для построения графика функции , построим график функции — это прямая, пересекающая ось OX в точке (2; 0), а ось OY в точке а затем часть прямой, лежащую ниже оси OX зеркально отразить в оси OX.

Графиком функции является прямая, параллельная оси OX и проходящая через точку (0; 3) на оси OY (см. рис. 10).

Абсциссы точек пересечения графиков функций дадут решения уравнения.

Прямая графика функции y=3 пересеклась с графиком функции y=|x – 2| в точках с координатами (-1; 3) и (5; 3), следовательно решениями уравнения будут абсциссы точек:

Ответ:

Пример 2. Решим аналитически и графически уравнение 1 + |x| = 0.5.

Преобразуем уравнение: 1 + |x| = 0.5

Понятно, что в этом случае уравнение не имеет решений, так как, по определению, модуль всегда неотрицателен.

Ответ: решений нет.

Преобразуем уравнение: : 1 + |x| = 0.5

Графиком функции являются лучи — биссектрисы 1-го и 2-го координатных углов. Графиком функции является прямая, параллельная оси OX и проходящая через точку -0,5 на оси OY.

Графики не пересекаются, значит уравнение не имеет решений (см. рис. 11).

Ответ: нет решений.

Пример 3. Решите аналитически и графически уравнение

Прежде следует установить область допустимых значений переменной. Возникает естественный вопрос, почему в предыдущих примерах не было необходимости делать этого, а сейчас она возникла.

Дело в том, что в этом примере в левой части уравнения модуль некоторого выражения, а в правой части не число, а выражение с переменной, — именно это важное обстоятельство отличает данный пример от предыдущих.

Поскольку в левой части — модуль, а в правой части, выражение, содержащее переменную, необходимо потребовать, чтобы это выражение было неотрицательным, т. е. Таким образом, область допустимых значений модуля

Теперь можно рассуждать также, как и в примере 1, когда в правой части равенства находилось положительной число. Получим две смешанных системы:

(1) и (2)

Решим каждую систему:

(1) входит в промежуток и является корнем уравнения.

(2) x = -3 не входит в промежуток и не является корнем уравнения.

Ответ:

Установим, при каких значениях x модуль в левой части уравнения обращается в нуль:

Получим два промежутка, на каждом из которых решим данное уравнение (см. рис. 12):

В результате будем иметь совокупность смешанных систем:

Решая полученные системы, находим:

(1) ; входит в промежуток, значит является корнем уравнения.

(2) ; -3 не входит в промежуток,значит x=-3 не является корнем уравнения

Ответ:

4.1 Решение при помощи зависимостей между числами a и b, их модулями и квадратами этих чисел

Помимо приведенных мною выше способов существует определенная равносильность, между числами и модулями данных чисел, а также между квадратами и модулями данных чисел:

1.Если | a |=| b | , то a = b или a =- b

2. Если a2=b2 , то a=b или a=-b (1)

Отсюда в свою очередь получим, что

Если |a|=|b| , то a2=b2 (2)

Пример 4. Решим уравнение |x + 1|=|2x – 5| двумя различными способами.

1.Учитывая соотношение (1), получим:

x + 1=2x – 5 или x + 1=-2x + 5

x – 2x=-5 – 1 или x + 2x=5 – 1

Корень первого уравнения x=6, корень второго уравнения x=4/3

аким образом корни исходного уравнения x=6, x=4/3

2. В силу соотношения если |a|=|b| , то a2=b2 , получим

(x + 1)2=(2x – 5)2, или x2 + 2x + 1=4×2 – 20x + 25

x2 – 4×2 +2x+1 + 20x – 25=0

Как показывает решение, корнями данного уравнения также являются числа 4/3 и 6

1.

2.

3.

Например. а)

Следовательно Ответ:1;8.

б)

в)

1)

1 способ 2 способ

Второй способ хорош тем, что не надо сравнивать f ( x ) с нулём

Например,

(3)

2)

3)

4)

5)

Пример 5. Решим уравнение (2x + 3)2=(x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х=-4, и х=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4  15=36 – 60= -24 0,2 р.к.

Проверка:1) |1 – 6|=|12 – 5  1 + 9| 2) |3 – 6|=|32 – 5  3 + 9| .

4.4Решение нестандартных уравнений, содержащих модули

Пример9. Решить уравнение 3| x + 2 | + x2 + 6x + 2 = 0.

Рассмотрим два случая.

Пример11. Решить уравнение | x2 + 3x | = 2(x + 1).

Уравнение равносильно системе

Ответ:

Пример12.Решить уравнение х2 — 4х +|x — 3| +3=0

Для освобождения от знака абсолютной величины разобьем числовую прямую на две области и будем искать решения исходного уравнения в каждой из этих областей отдельно:

|x – 3|=x – 3 |x – 3|=-x + 3

x2 — 4x + x – 3 + 3=0 x2 – 4x – x + 3 + 3=0

x2 – 3x=0 x2 – 5x + 6=0

x(x – 3) =0 x =2, x =3.

x=0 –посторонний корень,не удовлетворяет промежутку.

Значит, исходное уравнение имеет два решения х=2 и х=3

Пример13. Решить уравнение | 2x + 8 | – | x – 5 | = 12.

Раскрытие пары модулей приводит к трем случаям.

1.Учебник математики для Х класса — К. Вельскер, Л. Лепманн,Т. Лепманнн.

2.Уравнения и неравенства – Башмаков М. И.

3.Задачи всесоюзных математических олимпиад-Васильев Н.Б., Егоров А.А.

4.Задачи вступительных экзаменов по математике- Нестеренко Ю.В.,

Олехник С.Н., Потапов М.К.

5.Учебник В.П.Моденов «Математика».

6. Родионов Е.М., Синаков С.А. «Математика».

Рассмотрим два случая.

Пример10. Решить уравнение | 4 – x | + | (x – 1)(x – 3) | = 1.

Учитывая, что | 4 – x | = | x – 4 |, рассмотрим четыре случая.

так как

4)

4)


источники:

http://www.bestreferat.ru/referat-80295.html

http://infourok.ru/doklad-po-teme-reshenie-uravneniy-soderzhaschih-modul-1065064.html

Название: Алгебраическое и графическое решение уравнений, содержащих модули
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:53:07 24 марта 2007 Похожие работы
Просмотров: 11201 Комментариев: 33 Оценило: 29 человек Средний балл: 4.6 Оценка: 5 Скачать