Ду приводящиеся к уравнениям с разделяющимися переменными

Дифференциальные уравнения, приводящиеся к уравнениям с разделяющимися переменными

Постановка задачи

Рассмотрим дифференциальное уравнение
(i) ,
где f – функция, a, b, c – постоянные, b ≠ 0 .
Это уравнение приводится к уравнению с разделяющимися переменными.

Метод решения

Делаем подстановку:
u = ax + by + c
Здесь y – функция от переменной x . Поэтому u – тоже функция от переменной x .
Дифференцируем по x
u′ = ( ax + by + c )′ = a + by′
Подставляем (i)
u′ = a + by′ = a +b f ( ax + by + c ) = a + b f ( u )
Или:
(ii)
Разделяем переменные. Умножаем на dx и делим на a + b f ( u ) . Если a + b f ( u ) ≠ 0 , то

Интегрируя, мы получаем общий интеграл исходного уравнения (i) в квадратурах:
(iii) .

В заключении рассмотрим случай
(iv) a + b f ( u ) = 0 .
Предположим, что это уравнение имеет n корней u = ri , a + b f ( ri ) = 0 , i = 1, 2, . n . Поскольку функция u = ri является постоянной, то ее производная по x равна нулю. Поэтому u = ri является решением уравнения (ii).
Однако, уравнение (ii) не совпадает с исходным уравнением (i) и, возможно, не все решения u = ri , выраженные через переменные x и y , удовлетворяют исходному уравнению (i).

Таким образом, решением исходного уравнения является общий интеграл (iii) и некоторые корни уравнения (iv).

Пример решения дифференциального уравнения, приводящегося к уравнению с разделяющимися переменными

Решить уравнение
(1)

Делаем подстановку:
u = x – y
Дифференцируем по x и выполняем преобразования:
;

Умножаем на dx и делим на u 2 .

Если u ≠ 0 , то получаем:

Интегрируем:

Применяем формулу из таблицы интегралов:

Вычисляем интеграл

Тогда
;
, или

Общее решение:
.

Теперь рассмотрим случай u = 0 , или u = x – y = 0 , или
y = x .
Поскольку y′ = ( x )′ = 1 , то y = x является решением исходного уравнения (1).

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Автор: Олег Одинцов . Опубликовано: 16-07-2012 Изменено: 22-02-2015

Дифференциальные уравнения с разделяющимися переменными

В целом ряде обыкновенных ДУ 1 -го порядка существуют такие, в которых переменные х и у можно разнести в правую и левую части записи уравнения. Переменные могут быть уже разделены, как это можно видеть в уравнении f ( y ) d y = g ( x ) d x . Разделить переменные в ОДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x можно путем проведения преобразований. Чаще всего для получения уравнений с разделяющимися переменными применяется метод введения новых переменных.

В этой теме мы подробно разберем метод решения уравнений с разделенными переменными. Рассмотрим уравнения с разделяющимися переменными и ДУ, которые можно свести к уравнениям с разделяющимися переменными. В разделе мы разобрали большое количество задач по теме с подробным разбором решения.

Для того, чтобы облегчить себе усвоение темы, рекомендуем ознакомиться с информацией, которая размещена на странице «Основные определения и понятия теории дифференциальных уравнений».

Дифференциальные уравнения с разделенными переменными f ( y ) d y = g ( x ) d x

Уравнениями с разделенными переменными называют ДУ вида f ( y ) d y = g ( x ) d x . Как следует из названия, переменные, входящие в состав выражения, находятся по обе стороны от знака равенства.

Договоримся, что функции f ( y ) и g ( x ) мы будем считать непрерывными.

Для уравнений с разделенными переменными общий интеграл будет иметь вид ∫ f ( y ) d y = ∫ g ( x ) d x . Общее решение ДУ в виде неявно заданной функции Ф ( x , y ) = 0 мы можем получить при условии, что интегралы из приведенного равенства выражаются в элементарных функциях. В ряде случаев выразить функцию у получается и в явном виде.

Найдите общее решение дифференциального уравнения с разделенными переменными y 2 3 d y = sin x d x .

Проинтегрируем обе части равенства:

∫ y 2 3 d y = ∫ sin x d x

Это, по сути, и есть общее решение данного ДУ. Фактически, мы свели задачу нахождения общего решения ДУ к задаче нахождения неопределенных интегралов.

Теперь мы можем использовать таблицу первообразных для того, чтобы взять интегралы, которые выражаются в элементарных функциях:

∫ y 2 3 d y = 3 5 y 5 3 + C 1 ∫ sin x d x = — cos x + C 2 ⇒ ∫ y 2 3 d y = ∫ sin x d x ⇔ 3 5 y 3 5 + C 1 = — cos x + C 2
где С 1 и С 2 – произвольные постоянные.

Функция 3 5 y 3 5 + C 1 = — cos x + C 2 задана неявно. Она является общим решением исходного дифференциального уравнения с разделенными переменными. Мы получили ответ и можем не продолжать решение. Однако в рассматриваемом примере искомую функцию можно выразить через аргумент х явно.

3 5 y 5 3 + C 1 ⇒ y = — 5 3 cos x + C 3 5 , где C = 5 3 ( C 2 — C 1 )

Общим решением данного ДУ является функция y = — 5 3 cos x + C 3 5

Ответ:

Мы можем записать ответ несколькими способами: ∫ y 2 3 d y = ∫ sin x d x или 3 5 y 5 3 + C 1 = — cos x + C 2 , или y = — 5 3 cos x + C 3 5

Всегда стоит давать понять преподавателю, что вы наряду с навыками решения дифференциальных уравнений также располагаете умением преобразовывать выражения и брать интегралы. Сделать это просто. Достаточно дать окончательный ответ в виде явной функции или неявно заданной функции Ф ( x , y ) = 0 .

Дифференциальные уравнения с разделяющимися переменными f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x

y ‘ = d y d x в тех случаях, когда у является функцией аргумента х .

В ДУ f 1 ( y ) · g 1 ( x ) d y = f 2 ( y ) · g 2 ( x ) d x или f 1 ( y ) · g 1 ( x ) · y ‘ = f 2 ( y ) · g 2 ( x ) d x мы можем провести преобразования таким образом, чтобы разделить переменные. Этот вид ДУ носит название ДУ с разделяющимися переменными. Запись соответствующего ДУ с разделенными переменными будет иметь вид f 1 ( y ) f 2 ( y ) d y = g 2 ( x ) g 1 ( x ) d x .

Разделяя переменные, необходимо проводить все преобразования внимательно для того, чтобы избежать ошибок. Полученное и исходное уравнения должны быть эквивалентны друг другу. В качестве проверки можно использовать условие, по которому f 2 ( y ) и g 1 ( x ) не должны обращаться в ноль на интервале интегрирования. Если это условие не выполняется, то есть вероятность, что ы потеряем часть решений.

Найти все решения дифференциального уравнения y ‘ = y · ( x 2 + e x ) .

Мы можем разделить х и у , следовательно, мы имеем дело с ДУ с разделяющимися переменными.

y ‘ = y · ( x 2 + e x ) ⇔ d y d x = y · ( x 2 + e x ) ⇔ d y y = ( x 2 + e x ) d x п р и y ≠ 0

При у = 0 исходное уравнение обращается в тождество: 0 ‘ = 0 · ( x 2 + e x ) ⇔ 0 ≡ 0 . Это позволят нам утверждать, что у = 0 является решением ДУ. Это решение мы могли не учесть при проведении преобразований.

Выполним интегрирование ДУ с разделенными переменными d y y = ( x 2 + e x ) d x :
∫ d y y = ∫ ( x 2 + e x ) d x ∫ d y y = ln y + C 1 ∫ ( x 2 + e x ) d x = x 3 3 + e x + C 2 ⇒ ln y + C 1 = x 3 3 + e x + C 2 ⇒ ln y = x 3 3 + e x + C

Проводя преобразование, мы выполнили замену C 2 — C 1 на С . Решение ДУ имеет вид неявно заданной функции ln y = x 3 3 + e x + C . Эту функцию мы в состоянии выразить явно. Для этого проведем потенцирование полученного равенства:

ln y = x 3 3 + e x + C ⇔ e ln y = e x 3 3 + e x + C ⇔ y = e x 3 3 + e x + C

Ответ: y = e x 3 3 + e x + C , y = 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0

Для того, чтобы привести обыкновенное ДУ 1 -го порядка y ‘ = f ( a x + b y ) , a ≠ 0 , b ≠ 0 , к уравнению с разделяющимися переменными, необходимо ввести новую переменную z = a x + b y , где z представляет собой функцию аргумента x .

z = a x + b y ⇔ y = 1 b ( z — a x ) ⇒ y ‘ = 1 b ( z ‘ — a ) f ( a x + b y ) = f ( z )

Проводим подстановку и необходимые преобразования:

y ‘ = f ( a x + b y ) ⇔ 1 b ( z ‘ — a ) = f ( z ) ⇔ z ‘ = b f ( z ) + a ⇔ d z b f ( z ) + a = d x , b f ( z ) + a ≠ 0

Найдите общее решение дифференциального уравнения y ‘ = 1 ln ( 2 x + y ) — 2 и частное решение, удовлетворяющее начальному условию y ( 0 ) = e .

Введем переменную z = 2 x + y , получаем:

y = z — 2 x ⇒ y ‘ = z ‘ — 2 ln ( 2 x + y ) = ln z

Результат, который мы получили, подставляем в исходное выражение, проводим преобразование его в ДУ с разделяющимися переменными:

y ‘ = 1 ln ( 2 x + y ) — 2 ⇔ z ‘ — 2 = 1 ln z — 2 ⇔ d z d x = 1 ln z

Проинтегрируем обе части уравнения после разделения переменных:

d z d z = 1 ln z ⇔ ln z d z = d x ⇔ ∫ ln z d z = ∫ d x

Применим метод интегрирования по частям для нахождения интеграла, расположенного в левой части записи уравнения. Интеграл правой части посмотрим в таблице.

∫ ln z d z = u = ln z , d v = d z d u = d z z , v = z = z · ln z — ∫ z d z z = = z · ln z — z + C 1 = z · ( ln z — 1 ) + C 1 ∫ d x = x + C 2

Мы можем утверждать, что z · ( ln z — 1 ) + C 1 = x + C 2 . Теперь, если мы примем, что C = C 2 — C 1 и проведем обратную замену z = 2 x + y , то получим общее решение дифференциального уравнения в виде неявно заданной функции:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x + C

Теперь примемся за нахождение частного решения, которое должно удовлетворять начальному условию y ( 0 ) = e . Проведем подстановку x = 0 и y ( 0 ) = e в общее решение ДУ и найдем значение константы С .

( 2 · 0 + e ) · ( ln ( 2 · 0 + e ) — 1 ) = 0 + C e · ( ln e — 1 ) = C C = 0

Получаем частное решение:

( 2 x + y ) · ( ln ( 2 x + y ) — 1 ) = x

Так как в условии задачи не был задан интервал, на котором необходимо найти общее решение ДУ, то мы ищем такое решение, которое подходит для всех значений аргумента х , при которых исходное ДУ имеет смысл.

В нашем случае ДУ имеет смысл при ln ( 2 x + y ) ≠ 0 , 2 x + y > 0

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f x y или y ‘ = f y x

Мы можем свести ДУ вида y ‘ = f x y или y ‘ = f y x к дифференциальным уравнениям с разделяющимися переменными путем выполнения замены z = x y или z = y x , где z – функция аргумента x .

Если z = x y , то y = x z и по правилу дифференцирования дроби:

y ‘ = x y ‘ = x ‘ · z — x · z ‘ z 2 = z — x · z ‘ z 2

В этом случае уравнения примут вид z — x · z ‘ z 2 = f ( z ) или z — x · z ‘ z 2 = f 1 z

Если принять z = y x , то y = x ⋅ z и по правилу производной произведения y ‘ = ( x z ) ‘ = x ‘ z + x z ‘ = z + x z ‘ . В этом случае уравнения сведутся к z + x z ‘ = f 1 z или z + x z ‘ = f ( z ) .

Решите дифференциальное уравнение y ‘ = 1 e y x — y x + y x

Примем z = y x , тогда y = x z ⇒ y ‘ = z + x z ‘ . Подставим в исходное уравнение:

y ‘ = 1 e y x — y x + y x ⇔ z + x z ‘ = 1 e z — z + z ⇔ x · d z d x = 1 e z — z ⇔ ( e z — z ) d z = d x x

Проведем интегрирование уравнения с разделенными переменными, которое мы получили при проведении преобразований:

∫ ( e z — z ) d z = ∫ d x x e z — z 2 2 + C 1 = ln x + C 2 e z — z 2 2 = ln x + C , C = C 2 — C 1

Выполним обратную замену для того, чтобы получить общее решение исходного ДУ в виде функции, заданной неявно:

e y x — 1 2 · y 2 x 2 = ln x + C

А теперь остановимся на ДУ, которые имеют вид:

y ‘ = a 0 y n + a 1 y n — 1 x + a 2 y n — 2 x 2 + . . . + a n x n b 0 y n + b 1 y n — 1 x + b 2 y n — 2 x 2 + . . . + b n x n

Разделив числитель и знаменатель дроби, расположенной в правой части записи, на y n или x n , мы можем привести исходное ДУ в виду y ‘ = f x y или y ‘ = f y x

Найти общее решение дифференциального уравнения y ‘ = y 2 — x 2 2 x y

В этом уравнении х и у отличны от 0 . Это позволяет нам разделить числитель и знаменатель дроби, расположенной в правой части записи на x 2 :

y ‘ = y 2 — x 2 2 x y ⇒ y ‘ = y 2 x 2 — 1 2 y x

Если мы введем новую переменную z = y x , то получим y = x z ⇒ y ‘ = z + x z ‘ .

Теперь нам необходимо осуществить подстановку в исходное уравнение:

y ‘ = y 2 x 2 — 1 2 y x ⇔ z ‘ x + z = z 2 — 1 2 z ⇔ z ‘ x = z 2 — 1 2 z — z ⇔ z ‘ x = z 2 — 1 — 2 z 2 2 z ⇔ d z d x x = — z 2 + 1 2 z ⇔ 2 z d z z 2 + 1 = — d x x

Так мы пришли к ДУ с разделенными переменными. Найдем его решение:

∫ 2 z d z z 2 + 1 = — ∫ d x x ∫ 2 z d z z 2 + 1 = ∫ d ( z 2 + 1 ) z 2 + 1 = ln z 2 + 1 + C 1 — ∫ d x x = — ln x + C 2 ⇒ ln z 2 + 1 + C 1 = — ln x + C 2

Для этого уравнения мы можем получить решение в явном виде. Для этого примем — ln C = C 2 — C 1 и применим свойства логарифма:

ln z 2 + 1 = — ln x + C 2 — C 1 ⇔ ln z 2 + 1 = — ln x — ln C ⇔ ln z 2 + 1 = — ln C x ⇔ ln z 2 + 1 = ln C x — 1 ⇔ e ln z 2 + 1 = e ln 1 C x ⇔ z 2 + 1 = 1 C x ⇔ z ± 1 C x — 1

Теперь выполним обратную замену y = x ⋅ z и запишем общее решение исходного ДУ:

y = ± x · 1 C x — 1

В даном случае правильным будет и второй вариант решения. Мы можем использовать замену z = x y Рассмотрим этот вариант более подробно.

Выполним деление числителя и знаменателя дроби, расположенной в правой части записи уравнения на y 2 :

y ‘ = y 2 — x 2 2 x y ⇔ y ‘ = 1 — x 2 y 2 2 x y

Тогда y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Проведем подстановку в исходное уравнение для того, чтобы получить ДУ с разделяющимися переменными:

y ‘ = 1 — x 2 y 2 2 x y ⇔ z — z ‘ x z 2 = 1 — z 2 2 z

Разделив переменные, мы получаем равенство d z z ( z 2 + 1 ) = d x 2 x , которое можем проинтегрировать:

∫ d z z ( z 2 + 1 ) = ∫ d x 2 x

Если мы разложим подынтегральную функцию интеграла ∫ d z z ( z 2 + 1 ) на простейшие дроби, то получим:

∫ 1 z — z z 2 + 1 d z

Выполним интегрирование простейших дробей:

∫ 1 z — z z 2 + 1 d z = ∫ z d z z 2 + 1 = ∫ d t z — 1 2 ∫ d ( z 2 + 1 ) z 2 + 1 = = ln z — 1 2 ln z 2 + 1 + C 1 = ln z z 2 + 1 + C 1

Теперь найдем интеграл ∫ d x 2 x :

∫ d x 2 x = 1 2 ln x + C 2 = ln x + C 2

В итоге получаем ln z z 2 + 1 + C 1 = ln x + C 2 или ln z z 2 + 1 = ln C · x , где ln C = C 2 — C 1 .

Выполним обратную замену z = x y и необходимые преобразования, получим:

y = ± x · 1 C x — 1

Вариант решения, при котором мы выполняли замену z = x y , оказался более трудоемким, чем в случае замены z = y x . Этот вывод будет справедлив для большого количества уравнений вида y ‘ = f x y или y ‘ = f y x . Если выбранный вариант решения подобных уравнений оказывается трудоемким, можно вместо замены z = x y ввести переменную z = y x . На результат это никак не повлияет.

Дифференциальные уравнения, сводящиеся к уравнениям с разделяющимися переменными y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 , a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ∈ R

Дифференциальные уравнения y ‘ = f a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 можно свести к уравнениям y ‘ = f x y или y ‘ = f y x , следовательно, к уравнениям с разделяющимися переменными. Для этого находится ( x 0 , y 0 ) — решение системы двух линейных однородных уравнений a 1 x + b 1 y + c 1 = 0 a 2 x + b 2 y + c 2 = 0 и вводятся новые переменные u = x — x 0 v = y — y 0 . После такой замены уравнение примет вид d v d u = a 1 u + b 1 v a 2 u + b 2 v .

Найти общее решение дифференциального уравнения y ‘ = x + 2 y — 3 x — 1 .

Составляем и решаем систему линейных уравнений:

x + 2 y — 3 = 0 x — 1 = 0 ⇔ x = 1 y = 1

Делаем замену переменных:

u = x — 1 v = y — 1 ⇔ x = u + 1 y = v + 1 ⇒ d x = d u d y = d v

После подстановки в исходное уравнение получаем d y d x = x + 2 y — 3 x — 1 ⇔ d v d u = u + 2 v u . После деления на u числителя и знаменателя правой части имеем d v d u = 1 + 2 v u .

Вводим новую переменную z = v u ⇒ v = z · y ⇒ d v d u = d z d u · u + z , тогда

d v d u = 1 + 2 v u ⇔ d z d u · u + z = 1 + 2 z ⇔ d z 1 + z = d u u ⇒ ∫ d z 1 + z = ∫ d u u ⇔ ln 1 + z + C 1 = ln u + C 2 ⇒ ln 1 + z = ln u + ln C , ln C = C 2 — C 1 ln 1 + z = ln C · u 1 + z = C · u ⇔ z = C · u — 1 ⇔ v u = C · u — 1 ⇔ v = u · ( C · u — 1 )

Возвращаемся к исходным переменным, производя обратную замену u = x — 1 v = y — 1 :
v = u · ( C · u — 1 ) ⇔ y — 1 = ( x — 1 ) · ( C · ( x — 1 ) — 1 ) ⇔ y = C x 2 — ( 2 C + 1 ) · x + C + 2

Это есть общее решение дифференциального уравнения.

Как решать уравнения, приводимые к уравнениям с разделяющимися переменными

Рассмотрим, как решать уравнения вида y’=f(ax+by+c), где a,b,c — некоторые числа. Это — дифференциальные уравнения, приводимые к уравнениям с разделяющимися переменными.

Такие уравнения приводятся к уравнениям с разделяющимися переменными с помощью замены z=ax+by+c. Дифференцируем обе части этого равенства по иксу:

Поскольку x’=1, а так как y’=f(ax+by+c), то y’=f(z).

Соответственно, получаем, что

При условии a+bf(z)≠0 переменные можем разделить:

Интегрируем полученное уравнение

В полученном решении возвращаемся к исходным переменным z=ax+by+c.

Если a+bf(z)=0, то значит, и dz/dx=0, то ax+by+c=С.

Решить уравнение y’=(x+y+1)².

Решение: Замена z=x+y+1. Тогда dz/dx=1+dy/dx, а так как dy/dx=y’=(x+y+1)²=z², то dz/dx=1+z². Разделяем переменные, для этого обе части делим на 1+z² (это выражение не равно нулю при любом z) и умножаем на dx:

arctgz=x+C. Так как z=x+y+1, то общее решение arctg(x+y+1)=x+C, откуда arctg(x+y+1)-x=C.


источники:

http://zaochnik.com/spravochnik/matematika/differentsialnye-uravnenija/differentsialnye-uravnenija-s-razdeljajuschimisja/

http://www.matematika.uznateshe.ru/kak-reshat-uravneniya-privodimye-k-uravneniyam-s-razdelyayushhimisya-peremennymi/