Два уравнения называют равносильными если он

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Равносильные уравнения, преобразование уравнений

Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.

Понятие равносильных уравнений

Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.

Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.

Уравнение f ( x ) = g ( x ) считается равносильным уравнению r ( x ) = s ( x ) , если у них одинаковые корни или у них обоих нет корней.

Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.

Если уравнение f ( x ) = g ( x ) имеет то же множество корней, что и уравнение p ( x ) = h ( x ) , то они считаются равносильными по отношению друг к другу.

Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.

Приведем несколько примеров таких уравнений.

Например, равносильными будут 4 · x = 8 , 2 · x = 4 и x = 2 , поскольку каждое из них имеет только один корень – двойку. Также равносильными будут x · 0 = 0 и 2 + x = x + 2 , поскольку их корнями могут быть любые числа, то есть множества их решений совпадают. Также равносильными будут уравнения x = x + 5 и x 4 = − 1 , каждое из которых не имеет ни одного решения.

Для наглядности рассмотрим несколько примеров неравносильных уравнений.

К примеру, таковыми будут x = 2 и x 2 = 4 , поскольку их корни отличаются. То же относится и к уравнениям x x = 1 и x 2 + 5 x 2 + 5 , потому что во втором решением может быть любое число, а во втором корнем не может быть 0 .

Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.

Возьмем примеры уравнений, которые содержат несколько переменных и являются равносильными друг другу. Так, x 2 + y 2 + z 2 = 0 и 5 · x 2 + x 2 · y 4 · z 8 = 0 включают в себя по три переменных и имеют только одно решение, равное 0 , во всех трех случаях. А пара уравнений x + y = 5 и x · y = 1 равносильной по отношению друг к другу не будет, поскольку, например, значения 5 и 3 подойдут для первого, но не будут решением второго: при подстановке их в первое уравнение мы получим верное равенство, а во второе – неверное.

Понятие уравнений-следствий

Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.

Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.

Два уравнения называют равносильными если он

Пусть даны два уравнения:

$f_1 (x) = f_2 (x)$, (1)
$\phi_1 (x) = \phi_2 (x)$. (2)

Уравнение (2) назовем следствием уравнения (1), если каждый корень уравнения (1) является также корнем уравнения (2), иначе говоря, если множество корней уравнения (1) входит во множество корней уравнения (2).

Пример. Рассмотрим два уравнения:

$x + 1 = 3, x^ <2>+ 2x + 1 = 9$

(второе, как легко заметить, получено возведением обеих частей первого уравнения в квадрат).

Второе уравнение является следствием первого; в самом деле, число 2 есть единственный корень первого уравнения и, как легко проверить, является корнем также и второго уравнения; между тем число (—4) служит корнем второго уравнения, но не является корнем первого уравнения. Итак, по определении), второе уравнение есть следствие первого уравнения.

Переход от одного уравнения к другому, являющемуся его следствием, удобен, если это новое уравнение проще решить. В этом случае, найдя все его корни, мы подстановкой этих корней в исходное уравнение проверим, какие из них ему удовлетворяют, и тем самым найдем все его решения. На этом приеме основано, например, решение некоторых иррациональных уравнений.

Еще более существенным является понятие равносильности двух уравнений.

Ясно, что два уравнения, порознь равносильные третьему, равносильны друг другу.

Если два уравнения не имеют корней (множества их решений пусты), то их также естественно считать равносильными: все уравнения, не имеющие решений, равносильны между собой.

В процессе решения уравнений часто производятся действия, в результате которых данное уравнение заменяется другим (обычно более простым), ему равносильным. Такой переход от одного уравнения к другому может выполняться на основе следующих утверждений.

Теорема 1. Если к обеим частям уравнения прибавить выражение (функцию), имеющее смысл во всей о. д. з. данного уравнения, то получится уравнение, равносильное данному.

Иначе говоря, если дано уравнение

$f_1 (х) + \phi (x) = f_2 (x) + \phi (x)$ (4),

где $\phi (x)$ имеет смысл в о. д. з. уравнения (3), равносильно уравнению (3).

Доказательство. При каждом числовом значении $x = x_0$ из о. д. з. равенство

$f_1 (х_0) + \phi (x_0) = f_2 (x_0) + \phi (x_0)$

будет иметь место в том и только в том случае, когда имеет место равенство

множества решений для обоих уравнений совпадают, уравнения равносильны. В частности, если не имеет решений одно из них, то не имеет решений и другое.

Из теоремы 1 вытекает правило о возможности переносить члены уравнения из одной части в другую (с надлежащей переменой знака). Так, уравнение (3) всегда можно записать в равносильной ему форме:

Равносильность уравнений (3) и (5) следует из теоремы 1 (достаточно к обеим частям уравнения (3) прибавить $-f_2 (x)$, но можно обосновать ее и прямо, исходя из определения равносильности уравнений. Если $x_0$ — некоторое значение $x$, входящее в о.д.з. обоих выражений $f_1(x)$ и $f_2 (x)$, то равенство $f_1 (x_0) = f_2 (x_0)$ будет выполняться тогда и только тогда, когда будет выполняться равенство $f_1 (x_0) — f_2 (x_0) = 0$ (два числа равны, если их разность равна нулю, и обратно).

Если обозначить $f_1(x) — f_2(x)$ через $f (x)$, то уравнение (5) сведется к виду

В дальнейшем, как правило, мы будем уже рассматривать уравнение в этой форме, т. е. с нулевой правой частью.

В порядке предостережения против необдуманного применения теоремы 1 приведем одни простой пример. Уравнение

может быть (перенос членов из одной части в другую) записано в равносильной форме:

Однако уже «естественное» упрощение, состоящее в приведении подобных членов $1/x$ и $-1/x$, дает уравнение

не равносильное исходному: оно имеет корень $x = 0$, который не принадлежит о. д. з. уравнения (7) и не является его корнем. Конечно, незаконным здесь был не перенос члена из правой части в левую, а приведение подобных членов, в результате которого изменилась о. д. з. уравнения.

Теорема 2. От умножения обеих частей уравнения на отличное от нуля число $а$ или на выражение $\phi (x)$, которое при всех допустимых значениях $x$ имеет смысл и не обращается в нуль, образуются уравнения, равносильные данному уравнению.

Так, умножив обе части уравнения (3) на $а$ или на $\phi (x)$, получим уравнения

$a f_1 (x) = a f_2 (x)$

$\phi (x) f_1 (x) = \phi (x) f_2 (x)$,

каждое из которых равносильно уравнению (3).

Доказательство этой теоремы сходно с доказательством теоремы 1 и предоставляется читателю. Следует также заметить, что при проведении преобразований частей уравнения после умножения на множитель $\phi (x)$ часто происходит изменение о. д. з. и может нарушиться равносильность уравнений.

Практически в процессе решения уравнений иногда приходится производить и умножение на выражения $\phi (x)$, могущие обращаться в нуль при некоторых значениях $x$. Тогда уравнение

будет иметь нули функции $\phi (x)$ своими корнями (хотя исходное уравнение (3) могло и не иметь таких корней). Корни уравнения (8), не являющиеся корнями уравнения (3), называют посторонними корнями, и при записи ответа они должны быть отброшены.

Появление посторонних корней возможно и при возведении частей уравнения в одну и ту же степень, как это случилось с рассмотренным выше уравнением $x + 1 = 3$: по возведении его в квадрат образовалось уравнение $x^2 + 2x +1 = 9$, корень (-4) которого оказался посторонним для исходного уравнения.

Вообще, в процессе решения уравнения часто трудно соблюсти требование равносильности; наиболее важно не терять корней уравнения, т. е. от данного уравнения переходить к таким уравнениям, которые являются его следствиями. Возможные посторонние корни могут быть отброшены после проверки их подстановкой в исходное уравнение.

В связи с этим обратим внимание на прием решения уравнений путем разложения их левой части на множители. Пусть в уравнении $f (x) = 0$ левая часть представляется в виде произведения $f (x) = \phi (x) \varphi (x)$ и уравнение принимает вид

$\phi (x) \varphi (x) = 0$.

Множество корней этого уравнения является объединением множеств корней двух отдельных уравнений:

$\phi (x) = 0$ и $\varphi (x) = 0$

(действительно, произведение $\phi(x) \varphi(x)$ будет обращаться в нуль при тех и только тех значениях $x$, при которых обращается в нуль хотя бы один из сомножителей $\phi(x), \varphi(x)$). Поэтому исключительно грубой (хотя часто допускаемой учащимися) ошибкой является «сокращение» обеих частей уравнения на их общий множитель. В записи

$\phi (x) f_1 (x) = \varphi (x) f_2 (x)$ (8)

ни в коем случае нельзя отбрасывать $\phi (x)$, а следует рассуждать так: переносим члены в левую часть уравнения и выносим $\phi (x)$ за скобки:

$\phi (x) [f_1 (x) — f_2 (x)] = 0$.

Теперь видно, что решениями нашего уравнения (8) будут как корни уравнения $f_1 (x) = f_2 (x)$, так и корни уравнения $\phi (x) = 0$.


источники:

http://zaochnik.com/spravochnik/matematika/systems/ravnosilnye-uravnenija-preobrazovanie-uravnenij/

http://earthz.ru/science/Ravnosilnye-uravnenija