Доклад по алгебре на тему квадратные уравнения

Доклад по алгебре на тему квадратные уравнения

История квадратных уравнений

Необходимость решать уравнения не только первой степени, но и второй ещё в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Правила решения этих уравнений, изложенные в вавилонских текстах, совпадает по существу с современными, но в этих текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Решением квадратных уравнений занимались и в Древней Греции такие ученые как Диофант, Евклид и Герон. Диофант Диофант Александрийский – древнегреческий математик, живший предположительно в III веке нашей эры. Основное произведение Диофанта – «Арифметика» в 13 книгах. Евклид. Евклид древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике Герон. Герон – греческий математик и инженер впервые в Греции в I век н.э. дает чисто алгебраический способ решения квадратного уравнения

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ax2 + bх = с, а> 0. (1) В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

«Обезьянок резвых стая

А двенадцать по лианам Всласть поевши, развлекалась

Стали прыгать, повисая

Их в квадрате часть восьмая

Сколько ж было обезьянок,

На поляне забавлялась

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений. Соответствующее задаче уравнение Бхаскара пишет под видом x2 — 64x = — 768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем: x2 — б4х + 322 = -768 + 1024, (х — 32)2 = 256, х — 32= ±16, x1 = 16, x2 = 48.

Квадратные уравнения в Европе XVII века

Формулы решения квадратных уравнений по образцу Ал — Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Определение квадратного уравнения

Уравнение вида ax 2 + bx + c = 0, где a, b, c — числа, , называется квадратным.

Коэффициенты квадратного уравнения

Числа а, b, с – коэффициенты квадратногоуравнения.а – первый коэффициент (перед х²), а ≠ 0;b — второй коэффициент (перед х);с – свободный член (без х).

Какие из данных уравнений не являются квадратными?

1. 4х² + 4х + 1 = 0;2. 5х – 7 = 0;3. — х² — 5х – 1 = 0;4. 2/х² + 3х + 4 = 0;5. ¼ х² — 6х + 1 = 0;6. 2х² = 0;

7. 4х² + 1 = 0;8. х² — 1/х = 0;9. 2х² – х = 0;10. х² -16 = 0;11. 7х² + 5х = 0;12. -8х²= 0;13. 5х³ +6х -8= 0.

Реферат: Квадратные уравнения и уравнения высших порядков

Министерство образования Российской Федерации

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №22»

Квадратные уравнения и уравнения высших порядков

Ученики 8 «Б» класса

Кузнецов Евгений и Руди Алексей

Зенина Алевтина Дмитриевна

Глава 1. История квадратных уравнений и уравнений высших порядков

1.1 Уравнения в Древнем Вавилоне

1.2 Уравнения арабов

1.3 Уравнения в Индии

Глава 2. Теория квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

2.2 Формулы четного коэффициента при х

2.3 Теорема Виета

2.4 Квадратные уравнения частного характера

2.5 Теорема Виета для многочленов (уравнений) высших степеней

2.6 Уравнения, сводимые к квадратным (биквадратные)

2.7 Исследование биквадратных уравнений

2.8 Формулы Кордано

2.9 Симметричные уравнения третьей степени

2.10 Возвратные уравнения

2.11 Схема Горнера

Список используемой литературы

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

В этом реферате хотелось бы отобразить формулы и способы решения различных уравнений. Для этого приводятся уравнения, которые не изучаются в школьной программе. В основном это уравнения частного характера и уравнения высших степеней. Чтобы раскрыть эту тему приводятся доказательства этих формул.

Задачи нашего реферата:

— улучшить навыки решения уравнений

— наработать новые способы решения уравнений

— выучить некоторые новые способы и формулы для решения этих уравнений.

Объект исследования — элементарная алгебра Предмет исследования уравнения. Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Глава 1. История квадратных уравнений и уравнений высших порядков

1.1 Уравнения в Древнем Вавилоне

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведённых над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучается общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне. Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земельными работами военного характера, а также с развитием астрономии и самой математики. Как было сказано ранее, квадратные уравнения умели решать около 2000 лет до нашей эры вавилонянами. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются как неполные, так и полные квадратные уравнения.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решением, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общие методы решения квадратного уравнения.

1.2 Уравнения арабов

Некоторые способы решения уравнений как квадратных, так и уравнений высших степеней были выведены арабами. Так известный арабский математик Ал-Хорезми в своей книге «Ал — джабар» описал многие способы решения различных уравнений. Их особенность была в том, что Ал-Хорезми применял сложные радикалы для нахождения корней (решений) уравнений. Необходимость в решении таких уравнений была нужна в вопросах о разделе наследства.

1.3 Уравнения в Индии

Квадратные уравнения решали и в Индии. Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме:

aх² + bx= c, где a > 0

В этом уравнении коэффициенты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

Глава 2. Квадратные уравнения и уравнения высших порядков

2.1 Основные понятия

Квадратным уравнением называют уравнения вида

где коэффициенты a, b, c – любые действительные числа, причём a ≠ 0.

Квадратное уравнение называют приведённым, если его старший коэффициент равен 1.

Квадратное уравнение называют не приведенным, если старший коэффициент отличен от 1.

Полное квадратное уравнение — квадратное уравнение, в котором присутствуют все три слагаемых, иными словами, это уравнение, у которого коэффициенты b и c отличны от нуля.

Неполное квадратное уравнение – это квадратное уравнение, у которого хотя бы один коэффициент b, c равен нулю.

Таким образом, выделяют три вида неполных квадратных уравнений:

1) ax² = 0 (имеет два совпадающих корня x = 0).

2) ax² + bx = 0 (имеет два корня x1 = 0 и x2 = —)

Если – 2 + 6 = 0

Ответ : уравнение не имеет корней.

Если –> 0, то x1,2 = ±

х 2 =±

х1,2

Ответ : х1,2

Любое квадратное уравнение можно решить через дискриминант (b² — 4ac). Обычно выражение b² — 4ac обозначают буквой D и называют дискриминантом квадратного уравнение ax² +bx + c = 0 (или дискриминантом квадратного трёх члена ax² + bx + c)

D = b 2 – 4ac = 144 + 92 = 256

x1,2 =

x1 =

x2 =

В зависимости от дискриминанта уравнение может иметь или не иметь решение.

1) Если D 0, то имеет два решения, находящиеся по формуле:

x1,2 =

2.2 Формулы четного коэффициента при х

Мы привыкли к тому, что корни квадратного уравнения

ax² + bx + c = 0 находятся по формуле

x1,2 =

Но математики никогда не пройдут мимо возможности облегчить себе вычисления. Они обнаружили, что эту формулу можно упростить в случае, когда коэффициент b имеет вид b = 2k, в частности, если b есть четное число.

В самом деле, пусть у квадратного уравнения ax² + bx + c = 0 коэффициент bимеет вид b = 2k. Подставив в нашу формулу число 2k вместо b, получим:

x1,2 =

=

Итак, корни квадратного уравнения ax² + 2kx + c = 0 можно вычислять по формуле:

x1,2 =

5х 2 — 2х + 1 = 0

x1,2=

Преимущество этой формулы в том, что в квадрат возводится не число b, а его половина, вычитается из этого квадрата не 4ac, а просто ac и, наконец, в том, что в знаменателе содержится не 2a, а просто a.

В случае если квадратное уравнение приведенное, то наша формула будет выглядеть так:

x1,2 =-k ±.

х1,2 = 2 ±

2.3 Теорема Виета

Очень любопытное свойство корней квадратного уравнения обнаружил французский математик Франсуа Виет. Это свойство назвали теорема Виета:

Чтобы числа x1 и x2 являлись корнями уравнения:

ax² + bx + c = 0

необходимо и достаточно выполнения равенства

Теорема Виета позволяет судить о знаках и абсолютной величине квадратного уравнения

1. Если b>0, c>0 то оба корня отрицательны.

2. Если b 0 то оба корня положительны.

В этом случае он имеет разложение на множители вида:

Разделим обе части этого равенства на a0 ≠ 0 и раскроем в первой части скобки. Получим равенство:

x n + ()x n -1 + … + () = x n – (x1 + x2 + … + xn ) x n -1 + ( x1 x2 + x2 x3 + … + xn -1 xn )x n -2 + … +(-1) n x1 x2 … xn

Но два многочлена тождественно равны в том и только в том случае, когда коэффициенты при одинаковых степенях равны. Отсюда следует, что выполняется равенство

x1 + x2 + … + xn = —

x1 x2 + x2 x3 + … + xn -1 xn =

x1 x2 … xn = (-1) n

Например, для многочленов третей степени

Имеем тождества

x1 + x2 + x3 = —

x1 x2 + x1 x3 + x2 x3 =

x1 x2 x3 = —

Как и для квадратных уравнений, эту формулу называют формулами Виета. Левые части этих формул являются симметрическими многочленами от корней x1 , x2 …, xn данного уравнения, а правые части выражаются через коэффициент многочлена.

2.6 Уравнения, сводимые к квадратным (биквадратные)

К квадратным уравнениям сводятся уравнения четвертой степени:

ax 4 + bx 2 + c = 0,

называемые биквадратными, причем, а ≠ 0.

Достаточно положить в этом уравнении х 2 = y, следовательно,

найдём корни полученного квадратного уравнения

y1,2 =

Чтобы найти сразу корни х1, x2, x3, x4 , заменим y на x и получим

x² =

х1,2,3,4 = .

Если уравнение четвёртой степени имеет х1 , то имеет и корень х2 = -х1 ,

Если имеет х3 , то х4 = — х3 . Сумма корней такого уравнения равна нулю.

Подставим уравнение в формулу корней биквадратных уравнений:

х1,2,3,4 = ,

х1,2 =

х3,4 =

Ответ : х1,2 = ±2; х1,2 =

2.7 Исследование биквадратных уравнений

Возьмем биквадратное уравнение

ax 4 + bx 2 + c = 0,

где a, b, c –действительные числа, причем а > 0. Введя вспомогательную неизвестную y = x², исследуем корни данного уравнения, и результаты занесем в таблицу (см. приложение №1)

2.8 Формула Кардано

Если воспользоваться современной символикой, то вывод формулы Кардано может иметь такой вид:

х =

Эта формула определяет корни общего уравнения третей степени:

ax 3 + 3bx 2 + 3cx + d = 0.

Эта формула очень громоздкая и сложная (она содержит несколько сложныных радикалов). Она не всегда примениться, т.к. очень сложна для заполнения.

2.9 Симметричные уравнения третей степени

Симметричными уравнениями третей степени называют уравнения вида

ax³ + bx² +bx + a = 0 (1 )

ax³ + bx² — bx – a = 0 (2 )

где a и b – заданные числа, причём a¹0.

Покажем, как решаются уравнение (1 ).

ax³ + bx² + bx + a = a(x³ + 1) + bx(x + 1) = a(x + 1) (x² — x + 1) + bx(x + 1) = (x + 1) (ax² +(b – a)x + a).

Получаем, что уравнение (1 ) равносильно уравнению

(x + 1) (ax² +(b – a)x + a) = 0.

Значит его корнями, будут корни уравнения

аналогично решается уравнение (2 )

ax³ + bx² — bx — a = a(x³ — 1) + bx(x — 1) = a(x — 1) (x² + x + 1) + bx(x — 1) = (x — 1) ( ax 2 + ax + a + bx ) = (x — 1) (ax² +(b + a)x + a).

2x³ + 3x² — 3x – 2 = 0

Ясно, что x1 = 1, а

х2 и х3 корни уравнения 2x² + 5x + 2 = 0 ,

Найдем их через дискриминант:

x1,2 =

x2 = —, x3 = -2

5х³ + 21х² + 21х + 5 = 0

х2 и х3 корни уравнения 5x² + 26x + 5 = 0 ,

Найдем их через дискриминант:

x1,2 =

2.10 Возвратные уравнения

Возвратное уравнение – алгебраическое уравнение

в котором ак = an k , где k = 0, 1, 2 …n, причем, а ≠ 0.

Задачу нахождения корней возвратного уравнения сводят к задаче нахождения решений алгебраического уравнения меньшей степени. Термин возвратные уравнения был введён Л. Эйлером.

Уравнение четвёртой степени вида:

ax 4 + bx 3 + cx 2 + bmx + am² = 0, (a ≠ 0).

Приведя это уравнение к виду

a (x² + m²/x²) + b(x + m/x) + c = 0, и y = x + m/x и y² — 2m = x² + m²/x²,

откуда уравнение приводится к квадратному

ay² + by + (c-2am) = 0.

3х 4 + 5х 3 – 14х 2 – 10х + 12 = 0

Разделив его на х 2 , получим эквивалентное уравнение

3х 2 + 5х – 14 – 5 × , или

Где и

3(y 2 — 4) + 5y – 14 = 0, откуда

y1 = y2 = -2, следовательно

и , откуда

х1,2 =

х3,4 =

Ответ: х1,2 = х3,4 = .

Частным случаем возвратных уравнений являются симметричные уравнения. О симметричных уравнениях третей степени мы говорили ранее, но существуют симметричные уравнения четвертой степени.

Симметричные уравнения четвертой степени.

1) Если m = 1, то это симметричное уравнение первого рода, имеющее вид

ax 4 + bx 3 + cx 2 + bx + a = 0 и решающееся новой подстановкой

y =

2) Если m = -1, то это симметричное уравнение второго рода, имеющее вид

ax 4 + bx 3 + cx 2 — bx + a = 0 и решающееся новой подстановкой

y =

2.11 Схема Горнера

Для деления многочленов применяется правило “деления углом”, или схема Горнера. С этой целью располагают многочлены по убывающим степеням х и находят старший член частного Q(x) из условия, что при умножении его на старший член делителя D(x) получается старший член делимого P(x). Найденный член частного умножают, затем на делитель и вычитают из делимого. Старший член частного определяют из условия, что он при умножении на старший член делителя даёт старший член многочлена разности и т.д. Процесс продолжается до тех пор, пока степень разности не окажется меньше степени делителя.(см. приложение №2).

В случае уравнений R = 0 этот алгоритм заменяется схемой Горнера.

х 3 + 4х 2 + х – 6 = 0

Находим делители свободного члена ±1; ± 2; ± 3; ± 6.

Левую часть уравнения обозначим f(x). Очевидно, что f(1) = 0, x1 = 1. Делим f(x) на х – 1. (см. приложение №3)

х 3 + 4х 2 + х – 6 = (х – 1) (х 2 + 5х + 6)

Последний множитель обозначим через Q(x). Решаем уравнение Q(x) = 0.

х2,3 =

В этой главе мы привели некоторые формулы решения различных уравнений. Большинство этих формул решения уравнений частного характера. Эти свойства очень удобны так, как гораздо легче решать уравнения по отдельной формуле для этого уравнения, а не по общему принципу. К каждому из способов мы привели доказательство и несколько примеров.

В первой главе была рассмотрена история возникновения квадратных уравнений и уравнений высших порядков. Различные уравнения решали более 25 веков назад. Множество способов решения таких уравнений были созданы в Вавилоне, Индии. Потребность в уравнениях была и будет.

Во второй главе приведены различные способы решения (нахождения корней) квадратных уравнений и уравнений высших порядков. В основном это способы решения для уравнений частного характера, то есть к каждой группе уравнений, объединенных какими- либо общими свойствами или видом, приведено особое правило, которое применяется только для этой группы уравнений. Этот способ (подбора к каждому уравнению собственной формулы) гораздо легче, чем нахождение корней через дискриминант.

В этом реферате достигнуты все цели и выполнены основные задачи, доказаны и разучены новые, ранее неизвестные формулы. Мы проработали много вариантов примеров перед тем, как занести их в реферат, по этому мы уже представляем, как решать некоторые уравнения. Каждое решение пригодится нам в дальнейшей учебе. Этот реферат помог классифицировать старые знания и познать новые.

1. Виленкин Н.Я. “Алгебра для 8 класса”, М., 1995.

2. Галицкий М.Л. “Сборник задач по алгебре”, М. 2002.

3. Даан-Дальмедико Д. “Пути и лабиринты”, М., 1986.

4. Звавич Л.И. “Алгебра 8 класс”, М., 2002.

5. Кушнир И.А. “Уравнения”, Киев 1996.

6. Савин Ю.П. “Энциклопедический словарь юного математика”, М., 1985.

7. Мордкович А.Г. “Алгебра 8 класс”, М., 2003.

8. Худобин А.И. “Сборник задач по алгебре”, М., 1973.

9. Шарыгин И.Ф. “Факультативный курс по алгебре”, М., 1989.

Доклад по алгебре «Решение квадратных уравнений различными способами» (8 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

ГБОУ Гимназия №1797 «Богородская»

(8 класс, алгебра)

1. Определение квадратного уравнения, его виды ________________стр. 3

2. Из истории квадратных уравнений __________________________стр. 4

3. Различные способы решения квадратных уравнений:

1) Разложение левой части уравнения на множители ________________стр. 6

2) Метод выделения полного квадрата ____________________________стр. 6

3) Решение квадратных уравнений по формуле _____________________стр. 7

4)Решение уравнений с использованием теоремы Виета _____________ стр. 8

5) Решение уравнений способом переброски _______________________стр. 9

6)Свойства коэффициентов квадратного уравнения ________________стр. 10

7) Графическое решение квадратного уравнения __________________ стр. 13

8) Решение квадратных уравнений с помощью

циркуля и линейки _________________________________________стр. 14

9) Решение квадратных уравнений с помощью

номограммы _____________________________________________стр. 18

10) Геометрический способ решения квадратных уравнений _________стр. 20

4. Дидактический материал __________________________________стр. 22

5. Литература _______________________________________________стр. 24

1. Определение квадратного уравнения, его виды.

Определение: Квадратным уравнением называется уравнение вида

где х— переменная, а, b и с-некоторые числа, причем, а ≠ 0.

Если в квадратном уравнении ах 2 + bx + c = 0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Неполные квадратные уравнения бывают трёх видов:

1) ах 2 + с = 0, где с ≠ 0;

2) ах 2 + b х = 0, где b ≠ 0;

2. Из истории квадратных уравнений.

а) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

б) Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кроме а, могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

в) Квадратные уравнения в Европе XIII — XVII вв.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

3. Различные способы решения квадратных уравнений.

1) Разложение левой части уравнения на множители.

1. Решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х (х + 12) – 2 (х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2) Метод выделения полного квадрата

Поясним этот метод на примере.

Решим уравнение х 2 + 6х – 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3. поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2. Имеем:

х 2 + 6х – 7 = х 2 + 2· х ·3 + 3 2 – 3 2 – 7 = (х + 3) 2 – 9 – 7 = (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х = 3 = 4, х1 = 1, или х +3 = — 4 , х2 = – 7.

3) Решение квадратных уравнений по формуле

Умножим обе части уравнения

на 4а и следовательно имеем:

4а 2 х 2 + 4а b с + 4ас = 0.

((2ах) 2 + 2ах · b + b 2 ) – b 2 + 4ас = 0,

(2ах + b ) 2 = b 2 – 4ас,

2ах + b = ±

2ах = – b ±

Х 1,2 =

а) 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 – 4ас = 7 2 – 4· 4 ·3 = 49 – 48 = 1, D >два разных корня;

х = , х = ; х = , х 1 = , х = , х 2 = –1

Таким образом, в случае положительного дискриминанта,

т. е. при b 2 – 4ас≥0 уравнение ах 2 + b х + с = 0 имеет два различных корня.

б) 4х 2 – 4х + 1 = 0,

х=

Итак, если дискриминант равен нулю, т. е. = b 2 – 4 ас= 0, то уравнение ах 2 + b х + с = 0 имеет единственный корень, х =

в) 2х 2 +3х + 4 = 0, а =2, b = 3, с = 4, D = b 2 – 4ас= 9 – 4∙2∙4 =9 – 32 = — 13,

Итак, если дискриминант отрицателен, т. е. = b 2 – 4ас

4) Решение уравнений с использованием теоремы Виета

(прямой и обратной)

а) Как известно, приведенное квадратное уравнение имеет вид

Его корни удовлетворяют теореме Виета, которая при а = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p

х 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2 > 0 и p = – 3

х 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

б) Если свободный член q приведенного уравнения (1) отрицателен ( q то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p , или отрицателен, если p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

б) Теорема Виета для квадратного уравнения

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = -р, х1х2 = q , то х1 и х2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

1. Решить уравнение

Попробуем найти два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

2. Решить уравнение

Попробуем найти два числа х1 и х2 , такие, что

Нетрудно заметить, что такими числами будут – 7 и 4. Они и являются корнями заданного уравнения.

5)Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

Умножая обе его части на а, получаем уравнение

Пусть ах = у, откуда х = ; тогда приходим к уравнению

равносильного данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получаем х 1 = и х 1 = . При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме Виета

Ответ: 2,5;3.

6. Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

1.Если а + b + с = 0 (т.е. сумма коэффициентов уравнения равна нулю), то х 1 = 1, х 2 = .

Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

х 2 + х + = 0.

Согласно теореме Виета

По условию а + b + с = 0, откуда b = – а – с. Значит,

Получаем х 1 = 1, х 2 = , что и требовалось доказать.

2. Если а — b + с = 0, или b = а + с, то х 1 = – 1, х 2 = – .

Доказательство. По теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

т.е. х 1 = 1 и х 2 = , что и требовалось доказать.

1. Решим уравнение 345х 2 137х – 208 = 0.

Решение . Так как а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = = .

Ответ : 1; .

2. Решим уравнение 132х 2 + 247х + 115 = 0

Решение. Т. к. а- b +с = 0 (132 – 247 +115=0), то

х 1 = — 1, х 2 = —

Ответ: — 1; —

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

х 1,2 =

можно записать в виде

х 1,2 =

Решим уравнение 3х 2 14х + 16 = 0.

D = k 2 ac = (– 7) 2 – 3 · 16 = 49 – 48 = 1, D >0, два различных корня;

х =

Ответ : 2; .

В. Приведенное уравнение

совпадает с уравнением общего вида, в котором а = 1, p и c = q . Поэтому для приведенного квадратного уравнения формула корней

х 1,2 =

х 1,2 = или х 1,2 = — (3).

Формулу (3) особенно удобно использовать, когда p – четное число.

1. Решим уравнение х 2 14х – 15 = 0.

Решение . Имеем: х 1,2 = 7±= 7±= 7±8.

7. Графическое решение квадратного уравнения

Если в уравнении

перенести второй и третий члены в правую часть, то получим

Построим графики зависимостей у = х 2 и у = – pxq .

График первой зависимости – парабола, проходящая через начало координат.

График второй зависимости – прямая.

Возможны следующие случаи: прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (только одна общая точка),т.е. уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

у


источники:

http://www.bestreferat.ru/referat-110487.html

http://infourok.ru/doklad-po-algebre-reshenie-kvadratnih-uravneniy-razlichnimi-sposobami-klass-716237.html

Название: Квадратные уравнения и уравнения высших порядков
Раздел: Рефераты по математике
Тип: реферат Добавлен 08:14:59 09 мая 2009 Похожие работы
Просмотров: 8072 Комментариев: 24 Оценило: 8 человек Средний балл: 4.8 Оценка: 5 Скачать