Две системы линейных уравнений являются эквивалентными если

Эквивалентные системы линейных уравнений

Две системы линейных уравнений от одного набора x1. xn неизвестных и соответственно из m и p уравнений

называются эквивалентными, если их множества решений и совпадают (т. е. подмножества и в Kn совпадают, ). Это означает, что: либо они одновременно являются пустыми подмножествами (т. е. обе системы (I) и (II) несовместны), либо они одновременно непустые , и (т. е. каждое решение системы I является решением системы II и каждое решение системы II является решением системы I).

Элементарные преобразования систем линейных уравнений (строк матриц)

Определение 3.4.1 (элементарное преобразование 1-го типа). При к i -му уравнению системы прибавляется k -е уравнение, умноженное на число (обозначение: (i)’=(i)+c(k) ; т. е. лишь одно i -е уравнение (i) заменяется на новое уравнение (i)’=(i)+c(k) ). Новое i -е уравнение имеет вид (ai1+cak1)x1+. +(ain+cakn)xn=bi+cbk, или, кратко,

т. е. в новом i -м уравнении aij’=aij+cakj, bi’=bi+cbk.

Определение 3.4.2 (элементарное преобразование 2-го типа). При i -е и k -е уравнение меняются местами, остальные уравнения не изменяются (обозначение: (i)’=(k), (k)’=(i) ; для коэффициентов это означает следующее: для j=1. n

53. Метод Гаусса решения систем линейных уравнений
Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса, состоящий в последовательном исключении неизвестных по следующей схеме. Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали, содержащей элементы будут располагаться нули. Разрешается: 1) изменять порядок строк матрицы, что соответствует изменению порядка уравнений; 2) умножать строки на любые отличные от нуля числа, что соответствует умножению соответствующих уравнений на эти числа; 3) прибавлять к любой строке матрицы другую, умноженную на отличное от нуля число, что соответствует прибавлению к одному уравнению системы другого, умноженного на число. С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т. е. такой системы, решение которой совпадает с решением исходной системы. Рассмотрим метод Гаусса на примерах. Пример 14. Установить совместность и решить систему Решение. Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент равнялся единице (так удобнее производить преобразования матрицы). . Имеем Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно. Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований: Итак, имеем Далее, подставляя в третье уравнение, найдем Подставляя и во второе уравнение, получим и, наконец, подставляя в первое уравнение найденные получим Таким образом, имеем решение системы 54. Однородные системы линейных уравнений Однородной системой m линейных уравнений с n неизвестными называется система вида
      
a11x1 + a12x2 + … + a1nxn = 0
a21x1 + a22x2 + … + a2nxn = 0
… … … … … … … … … … …
am1x1 + am2x2 + … + amnxn = 0
(1)

Эта система может быть записана в виде матричного уравнения

и операторного уравнения

^Ax = θ(2)

Система (1) всегда совместна, так как:

имеет очевидное решение x10 = x20 = … = xn0 = 0 , которое называется нулевым, или тривиальным;

добавление нулевого столбца не меняет ранга матрицы, следовательно, выполняется достаточное условие теоремы Кронекера–Капелли;

θ О Img ^A , так как Img ^A — линейное пространство.

Естественно, нас интересуют нетривиальные решения однородной системы.

Условие нетривиальной совместности:

Для того, чтобы однородная система имела нетривиальное решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных.

Доказательство см. в книге О.В. Зиминой «Линейная алгебра и аналитическая геометрия», стр. 77.

Следствие. Для того, чтобы однородная система n линейных уравнений с n неизвестными (матрица системы A — квадратная) имела нетривиальное решение, необходимо и достаточно, чтобы определитель матрицы этой системы был равен нулю ( det A = 0 ).

Общим решением системы линейных уравнений называется формула, которая определяет любое ее решение.

Так как система (1) эквивалентна операторному уравнению (2), то множество всех ее решений есть ядро оператора ^A . Пусть Ker ^A ≠ θ , Rg ^A = r и x1, x2, … , xn − r — базис в ядре оператора.

Фундаментальной системой решений однородной системы (1) называется базис ядра оператора ^A (точнее, координатные столбцы базисных векторов в Ker ^A ).

Это определение можно сформулировать несколько иначе:

Фундаментальной системой решений однородной системы (1) называется n − r линейно независимых решений этой системы.

Будем обозначать координатные столбцы базисных векторов в Ker ^A X1, X2, … , Xn − r .

Теорема о структуре общего решения однородной системы уравнений:

Любое решение однородной системы линейных уравнений определяется формулой

X = C1 · X1 + C2 · X2 + … + Cn − r · Xn − r,(3)

где X1, X2, … , Xn − r — фундаментальная система решений однородной системы линейных уравнений и C1, C2, … , Cn − r — произвольные постоянные.

Свойства общего решения однородной системы уравнений:

При любых значениях C1, C2, … , Cn − r X , определяемое формулой (3), является решением системы (1).

Каково бы ни было решение X0 , существуют числа C10, … , Cn − r0 такие, что

X0 = C10 · X1 + C20 · X2 + … + Cn − r0 · Xn − r.

Вывод: Чтобы найти фундаментальную систему и общее решение однородной системы, нужно найти базис ядра соответствующего линейного оператора.

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Системы линейных уравнений

Обозначим через $ \mathbb A_<> $ любое из множеств $ \mathbb Q_<>, \mathbb R_<> $ или $ \mathbb C_<> $.

Примеры систем уравнений над $ \mathbb R $.

Относительно числа $ m_<> $ уравнений не делается ни какого предположения: оно может быть меньше, больше или равно числу переменных $ n_<> $. Если $ m_<>>n $ то система называется переопределенной. Решением системы уравнений называется любой набор значений переменных $ x_1=\alpha_<1>,\dots, x_n = \alpha_n $, обращающий каждое из уравнений в истинное равенство. Система называется совместной если она имеет хотя бы одно решение и несовместной в противном случае.

Можно доказать (см. результаты ☟ НИЖЕ ), что все возможности для произвольной системы ограничиваются следующими вариантами:

1. система совместна и имеет единственное решение;

2. cистема совместна и имеет бесконечное множество решений;

3. cистема несовместна.

При этом все решения будут находиться в том же множестве $ \mathbb A_<> $, что и коэффициенты системы.

Матричная форма записи

Для системы линейных уравнений относительно переменных $ x_1,x_2,\dots,x_n $ $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=b_2,\\ \dots & & & & \dots \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=b_m. \end \right. $$ матрицей системы называется матрица $$ A=\left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right)_ \ ; $$ cтолбец $$ <\mathcal B>= \left( \begin b_ <1>\\ b_ <2>\\ \vdots \\ b_ \end \right) $$ называется столбцом правых частей системы, а столбец $$ X= \left( \begin x_ <1>\\ x_ <2>\\ \vdots \\ x_ \end \right) $$ — столбцом неизвестных. Используя правило умножения матриц, систему можно записать в матричном виде: $$ AX= <\mathcal B>\ . $$ Любое решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы можно также записать в виде столбца: $$ X=\left( \begin \alpha_1 \\ \vdots \\ \alpha_n \end \right) \in \mathbb A^n \ . $$ Матрица, составленная из всех коэффициентов системы уравнений: $$ [A \mid \mathcal B ]= \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ \ , $$ т.е. конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ называется расширенной матрицей системы л.у.

Исключение переменных (метод Гаусса)

метода достаточно проста.

Пример. Решить систему уравнений $$ \left\< \begin 2x_1&-3x_2&-x_3&=3 \\ 4x_1&-3x_2&-5x_3&=6 \\ 3x_1&+5x_2&+9x_3&=-8 \end \right. $$

Решение. Выразим из первого уравнения $ x_ <1>$ $$ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3> <2>$$ и подставим в оставшиеся уравнения $$ 4 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) -3\,x_2-5\,x_3=6 \ <\color\iff > \ 3x_2-3x_3 = 0 $$ $$ \ <\color\iff > \ x_2-x_3=0 \ ; $$ $$ 3 \left(\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>\right) +5x_2+9x_3=-8 \ <\color\iff > \ \frac<19> <2>x_2 +\frac<21><2>x_3=-\frac<25> <2>$$ $$ <\color\iff > 19x_2 +21x_3=-25 \ . $$ Два получившихся уравнения не зависят от неизвестной $ x_ <1>$ — она оказалась исключенной из этих уравнений. Иными словами, мы получили новую подсистему уравнений $$ \left\< \begin x_2&-x_3&=0 \\ 19x_2&+21x_3&=-25, \end \right. $$ которой должны удовлетворять неизвестные $ x_ <2>$ и $ x_ <3>$. Продолжаем действовать по аналогии: выразим из первого уравнения $ x_ <2>$ через $ x_ <3>$: $$x_2=x_3 $$ и подставим во второе: $$ 40 x_3 =-25 \ \iff \ x_3=-\frac<5> <8>\ . $$ Итак, значение одной компоненты решения получено. Для нахождения оставшихся подставим значение $ x_ <3>$ в полученные по ходу решения соотношения: $$ x_2=x_3=-\frac<5> <8>\ \Rightarrow \ x_1=\frac<3> <2>x_2+\frac<1> <2>x_3 + \frac<3><2>=\frac<1> <4>\ . $$

Ответ. $ x_<1>=1/4, x_2=-5/8, x_3=-5/8 $.

Теперь осталось формализовать изложенную идею метода (сформулировав допустимые правила действия над уравнениями — те, что в принципе, очевидны из здравого смысла ), а также исследовать возможные последствия его применения к системам общего вида.

Исключение переменных

Элементарными преобразованиями системы л.у. называются преобразования следующих трех типов:

1. перестановка двух уравнений;

2. умножение обеих частей уравнения на любое отличное от нуля число;

3. прибавление к одному уравнению любого другого, умноженного на произвольное число: пара уравнений $$ \begin a_x_1 +a_x_2+ \ldots+a_x_n &=&b_j,\\ a_x_1 +a_x_2+ \ldots+a_x_n &=&b_k \end $$ заменяется парой $$ \begin (a_+ <\color\lambda > a_) x_1 &+ (a_+ <\color\lambda > a_) x_2 &+ \ldots &+ (a_+ <\color\lambda > a_) x_n &=&b_j + <\color\lambda > b_k\, , \\ a_x_1 &+a_x_2&+ \ldots &+a_x_n &=&b_k \, . \end $$

Теорема. Любое элементарное преобразование системы л.у. переводит эту систему в ей эквивалентную, т.е. имеющую то же множество решений, что и исходная.

Задача. С помощью элементарных преобразований привести систему л.у. к наиболее простому виду: такому, из которого легко было бы установить множество решений.

Предположим, что первое уравнение системы содержит явно неизвестную $ x_ <1>$, т.е. $ a_<11>^<> \ne 0 $. Исключим эту неизвестную из всех оставшихся уравнений. С этой целью вычтем из второго уравнения первое, домноженное на $ a_<21>/a_<11>^<> $. Получим $$\left(a_<22>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<2n>— \frac>> a_ <1n>\right)x_n = b_2 — \frac>> b_1 \ , $$ Аналогичное преобразование — вычитание из третьего уравнения системы первого, умноженного на $ a_<31>/a_<11>^<> $, позволяет исключить $ x_ <1>$ из этого уравнения, т.е. заменить его на $$\left(a_<32>— \frac>> a_ <12>\right)x_2 + \dots + \left(a_<3n>— \frac>> a_ <1n>\right)x_n = b_3 — \frac>> b_1 \ . $$ Продолжаем процесс далее. В конечном итоге исключаем $ x_ <1>$ из всех уравнений кроме первого: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ &\dots & & & \dots \\ &a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>. \end \right. \ \ npu \ \ \begin a_^ <[1]>&= & \displaystyle a_ — \fraca_<1k>>> ,\\ b_j^ <[1]>&= & \displaystyle b_j — \fracb_1>> . \end $$ Полученная система эквивалентна исходной системе, однако она имеет более простой вид: в ней выделилась подсиcтема $$ \left\< \begin a_<22>^<[1]>x_2&+ \ldots&+a_<2n>^<[1]>x_n &=b_2^<[1]>,\\ \dots & & & \dots \\ a_^<[1]>x_2&+ \ldots&+a_^<[1]>x_n &=b_m^<[1]>, \end \right. $$ которая не зависит от переменной $ x_ <1>$. К этой новой подсистеме можно применить те же рассуждения, что и к исходной системе, поставив теперь целью исключение переменной $ x_ <2>$.

Понятно, что процесс исключения может быть продолжен и далее. Теперь посмотрим, где он может прерваться. Может так случиться, что очередная, $ \ell_<> $-я подсистема имеет коэффициент $ a_<\ell \ell>^ <[\ell-1]>$ равным нулю, что не позволит алгоритму идти дальше — т.е. исключить переменную $ x_<\ell>^<> $ из оставшихся уравнений (в принципе, такое могло случиться уже на первом шаге, если бы коэффициент $ a_<11>^<> $ был бы равен нулю). Возможные варианты дальнейших действий:

1. если хотя бы один коэффициент при $ x_<\ell>^<> $ в одном из оставшихся уравнений отличен от нуля: $ a_^<[\ell-1]>\ne 0^<> $, то это уравнение переставляется с $ \ell_<> $-м;

2. если при всех $ j\ge \ell^<> $ коэффициенты $ a_^ <[\ell-1]>$ равны нулю, то переменная $ x_<\ell>^<> $ не входит ни в одно оставшееся уравнение, и можно перейти к исключению переменной $ x_<\ell+1>^<> $.

Поскольку число переменных конечно, то алгоритм исключения должен завершиться за конечное число шагов. Чем он может завершиться? Окончательная система должна иметь вид: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2&+ \ldots& +a_<1 <\mathfrak r>>x_<\mathfrak r>& +a_ <1 ,<\mathfrak r>+1>x_<<\mathfrak r>+1>&+ \ldots + & a_<1n>x_n &=b_1,\\ &a_<22>^<[1]>x_2&+ \ldots& +a_<2 <\mathfrak r>>^ <[1]>x_<\mathfrak r>& +a_<2 ,<\mathfrak r>+1>^ <[1]>x_<<\mathfrak r>+1>&+ \ldots + & a_<2n>^ <[1]>x_n &=b_2^<[1]>,\\ & & \ddots & & & & & \dots \\ & & & a_ <<\mathfrak r><\mathfrak r>>^<[<\mathfrak r>-1]>x_ <\mathfrak r>& + a_ <<\mathfrak r>, <\mathfrak r>+1>^<[<\mathfrak r>-1]>x_<<\mathfrak r>+1>& + \ldots + & a_ <<\mathfrak r>,n>^<[<\mathfrak r>-1]>x_n &=b_<\mathfrak r>^<[<\mathfrak r>-1]>, \\ & & & & & & 0 &=b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>, \\ & & & & & & \dots & \\ & & & & & & 0 &=b_^<[<\mathfrak r>-1]>, \\ \end \right. $$ при $ <\mathfrak r>\le n_<> $. Заметим, что все коэффициенты этой системы будут принадлежать тому же множеству, что и коэффициенты исходной системы.

Предположение . Мы будем считать, что каждое из первых $ <\mathfrak r>_<> $ уравнений системы содержит в своей левой части хотя бы одну переменную с ненулевым коэффициентом.

Процесс получения системы такого вида из исходной системы уравнений называется прямым ходом метода Гаусса.

Исторический комментарий о Гауссе ☞ ЗДЕСЬ.

Установление множества решений

Теорема. Если хотя бы одно из чисел $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>,\dots , b_^<[<\mathfrak r>-1]> $ отлично от нуля, то исходная система линейных уравнений будет несовместной.

Для простоты мы будем иллюстрировать наши рассуждения на системах л.у. над $ \mathbb R_<> $, в этом же множестве искать решения. Каждое из преобразований метода Гаусса будем обозначать $ \to_<> $.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ 2\,x_1&+x_2&-2\, x_3 =& 1 \\ x_1&+x_2&+ x_3 =& 3 \\ x_1&+2\,x_2&-3\, x_3 =& 1. \end \right. $$

Решение. $$ \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &x_2&=& 2 \end \right. \ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&4\, x_3=& 5 \end \right. \ \to \ $$ $$ \to \ \left\< \begin x_1&+x_2&-3\, x_3 =& -1 \\ &-x_2&+4\, x_3 =& 3 \\ &&4\, x_3 =& 4 \\ &&0=& 1 \end \right. $$ Последнее равенство абсолютно противоречиво.

Ответ. Система несовместна.

Пусть теперь $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $. Возможны два случая: $ <\mathfrak r>=n_<> $ и $ <\mathfrak r>предположения , имеем $ a_^ <[n-1]>\ne 0 $. Но тогда, поскольку система является конечной стадией прямого хода метода Гаусса, то и все коэффициенты $ a_^<[n-2]>, \dots, a_<22>^<[1]>, a_ <11>$ должны быть отличны от нуля — в противном случае метод Гаусса не остановился бы на системе такого вида; он называется треугольным: Из последнего уравнения системы можно однозначно установить значение $ x_ $: $$x_n=b_n^ <[n-1]>\big/ a_^ <[n-1]>\ .$$ Далее, подставляя это значение в $ (n-1) $-е уравнение системы, выражаем $ x_ $: $$ x_= \frac^ <[n-2]>— a_^<[n-2]>x_>< a_^<[n-2]>>= \frac< b_^ <[n-2]>— a_^ <[n-2]>b_n^ <[n-1]>\Big/ a_^<[n-1]>>< a_^<[n-2]>> . $$ Подставляем полученные значения для $ x_ $ и $ x_ $ в $ (n-2)_<> $-е уравнение системы, выражаем $ x_ $, и т.д., в конце концов приходим к первому уравнению, из которого выражаем $ x_ <1>$ если ранее уже получены выражения для $ x_2,\dots,x_ $.

Теорема. Если прямой ход метода Гаусса заканчивается треугольной системой, т.е. $ \mathfrak r = n_<> $ и $ b_<<\mathfrak r>+1>^<[<\mathfrak r>-1]>=0,<>\dots, b_^<[<\mathfrak r>-1]>=0 $, то исходная система линейных уравнений имеет единственное решение.

Пример. Решить систему л.у.

$$ \left\< \begin x_1&+3\,x_2&+ x_3 =&5 \\ 2\,x_1&+x_2&+ x_3 =& 2 \\ x_1&+x_2&+ 5\,x_3 =& -7 \\ 2\,x_1&+3\,x_2&-3\, x_3 =& 14. \end \right. $$

Ответ. $ x_1=1,\, x_<2>=2,\, x_3=-2 $ .

Исследуем теперь случай $ <\mathfrak r>1) : На основании предположения , в $ <\mathfrak r>$-м уравнении этой системы имеется хотя бы один ненулевой коэффициент в левой части, пусть $ a_ <<\mathfrak r><\mathfrak s>>^<[<\mathfrak r>-1]>\ne 0 $ — первый из них. Если $ <\mathfrak s>=n $, то из этого уравнения однозначно определится $ x_ $ $$ x_n=\alpha_n = b_<\mathfrak r>^<[<\mathfrak r>-1]> \big/ a_ <<\mathfrak r>n>^<[<\mathfrak r>-1]> \ . $$ Если же $ <\mathfrak s>предположения , в этом уравнении имеется хотя бы один ненулевой коэффициент в левой части; пусть $ a_<<\mathfrak r>-1, <\mathfrak k>>^<[<\mathfrak r>-2]>\ne 0_<> $ — первый из них. Поскольку мы преположили, что система является конечной стадией прямого хода метода Гаусса, то $ <\mathfrak k>по крайней мере две переменные, значения которых еще не были зафиксированы на предыдущих шагах. Это следует из предположения, что число уравнений $ <\mathfrak r>_<> $ меньше числа неизвестных $ n_<> $. Такое уравнение допускает бесконечное число решений, любое из которых в ходе дальнейших шагов может быть «доделано» до решения системы.

Теорема. Если прямой ход метода Гаусса заканчивается трапециевидной системой, т.е. $ \mathfrak r 2) матрицы $ A_<> $ (третьего порядка). Понятие определителя распространяется и на квадратные матрицы бóльших порядков; образно говоря, определитель — это функция элементов матрицы, отвечающая за единственность решения системы уравнений.

Дальнейший матричный анализ метода Гаусса ☞ ЗДЕСЬ.

Формулы Крамера

Рассмотрим систему линейных уравнений с квадратной матрицей $ A_<> $, т.е. такую, у которой число уравнений совпадает с числом неизвестных.

Теорема. Cистема

$$ \left\<\begin a_<11>x_1 +a_<12>x_2+\ldots+a_<1n>x_n &=&b_1\\ a_<21>x_1 +a_<22>x_2+\ldots+a_<2n>x_n &=&b_2\\ \ldots& & \ldots \\ a_x_1 +a_x_2+\ldots+a_x_n &=&b_n \end\right. $$ имеет единственное решение тогда и только тогда, когда определитель матрицы этой системы отличен от нуля: $$ \left| \begin a_ <11>& a_ <12>& \dots & a_ <1n>\\ a_ <21>& a_ <22>& \dots & a_ <2n>\\ \dots &&& \dots \\ a_ & a_ & \dots & a_ \end \right| \ne 0 \ . $$ В этом случае решение можно вычислить по формулами Крамера 3) : $$ x_k =\frac<\det \left[ A_<[1]>|\dots|A_<[k-1]>|<\mathcal B>|A_<[k+1]>|\dots|A_ <[n]>\right]> <\det A>\quad npu \quad k\in \ < 1,\dots,n \>\ . $$ Для получения значения $ x_ $ в числитель ставится определитель, получающийся из $ \det A_<> $ заменой его $ k_<> $-го столбца на столбец правых частей ( здесь $ <> | $ означает конкатенацию).

Доказательство ☞ ЗДЕСЬ

Пример. Решить систему уравнений

$$ \left\<\begin 2x_1& +3x_2&+11x_3&+5x_4 &=& \color2,\\ x_1& +x_2&+5x_3&+2x_4 &=& \color1 ,\\ 2x_1& +x_2&+3x_3&+2x_4 &=&\color<-3>,\\ x_1& +x_2&+3x_3&+4x_4 &=&\color<-3>. \end\right. $$

Решение. $$ x_1=\frac<\left|\begin \color2 & 3&11&5 \\ \color1 & 1&5&2 \\ \color<-3>& 1&3&2 \\ \color <-3>& 1&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<-28><14>=-2, x_2=\frac<\left|\begin 2& \color2&11&5 \\ 1& \color1&5&2 \\ 2& \color<-3>&3&2 \\ 1& \color<-3>&3&4 \end\right|> <\left|\begin 2& 3&11&5 \\ 1& 1&5&2 \\ 2& 1&3&2 \\ 1& 1&3&4 \end\right|>=\frac<0><14>=0, \dots $$ Найдите оставшиеся компоненты решения. ♦

Решение системы линейных уравнений с квадратной матрицей $ A_<> $ является непрерывной функцией коэффициентов этой системы при условии, что $ \det A_<> \ne 0 $.

Кроме того, формулы Крамера начинают конкурировать по вычислительной эффективности с методом Гаусса в случае систем, зависящих от параметра. Подробнее ☞ ЗДЕСЬ.

Еще один способ решения системы основан на построении обратной матрицы: $$ AX= <\mathcal B>\quad \Rightarrow \quad X=A^<-1> <\mathcal B>\ . $$ Этот способ малоэффективен при фиксированных числовых $ A_<> $ и $ <\mathcal B>_<> $.

Найти достаточное условие существования общего решения систем уравнений:

$$ A_1 X = <\mathcal B>_1 \quad u \quad A_2 Y = <\mathcal B>_2 \ , $$ при квадратных матрицах $ A_1 $ и $ A_2 $ одинакового порядка.

Теорема Кронекера-Капелли

Матрица, получающаяся конкатенацией матрицы $ A_<> $ и столбца правых частей $ <\mathcal B>_<> $ $$ [ A| <\mathcal B>] = \left( \begin a_ <11>& a_ <12>& \dots & a_ <1n>& b_1 \\ a_ <21>& a_ <22>& \dots & a_ <2n>& b_2 \\ \dots &&& & \dots \\ a_ & a_ & \dots & a_ & b_m \end \right)_ $$ называется расширенной матрицей системы линейных уравнений $ AX= <\mathcal B>$.

Теорема [Кронекер, Капелли]. Система $ AX= <\mathcal B>$ совместна тогда и только тогда, когда ранг матрицы этой системы совпадает с рангом ее расширенной матрицы:

$$ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] \ . $$ При выполнении этого условия, система имеет единственное решение, если число неизвестных $ n_<> $ совпадает с общим значением ранга $ \mathfrak r_<> $, и бесконечное множество решений, если $ n_<> $ больше этого значения.

Доказательство необходимости. Пусть существует решение $ x_1=\alpha_1,\dots,x_n=\alpha_n $ системы, тогда $$\alpha_1 A_<[1]>+\dots+\alpha_n A_<[n]>= <\mathcal B>\ ,$$ т.е. столбец $ <\mathcal B>$ линейно выражается через столбцы $ A_<[1]>,\dots,A_ <[n]>$. Но тогда $$ \operatorname \,\dots,A_<[n]>\>=\operatorname \,\dots,A_<[n]>,<\mathcal B>\> .$$ Следовательно $ \operatorname\, A = \operatorname\, [ A| <\mathcal B>] $.

Доказательство достаточности проводится в следующем пункте. ♦

Пример. Исследовать совместность системы уравнений

Решение. В этом примере число уравнений совпадает с числом неизвестных. Это обстоятельство несколько облегчает рассуждения. Обратимся к замечанию из предыдущего пункта: система л.у. с числом уравнений, совпадающем с числом неизвестных, как правило, совместна. Тогда попробуем установить условия, обеспечивающие противоположное свойство — несовместность. Оно, фактически, единственно: за все отвечает определитель системы $ \det A_<> $. Если он отличен от нуля — система совместна. $$\det A = \left| \begin<\color<\lambda>> &1&1&1 \\ 1&<\color<\lambda>>&1&1 \\ 1&1&<\color<\lambda>>&1 \\ 1&1&1&<\color<\lambda>> \end \right|= \left| \begin (<\color<\lambda>>-1) &(1-<\color<\lambda>>)&0&0 \\ 0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>)&0 \\ 0&0&(<\color<\lambda>>-1)&(1-<\color<\lambda>>) \\ 1&1&1&<\color<\lambda>> \end \right| =(<\color<\lambda>>-1)^3 \left| \begin 1 &-1&0&0 \\ 0&1&-1&0 \\ 0&0&1&-1 \\ 1&1&1&<\color<\lambda>> \end \right|= $$ $ =(<\color<\lambda>>-1)^3(<\color<\lambda>>+3) $. По теореме Крамера при $ <\color<\lambda>>\ne 1 $ и при $ <\color<\lambda>>\ne -3 $ решение системы единственно: $$x_1=x_2=x_3=x_4=1/(<\color<\lambda>>+3) \ .$$

Осталось исследовать критические случаи: $ <\color<\lambda>>=1_<> $ и $ <\color<\lambda>>= -3 $: определитель системы обращается в нуль, но система может оказаться совместной. Придется вычислять ранги, но, к счастью, уже числовых матриц (а не зависящих от параметра, как исходная!). При $ <\color<\lambda>>= 1_<> $ имеем $$ \operatorname \left( \begin 1 &1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \\ 1&1&1&1 \end \right)= \operatorname \left( \begin 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \\ 1&1&1&1&1 \end \right)=1 \ , $$ и система совместна. Она эквивалентна единственному уравнению $$x_1+x_2+x_3+x_4=1 \ ,$$ которое имеет бесконечно много решений.

При $ <\color<\lambda>>= -3 $: $$ \operatorname \left( \begin -3 &1&1&1 \\ 1&-3&1&1 \\ 1&1&-3&1 \\ 1&1&1&-3 \end \right)=3,\quad \operatorname \left( \begin -3 &1&1&1&1 \\ 1&-3&1&1&1 \\ 1&1&-3&1&1 \\ 1&1&1&-3&1 \end \right)=4 $$ и система несовместна.

Ответ. Система несовместна при $ <\color<\lambda>> = -3 $; она имеет бесконечное множество решений при $ <\color<\lambda>> = 1_<> $ и единственное решение при $ <\color<\lambda>> \not\in \ <-3,1\>$.

Система однородных уравнений

$$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0 \end \right. $$ всегда совместна: она имеет тривиальное решение $ x_1=0,\dots,x_n=0 $. Для того, чтобы у нее существовало еще и нетривиальное решение необходимо и достаточно, чтобы определитель ее матрицы был равен нулю.

Пример. Найти условие, при котором три точки плоскости с координатами $ (x_1,y_1), (x_2,y_2) $ и $ (x_3,y_<3>) $ лежат на одной прямой.

Решение. Будем искать уравнение прямой в виде $ ax+by+c=0 $ при неопределенных коэффициентах $ a,b,c_<> $. Если точки лежат на прямой, то получаем для определения этих коэффициентов систему линейных уравнений: $$ \left\< \begin ax_1+by_1+c & =0\\ ax_2+by_2+c & =0\\ ax_3+by_3+c & =0 \end \right. $$ Получившаяся система является однородной, условие существования у нее нетривиального решения (т.е. набора $ (a,b,c)_<> $ при хотя бы одном из чисел отличном от нуля): $$ \left|\begin x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end \right|=0 . $$ ♦

Доказать, что для совместности системы

$$ \left\< \begin a_<11>x_1+a_<12>x_2+a_<13>x_3 &=& b_1 \\ a_<21>x_1+a_<22>x_2+a_<23>x_3 &=& b_2 \\ a_<31>x_1+a_<32>x_2+a_<33>x_3 &=& b_3 \\ a_<41>x_1+a_<42>x_2+a_<43>x_3 &=& b_4 \end \right. $$ необходимо, чтобы было выполнено условие $$ \left| \begin a_<11>&a_<12>& a_ <13>& b_1 \\ a_<21>&a_<22>& a_ <23>& b_2 \\ a_<31>&a_<32>& a_ <33>& b_3 \\ a_<41>&a_<42>& a_ <43>& b_4 \end \right|=0 \quad . $$ Является ли это условие достаточным для совместности?

An elementary treatise on determinants

в следующей формулировке.

Теорема. Для того чтобы система $ n_<> $ неоднородных уравнений была совместна, необходимо и достаточно, чтобы порядок наибольшего отличного от нуля минора был одинаков в расширенной и нерасширенной матрице системы.

Додсон — один из самых знаменитых математиков мира. Назовите его псевдоним.

Ответ ☞ ЗДЕСЬ

Общее решение

Пусть выполнено условие теоремы Кронекера-Капелли: $ \operatorname (A)=\operatorname[A\mid \mathcal B ] =\mathfrak $. По определению ранга матрицы, в матрице $ A $ существует минор порядка $ \mathfrak $, отличный от нуля; этот же минор останется и минором расширенной матрицы $ [ A\mid \mathcal B ] $. Пусть, для определенности, ненулевой минор находится в левом верхнем углу матрицы 4) : $$ \Delta = A\left( \begin 1 & 2 & \dots & \mathfrak \\ 1 & 2 & \dots & \mathfrak \end \right) = \left| \begin a_ <11>& a_ <12>& \dots & a_<1\mathfrak> \\ a_ <21>& a_ <22>& \dots & a_<2\mathfrak> \\ \dots &&& \dots \\ a_<\mathfrak1> & a_<\mathfrak2> & \dots & a_ <\mathfrak\mathfrak> \end \right| \ne 0 \ . $$ Тогда первые $ \mathfrak $ строк матрицы $ A $ линейно независимы, а остальные будут линейно выражаться через них. Это же утверждение будет справедливо и для строк матрицы $ [A\mid \mathcal B] $. Умножая первые $ \mathfrak $ уравнений системы на соответствующие числа и складывая их, получим любое оставшееся уравнение. Таким образом, система уравнений может быть заменена эквивалентной ей системой из первых $ \mathfrak $ уравнений: $$ \left\< \begin a_<11>x_1+\dots+a_<1\mathfrak>x_<\mathfrak>&+a_<1,\mathfrak+1>x_<\mathfrak+1>+ \dots +a_<1n>x_n&=&b_1, \\ \dots & & & \dots \\ a_<\mathfrak1>x_1+\dots+a_<\mathfrak\mathfrak>x_<\mathfrak>& +a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n&=&b_\mathfrak \end \right. \quad \iff \quad A^ <\prime>X=<\mathcal B>^ <\prime>$$ Если $ \mathfrak=n $, то матрица $ A^ <\prime>$ квадратная. По предположению $ \det A^ <\prime>\ne 0 $. По теореме Крамера решение такой системы единственно.

Пусть теперь $ \mathfrak произвольных фиксированных значениях $ x_<\mathfrak+1>,\dots,x_n $: $$ x_j=\frac< \left| \begin a_ <11>& \dots &a_ <1,j-1>&\left[ b_1-(a_<1,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<1n>x_n) \right] &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \dots &&&\dots&&& \dots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & \left[ b_<\mathfrak>- (a_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots +a_<\mathfrakn>x_n) \right] &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| > <\Delta>$$ $$ \mbox <при>\ j\in \<1,\dots, \mathfrak\> . $$ Таким образом, в этом случае система имеет бесконечное множество решений. Используя свойство линейности определителя по столбцу (см. свойство 5 ☞ ЗДЕСЬ ), формулы можно переписать в виде $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> \ . $$ Здесь $$ \beta_j =\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& b_1 &a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & b_<\mathfrak> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right|\, , $$ $$ \gamma_ = -\frac<1> <\Delta>\left| \begin a_ <11>& \dots &a_ <1,j-1>& a_ <1k>&a_<1,j+1>& \dots &a_<1\mathfrak> \\ \vdots &&&\vdots&&& \vdots \\ a_<\mathfrak1> & \dots &a_<\mathfrak,j-1> & a_<\mathfrakk> &a_<\mathfrak,j+1>& \dots &a_<\mathfrak\mathfrak> \end \right| \ . $$ Эти формулы называются общим решением системы $ A X=\mathcal B $. Участвующие в них переменные $ x_<\mathfrak+1>,\dots,x_n $ называются основными (или свободными), а $ x_1,\dots,x_<\mathfrak> $ — зависимыми. Решение, получающееся из общего решения фиксированием значений основных переменных, называется частным решением системы уравнений.

Пример. Исследовать совместность и найти общее решение системы уравнений:

Решение проведем двумя способами, соответствующими двум способам вычисления ранга матрицы. Вычисляем сначала ранг матрицы $ A $ по методу окаймляющих миноров: $$ |2| \ne 0,\quad \left| \begin 2 & 1 \\ 6 & 2 \end \right| \ne 0, \quad \left| \begin 2 & 1 & 2 \\ 6 & 2 & 4 \\ 4 & 1 & 1 \end \right|=2 \ne 0 \ , $$ а все миноры, окаймляющие последний, равны нулю. Итак, $ \operatorname (A) =3 $. Для нахождения ранга расширенной матрицы $ [A\mid \mathcal B] $ достаточно проверить окаймление найденного ненулевого минора третьего порядка с помощью элементов взятых из столбца правых частей. Имеется всего один такой минор, и он равен нулю. Следовательно $ \operatorname[ A\mid \mathcal B ] =3 $, система совместна, и имеет бесконечное множество решений.

Ненулевой минор третьего порядка (базисный минор) находится в первой, второй и четвертых строках, что означает линейную независимость соответствующих уравнений. Третье уравнение линейно зависит от остальных, и может быть отброшено. Далее, указанный базисный минор образован коэффициентами при $ x_1,x_3 $ и $ x_4 $. Следовательно оставшиеся уравнения могут быть разрешены относительно этих переменных, т.е. они — зависимые, а $ x_2 $ и $ x_5 $ — основные. Использование формулы дает общее решение $$ \begin x_1&=&\frac<\left| \begin 2 & 1 & 2 \\ 3 & 2 & 4 \\ 1 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin -1 & 1 & 2 \\ -3 & 2 & 4 \\ -2 & 1 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 3 & 1 & 2 \\ 5 & 2 & 4 \\ 2 & 1 & 1 \end \right|> <\displaystyle 2>=-\frac<1><2>+\frac<1><2>x_2+\frac<1><2>x_5, \\ & & \\ x_3&=&\frac<\left| \begin 2 & 2 & 2 \\ 6 & 3 & 4 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & -1 & 2 \\ 6 & -3 & 4 \\ 4 & -2 & 1 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 3 & 2 \\ 6 & 5 & 4 \\ 4 & 2 & 1 \end \right|><\displaystyle 2>=3-4x_5, \\ & & \\ x_4 &=&\frac<\left| \begin 2 & 1 & 2 \\ 6 & 2 & 3 \\ 4 & 1 & 1 \end \right|> <\displaystyle 2>-x_2\frac<\left| \begin 2 & 1 & -1 \\ 6 & 2 & -3 \\ 4 & 1 & -2 \end \right|> <\displaystyle 2>-x_5\frac<\left| \begin 2 & 1 & 3 \\ 6 & 2 & 5 \\ 4 & 1 & 2 \end \right|> <\displaystyle 2>= 0. \end $$ Решим теперь ту же задачу, воспользовавшись методом Гаусса исключения переменных в системе линейных уравнений: $$ \left\< \begin 2x_1&-x_2&+x_3&+2x_4&+3x_5&=&2, \\ &&x_3&+2x_4&+4x_5&=&3, \\ &&&x_4&&=&0 \end \right. $$ Используя обратный ход метода Гаусса, снова приходим к полученным формулам.

Ответ. Общее решение системы: $ x_1=1/2 (x_2+x_5-1),\ x_3=3-4\,x_5,\ x_4=0 $.

Проанализируем теперь полученные общие формулы для общего решения. В этих формулах $ \beta_j $ представляет решение системы, получаемое при $ x_<\mathfrak+1>=0,\dots,x_n=0 $. Величины же коэффициентов $ \gamma_ $ вовсе не зависят от правых частей системы и будут одинаковыми при любых значениях $ b_1,\dots,b_m $. В частности, если $ b_1=0,\dots,b_m=0 $, то в формулах величины $ \beta_j $ обращаются в нуль и эти формулы превращаются в $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$

Вывод. Формула общего решения системы $ A X=\mathcal B $: $$ x_j=\beta_j + \gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \ <1,\dots, \mathfrak\> $$ состоит из двух частей: слагаемые, не содержащие свободных переменных, определяют частное решение неоднородной системы: $$ x_1= \beta_1,\dots, x_<\mathfrak>= \beta_<\mathfrak>,x_<\mathfrak+1>=0,\dots,x_n=0 \ ; $$ оставшиеся после их отбрасывания формулы задают общее решение системы $ AX=\mathbb O $. Этот результат обобщается в следующей теореме.

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Доказательство тривиально если система $ A X=\mathcal B $ имеет единственное решение. Если же решений бесконечно много, то выбрав какое-то одно частное $ X=X_1 $ мы получаем, что любое другое частное решение $ X=X_2 $ должно быть связано с первым соотношением $$ A(X_2-X_1)=\mathbb O , $$ т.е. разность частных решений неоднородной системы обязательно является решением однородной системы уравнений $ AX=\mathbb O $. ♦

Теперь посмотрим как можно описать общее решение однородной системы.

Система однородных уравнений

Система линейных уравнений называется однородной, если все коэффициенты правых частей равны нулю: $$ \left\< \begin a_<11>x_1 &+a_<12>x_2&+ \ldots&+a_<1n>x_n &=0,\\ a_<21>x_1 &+a_<22>x_2&+ \ldots&+a_<2n>x_n &=0,\\ \dots & & & \dots & \\ a_x_1 &+a_x_2&+ \ldots&+a_x_n &=0. \end \right. $$ или, в матричном виде: $$ A_X=<\mathbb O>_ $$

Задача ставится о поиске нетривиального решения. Оно не всегда существует. Так, к примеру, если матрица $ A_<> $ системы — квадратная и имеет ненулевой определитель, то, согласно теореме Крамера, нетривиальных решений у однородной системы нет. Теорема Кронекера-Капелли утверждает, что условие $ \det (A_<>) = 0 $ является и достаточным для существования нетривиального решения.

Теорема 1. Для того, чтобы система однородных уравнений с квадратной матрицей $ A_<> $ имела нетривиальное решение необходимо и достаточно, чтобы $ \det (A_<>) = 0 $.

Для произвольной (не обязательно квадратной) матрицы $ A_<> $ имеет место следующий общий результат.

Теорема 2. Если $ \operatorname (A)=\mathfrak r 5) $ A_^<> $.

Теорема 3. Множество решений системы однородных уравнений образует линейное подпространство пространства $ \mathbb A^ $. Размерность этого подпространства равна $ n-\mathfrak r $, а фундаментальная система решений образует его базис.

Пусть матрица системы $ AX=\mathbb O $ квадратная и

$$ \operatorname (A) =n_<>-1 \, .$$ Доказать, что если ненулевой минор матрицы порядка $ n_<>-1 $ соответствует какому-нибудь элементу $ j_<> $-й строки, то система алгебраических дополнений к элементам $ a_,\dots,a_^<> $ этой строки составляет ФСР для $ AX=\mathbb O_<> $. Например, для системы $$ \left\< \begin a_<11>x_1 +a_<12>x_2+a_<13>x_3&=0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3&=0 \end \right. $$ ФСР состоит из решения $$ x_1=\left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| , \ x_2=-\left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right| , \ x_3=\left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ , $$ если только хотя бы один из миноров отличен от нуля.

Теперь обсудим способы нахождения ФСР.

1. Первый из них получается из общего метода решения системы линейных уравнений, рассмотренного в предыдущем пункте. Так же, как и в том пункте, сделаем упрощающее обозначения предположение, что зависимыми переменными являются первые $ x_<1>,\dots,x_ <\mathfrak r>$, т.е. общее решение задается формулами $$ x_j=\gamma_+1>x_<\mathfrak+1>+\dots+\gamma_x_n \ npu \ j\in \<1,\dots, \mathfrak\> \ . $$ Иными словами, вектор столбец $$ X=\left(\begin \gamma_<1,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<1n>x_n \\ \gamma_<2,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<2n>x_n \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1>x_<\mathfrak+1>+\dots+\gamma_<\mathfrakn>x_n \\ x_<\mathfrak+1> \\ x_<\mathfrak+2> \\ \vdots \\ x_ \end\right) $$ будет решением однородной системы при любых наборах значений основных переменных $ x_<\mathfrak+1>,\dots,x_ $. Представим этот вектор в виде суммы векторов: $$ =x_<\mathfrak+1> \underbrace< \left(\begin \gamma_<1,\mathfrak+1> \\ \gamma_<2,\mathfrak+1> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+1> \\ 1 \\ 0 \\ \vdots \\ 0 \end\right)>_ + x_<\mathfrak+2> \underbrace<\left(\begin \gamma_<1,\mathfrak+2> \\ \gamma_<2,\mathfrak+2> \\ \vdots \\ \gamma_<\mathfrak,\mathfrak+2> \\ 0 \\ 1 \\ \vdots \\ 0 \end\right)>_+\dots+ x_ \underbrace<\left(\begin \gamma_ <1n>\\ \gamma_ <2n>\\ \vdots \\ \gamma_<\mathfrakn> \\ 0 \\ 0 \\ \vdots \\ 1 \end\right)>_> \ . $$ Таким образом, любое решение однородной системы представимо в виде линейной комбинации $ n_<>— \mathfrak r $ фиксированных решений. Именно эти решения и можно взять в качестве ФСР — их линейная независимость очевидна (единицы в нижних частях каждого вектора $ X_ $ расположены на разных местах, и ни какая линейная комбинация столбцов $ \ < X_1,\dots,X_\> $ не сможет обратить их одновременно в нуль).

Оформим этот способ построения ФСР в теорему:

Теорема 4. Если система уравнений $ AX=\mathbb O $ имеет структуру матрицы $ A_<> $ вида:

$$ A = \left[ E_ <\mathfrak r>\mid P_ <\mathfrak r \times (n-\mathfrak r)>\right] \ , $$ то ее ФСР состоит из столбцов матрицы $$ \left[ \begin — P^ <\top>\\ \hline E_ \end \right] \ . $$

Пример. Найти ФСР для системы уравнений

Решение. Приводим систему к трапециевидному виду: $$ \left\< \begin x_1-&x_2+&x_3-&x_4=&0, \\ &&x_3+&4x_4=&0 \end \right. $$ В качестве зависимых переменных можно взять, например, $ x_ <1>$ и $ x_ <3>$. $$ \begin x_1 & x_3 & x_2 & x_4 \\ \hline 1 & 0 & 1 & 0 \\ 5 & -4 & 0 & 1 \end $$

2. Этот способ напоминает вычисление обратной матрицы методом приписывания единичной матрицы. Транспонируем матрицу $ A_<> $ системы и припишем к ней справа единичную матрицу порядка $ n_<> $: $$ \left[ A^ <\top>| E_n \right] = \left(\begin a_ <11>& a_ <21>& \dots & a_ & 1 & 0 & 0 & \dots & 0 \\ a_ <12>& a_ <22>& \dots & a_ & 0 & 1 & 0 & \dots & 0 \\ a_ <13>& a_ <23>& \dots & a_ & 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \vdots & \vdots & & & \ddots & \vdots \\ a_ <1n>& a_ <2n>& \dots & a_ & 0 & 0 & 0 & \dots & 1 \end \right) \ ; $$ здесь $ <> |_<> <> $ означает конкатенацию. Получившуюся матрицу элементарными преобразованиями строк приводим к форме: $$ \left( \begin \hat A & K \\ \mathbb O & L \end \right) = \left(\begin \color <\star>& * & * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & \color <\star>& * & \dots & * & * & * & * & * & * & * & \dots & * \\ 0 & 0 & \color <\star>& \dots & * & * & * & * & * & * & * & \dots & * \\ \vdots & & & \ddots & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & & 0 & \color <\star>& * & * & * & * & * & \dots & * \\ \hline 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \\ \vdots & & & & & \vdots & & & \vdots & & & & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 & 0 & \Box & \Box & \Box & \dots & \Box \end \right) \begin \left.\begin \\ \\ \\ \\ \\ \end\right\> \mathfrak r \\ \left. \begin \\ \\ \\ \end\right\> n — \mathfrak r \end \ . $$ Элементы трапециевидной матрицы $ \hat A $, обозначенные $ \color <\star>$, могут быть равны нулю, но $ \operatorname(\hat A)= \mathfrak r_<> $. В этом случае строки матрицы $ L_<> $, образовавшейся в правом нижнем углу (ее элементы обозначены $ \Box $), составляют ФСР для системы $ AX=\mathbb O $.

Пример. Найти ФСР для системы уравнений

$$ \left\< \begin x_1 &+2\,x_2&+ x_3&+3\,x_4&-x_5&+2\,x_6=&0,\\ -3x_1 &-x_2&+ 2\,x_3&-4\,x_4&+x_5&-x_6=&0,\\ x_1 &+x_2&+ 3\,x_3&+2\,x_4&+x_5&+3\,x_6=&0,\\ -8\,x_1 &-7\,x_2&+ 4\,x_3&-15\,x_4&+6\,x_5&-5\,x_6=&0,\\ 6x_1 &+5\,x_2& +5\,x_3&+11\,x_4 &&+9\,x_6=&0. \end \right. $$ Решение. Преобразуем матрицу $ \left[ A^ <\top>| E_6 \right] $

$$ \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 2 & -1 & 1 & -7 & 5 & & 1 \\ 1 & 2 & 3 & 4 & 5 & & & 1 \\ 3 & -4 & 2 & -15 & 11 &&&& 1 \\ -1 & 1 & 1 & 6 & 0 &&&&& 1 \\ 2 & -1 & 3 & -5 & 9 &&&&&& 1 \end \right)_ <6\times 11>$$ к трапециевидной форме с помощью элементарных преобразований строк: $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 5 & 2 & 12 & -1 &-1 &0 & 1 \\ 0 & 5 & -1 & 9 & -7 &-3&0&0& 1 \\ 0 & -2 & 2 & -2 & 6 &1&0&0&0& 1 \\ 0 & 5 & 1 & 11 & -3 &-2&0&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 8/5 & 8/5 & 16/5 &1/5&2/5&0&0& 1 \\ 0 & 0 & 2 & 2 & 4 &0&-1&0&0&0& 1 \end \right)\rightarrow $$ $$ \rightarrow \left(\begin 1 & -3 & 1 & -8 & 6 & 1 \\ 0 & 5 & -1 & 9 & -7 &-2 & 1 \\ 0 & 0 & 3 & 3 & 6 &1 &-1 & 1 \\ 0 & 0 & 0 & 0 & 0 &-1&-1&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-1/3&14/15&-8/15&0& 1 \\ 0 & 0 & 0 & 0 & 0 &-2/3&-1/3&-2/3&0& 0 & 1 \end \right) $$

3. Еще один способ построения ФСР основан на теореме Гамильтона-Кэли.

Теорема. Пусть матрица системы $ AX=\mathbb O $ квадратная и $ \operatorname (A) = <\mathfrak r>$. Тогда характеристический полином матрицы $ A_<> $ имеет вид:

Пример. Найти ФСР для системы уравнений

Решение. Здесь $$ A= \left( \begin 1 & 1 & -1 & -1 \\ 2 & 3 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end \right), \quad \det (A-\lambda E) = \lambda^2(\lambda^2-4\lambda+1), $$ $$ A^2-4A+E= \left( \begin 0 & 0 & 4 & 1 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end \right) $$

Блок-схемы зависимости множества решений системы уравнений $ AX= \mathcal B $ от комбинации чисел $ n, \mathfrak r $ ☞ ЗДЕСЬ.

Геометрическая интерпретация

Геометрический смысл введенных определений поясним на примере $ \mathbb R^ <3>$. Уравнение $$ a_1x_1+a_2x_2+a_3x_3=b $$ — при фиксированных вещественных коэффициентах $ a_1,a_2,a_3 $ (хотя бы один из них считаем отличным от нуля) и $ b_<> $ — задает плоскость. Если, к примеру, $ a_1\ne 0 $, то из уравнения получаем выражение для $ x_ <1>$ как функции $ x_2,x_3 $: $$ x_1=\frac-\fracx_2-\fracx_3 \ . $$ В этом представлении переменные $ x_ <2>$ и $ x_ <3>$ могут принимать любые вещественные значения независимо друг от друга, а вот переменная $ x_ <1>$ полностью определяется заданием $ x_ <2>$ и $ x_ <3>$. С одной стороны, последняя формула определяет общее решения системы линейных уравнений (которая в нашем частном случае состоит из одного-единственного уравнения); переменные $ x_ <2>$ и $ x_ <3>$ выбраны основными, а $ x_ <1>$ оказывается зависимой. Строго говоря, координаты любой точки плоскости можно представить формулами $$x_1=\frac-\fract-\fracu,\ x_2=t,\ x_3=u \quad npu \quad \\subset \mathbb R \ , $$ которые называются параметрическим представлением плоскости. Таким образом, получили геометрическую интерпретацию общего решения системы уравнений. Идем далее: представим последние формулы в векторной форме: $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)= \left( \begin b/a_1- t\, a_2/a_1- u\, a_3/a_1 \\ t \\ u \end \right)= \left( \begin b/a_1\\ 0 \\ 0 \end \right)+ t \left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) + u \left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) \ . $$ Какой геометрический смысл имеет каждое из слагаемых? Первое слагаемое $$ X_0=\left( \begin b/a_1\\ 0 \\ 0 \end \right) $$ получается при задании $ t=0,u=0_<> $ в общем решении. Это — частное решение нашего уравнения и определяет точку, через которую проходит плоскость. Два оставшихся столбца $$ X_1=\left( \begin -a_2/a_1\\ 1 \\ 0 \end \right) \quad u \quad X_2=\left( \begin -a_3/a_1\\ 0 \\ 1 \end \right) $$ не задают решения нашего уравнения — если только $ b\ne 0_<> $. Но оба удовлетворяют однородному уравнению $$ a_1x_1+a_2x_2+a_3x_3=0 , $$ Последнее также определяет плоскость — параллельную исходной и проходящую через начало координат. Первая плоскость получается из второй сдвигом (параллельным переносом) на вектор $ \vec $: и этот факт составляет геометрическую интерпретацию теоремы, сформулированной в конце ☞ ПУНКТА:

Теорема. Общее решение системы уравнений $ A X=\mathcal B $ представимо в виде суммы какого-то частного решения этой системы и общего решения соответствующей однородной системы $ A X=\mathbb O $.

Координаты произвольной точки плоскости $ a_1x_1+a_2x_2+a_3x_3=0 $ задаются соотношениями $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=tX_1+uX_2 \ . $$ Векторы пространства $ \vec $ и $ \vec $ являются базисными векторами плоскости — любой вектор $ \vec $, лежащий в плоскости, через них выражается и они линейно независимы. Но $ X_ <1>$ и $ X_ <2>$ определяют фундаментальную систему решений однородного уравнения. Таким образом, мы получили геометрическую интерпретацию для ФСР: она задает базисные векторы плоскости, проходящей через начало координат.

Теперь рассмотрим систему из двух уравнений: $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2. \end\right. $$ Ее можно интерпретировать как пересечение двух плоскостей в $ \mathbb R^ <3>$. Здесь уже возможны варианты: пересечение может оказаться как пустым так и непустым. От чего это зависит? — В соответствии с теоремой Кронекера-Капелли, надо сравнить два числа $$ \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) \quad u \quad \operatorname \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) \ . $$ Очевидно, ни одно из них не может быть большим $ 2_<> $. Если оба равны $ 2_<> $ и этот факт обеспечен, например, условием $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \ne 0, $$ то решения системы определяют прямую в пространстве. Действительно, при таком условии систему можно разрешить относительно неизвестных $ x_ <1>$ и $ x_ <2>$ и представить общее решение в виде: $$ x_1= \frac<\left|\begin b_1 & a_ <12>\\ b_2 & a_ <22>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>+ \frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ , \quad x_2= \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>- \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>x_3 \ . $$ В этих формулах переменная $ x_ <3>$ принимает любое значение, а значения переменных $ x_ <1>$ и $ x_ <2>$ линейно выражаются через $ x_ <3>$. Общее решение фактически задает прямую в параметрическом виде: координаты произвольной ее точки определяются формулами $$ \left( \begin x_1 \\ x_2 \\ x_3 \end \right)=X_0+tX_1 \ , $$ где вектор $$ \quad X_0 = \left(\frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|> , \ \frac<\left|\begin a_ <11>& b_ <1>\\ a_ <12>& b_ <2>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ 0\right)^ <\top>$$ задает координаты точки, лежащей на прямой (т.е. принадлежащей пересечению плоскостей), а вектор $$ X_1= \left(\frac<\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>,\ — \frac<\left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|><\left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|>, \ 1 \right)^ <\top>$$ является направляющим для прямой. С тем же успехом мы могли бы взять в качестве направляющего вектор, получающийся растяжением $ X_ <1>$: $$ \tilde X_1 = \left(\left|\begin a_ <12>& a_ <13>\\ a_ <21>& a_ <23>\end \right|,\ — \left|\begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|, \ \left|\begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right| \right)^ <\top>\ . $$ Очевидно, что любой из векторов $ X_ <1>$ или $ \tilde X_1 $ задает фундаментальную систему решений однородной системы уравнений 10) $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&0,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&0. \end\right. $$ Последняя определяет прямую в $ \mathbb R^3 $, проходящую через начало координат. Мы снова получаем интерпретацию теоремы: общее решение неоднородной системы получается сдвигом (параллельным переносом) общего решения однородной системы на вектор $ \vec $.

Мы рассмотрели пока только случай пересекающихся плоскостей в пространстве. Его можно считать общим, т.е. случаем «как правило»: две случайным образом выбранные плоскости в $ \mathbb R^ <3>$ пересекаться будут. Исследуем теперь исключительный случай — параллельности плоскостей. Исключительность этого случая может быть проверена и аналитикой. Для несовместности системы из двух уравнений необходимо, чтобы ранг ее матрицы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>\\ a_ <21>& a_ <22>& a_ <23>\end \right) $$ оказался меньшим $ 2_<> $. Это равносильно тому, что все миноры второго порядка этой матрицы обращаются в нуль: $$ \left| \begin a_ <11>& a_ <12>\\ a_ <21>& a_ <22>\end \right|=0,\ \left| \begin a_ <12>& a_ <13>\\ a_ <22>& a_ <23>\end \right| =0,\ \left| \begin a_ <11>& a_ <13>\\ a_ <21>& a_ <23>\end \right|=0 \ . $$ Эти условия можно переписать в виде $$ \frac>>=\frac>>=\frac>> \ ; $$ и, если обозначить общую величину последний отношений через $ \tau_<> $, то получаем: $$ (a_<11>,a_<12>,a_<13>)=\tau (a_<21>,a_<22>,a_<23>) . $$ Если вспомнить, что каждый из этих наборов коэффициентов задает вектор $ \vec> $ в $ \mathbb R^ <3>$, перпендикулярный соответствующей плоскости, то, в самом деле, плоскости, определяемые уравнениями, оказываются параллельными. Пересекаться они, как правило, не будут: для пересечения необходимо, чтобы расширенная матрица системы $$ \left( \begin a_ <11>& a_ <12>& a_ <13>& b_1 \\ a_ <21>& a_ <22>& a_ <23>& b_2 \end \right) $$ имела ранг меньший $ 2_<> $. Это возможно только при условии когда коэффициенты правых частей удовлетворяют соотношению $$ b_1 = \tau b_2 $$ при величине $ \tau_<> $ определенной выше. При выполнении этого условия второе уравнение получается из первого домножением на $ \tau_<> $ и соответствующие плоскости попросту совпадают.

Перейдем теперь к системе из трех уравнений: $$ \left\< \begin a_<11>x_1 +&a_<12>x_2+&a_<13>x_3=&b_1, \\ a_<21>x_1 +&a_<22>x_2+&a_<23>x_3=&b_2, \\ a_<31>x_1 +&a_<32>x_2+&a_<33>x_3=&b_3. \end \right. $$ Вариантов взаимного расположения трех плоскостей в $ \mathbb R^ <3>$ уже значительно больше. Какой из них будет самым распространенным, то есть случаем «как правило»? Геометрически ответ очевиден: если пересечение двух плоскостей определяет, как правило, прямую, то эта прямая пересекается с третьей плоскостью, как правило, в одной-единственной точке. И алгебра подтверждает геометрию: в комментарии к теореме Крамера говорится, что система, число уравнений которой совпадает с числом неизвестных, как правило, имеет единственное решение. Условие для этого случая «как правило» дается той же теоремой Крамера: $$ \left| \begin a_ <11>& a_ <12>& a_<13>\\ a_ <21>& a_ <22>& a_ <23>\\ a_ <31>& a_ <32>& a_ <33>\end \right| \ne 0 . $$

Теорема Кронекера-Капелли в этом случае не нужна — нет, она остается справедливой! — но проверка условия на ранги матриц тривиальна: они оба равны $ 3_<> $. Если же указанный определитель обращается в нуль, то этот факт эквивалентен тому, что три строки определителя линейно зависимы. Например, возможно, что строка $ (a_<31>,a_<32>, a_<33>) $ может быть представлена в виде линейной комбинации первых двух строк. Вспомним геометрический смысл этих строк: они задают координаты векторов, перпендикулярных соответствующим плоскостям. Если система уравнений $$ \left\<\begin a_<11>x_1 +a_<12>x_2+a_<13>x_3 &=&b_1,\\ a_<21>x_1 +a_<22>x_2+a_<23>x_3 &=&b_2 \end\right. $$ определяет прямую в $ \mathbb R^ <3>$, то оба вектора $ \vec> $ и $ \vec> $ при $ A^<[1]>= (a_<11>,a_<12>, a_<13>) $ и $ A^<[2]>= (a_<21>,a_<22>, a_<23>) $ перпендикулярны этой прямой; любая их комбинация также перпендикулярна этой прямой, а, следовательно, плоскость $$ a_<31>x_1 +a_<32>x_2+a_<33>x_3 =b_3 $$ будет ей параллельна.

Статья не закончена!

Ортогональность

Геометрические соображения из предыдущего пункта могут быть обобщены на случай когда размерности рассматриваемых пространств увеличиваются, и мы говорим о точках и векторах многомерных пространств. В последующих пунктах нам потребуются понятия линейной оболочки, линейного пространства, размерности, базиса и координат применительно к векторам-столбцам или векторам-строкам. Их можно найти ☞ ЗДЕСЬ.

Задача решения системы линейных уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=2, \\ x_1&-2x_2&+3x_3&=1 \end \right. $$ может быть рассмотрена с двух точек зрения. С одной стороны, переписав систему в виде $$ x_1\left(\begin 3 \\ 1 \end \right)+ x_2\left(\begin 4 \\ -2 \end \right)+ x_3\left(\begin -1 \\ 3 \end \right)= \left(\begin 2 \\ 1 \end \right) \ , $$ можно говорить о поиске линейной комбинации столбцов $$ \left(\begin 3 \\ 1 \end \right),\ \left(\begin 4 \\ -2 \end \right),\ \left(\begin -1 \\ 3 \end \right) $$ равной заданному столбцу $$ \left(\begin 2 \\ 1 \end \right) \ . $$ В случае произвольной системы, записанной в матричном виде $$ A_X=\mathcal B_ \ $$ совместность системы интерпретировать в смысле принадлежности столбца $ \mathcal B $ линейной оболочке столбцов $ A_<[1]>,\dots,A_ <[n]>$: $$ \mathcal B=x_1 A_<[1]>+\dots+x_nA_ <[n]>\quad \iff \quad \mathcal B \in \mathcal L (A_<[1]>,\dots,A_<[n]>) \ . $$ В случае положительного ответа числа $ x_<1>,\dots,x_n $ интерпретируются как координаты столбца $ \mathcal B $ в системе столбцов 11) $ \,\dots,A_<[n]>\> $.

С другой стороны, к той же задаче решения системы уравнений, в предыдущем ПУНКТЕ мы подошли с другой стороны. Первое из уравнений системы $$ 3\,x_1+4\,x_2-x_3=2 $$ можно интерпретировать так: скалярное произведение векторов $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OX>> $ равно фиксированному числу $ 2_<> $. Здесь вектора рассматриваются в пространстве строк $ \mathbb R_<>^ <3>$; считается, что каждый вектор имеет начало в начале координат $ \mathbf O=[0,0,0] $, а конец — в точке с координатами $ [3,4,-1] $ или, соответственно, $ [x_1,x_2,x_3] $. Если скалярное произведение векторов обозначать скобками $ \langle <> \mbox < >\rangle $, то систему уравнений можно переписать в виде $$ \langle \vec<<\mathbf OA>^<[1]>> ,\ \vec<<\mathbf OX>> \rangle=2,\ \langle \vec<<\mathbf OA>^<[2]>> ,\ \vec<<\mathbf OX>> \rangle=1 \quad npu \quad A^ <[1]>= [3,4,-1], A^<[2]>=[1,-2,3] $$ — строках матрицы $ A_<> $. И задачу решения такой системы понимать в смысле: найти координаты всех векторов-строк $ [x_1,x_2,x_3] $ которые обеспечат нам заданные значения скалярных произведений с двумя фиксированными векторами.

Геометрическая интерпретация еще более упрощается если рассмотреть случай однородной системы уравнений. Так, решить систему уравнений $$ \left\< \begin 3x_1&+4x_2&-x_3&=0, \\ x_1&-2x_2&+3x_3&=0 \end \right. $$ означает подобрать вектор $ \vec<<\mathbf OX>> $ перпендикулярный (ортогональный) одновременно обоим векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $. Очевидно, что таких векторов в $ \mathbb R^ <3>$ бесконечно много — найдя хотя бы один такой вектор $ \vec<<\mathbf OX>> $, другие получим его растяжением: $ \alpha \cdot \vec<<\mathbf OX>> $ остается перпендикулярным векторам $ \vec<<\mathbf OA>^<[1]>> $ и $ \vec<<\mathbf OA>^<[2]>> $ при $ \forall \alpha \in \mathbb R $.

Все эти геометрические соображения обобщаются в произвольное пространство $ \mathbb R_<>^ $ строк или столбцов, состоящих из $ n_<> $ вещественных чисел (компонент). Для этого приходится обобщать понятие скалярного произведения. В общем случае оно вводится аксиоматически (и, более того, в одном и том же множестве может быть определено разными способами, см. ☞ ЕВКЛИДОВО ПРОСТРАНСТВО ). Мы сейчас не будем залезать так глубоко в эту аксиоматику, а просто определим скалярное произведение двух строк $ X=[x_1,x_2,\dots,x_n] $ и $ Y=[y_1,y_2,\dots,y_n] $ формулой $$ \langle X,Y \rangle=x_1y_1+x_2y_2+\dots+x_ny_n \ $$ и продекларируем без обоснований, что все привычные нам по случаям $ \mathbb R^ <2>$ и $ \mathbb R^ <3>$ свойства скалярного произведения будут выполнены.

В терминах скалярного произведения, задачу решения системы линейных уравнений можно переформулировать как поиск строки $ X=[x_1,x_2,\dots,x_n] $, ортогональной всем строкам матрицы $ A_<> $: $$ \langle A^<[1]>,X \rangle=0, \langle A^<[2]>,X \rangle=0,\dots, \langle A^<[m]>,X \rangle=0 \ . $$ Множество таких строк образует линейное подпространство пространства $ \mathbb R_<>^ $, это подпространство является ортогональным дополнением линейной оболочки $ \mathcal L ( A^<[1]>, A^<[2]>,\dots, A^ <[m]>) $ в пространстве $ \mathbb R_<>^ $. Это подпространство называется нуль-пространством матрицы или ядром матрицы $ A_<> $ и обозначается 12) $ <\mathcal K>er (A) $. Фундаментальная система решений системы $ AX=\mathbb O $ составляет базис этого подпространства. Для произвольного линейного пространства количество векторов его базиса называется размерностью пространства и обозначается $ \operatorname $. Во введенных обозначениях теорема из ☞ ПУНКТА переформулируется так:

Теорема. $ \operatorname \left( <\mathcal K>er (A) \right)=n- \mathfrak r $, где $ n_<> $ — количество столбцов матрицы $ A_<> $, а $ \mathfrak r=\operatorname (A) $ — ее ранг.

Эквивалентность СЛАУ при элементарных преобразованиях

Определения

Система m линейных уравнений с n неизвестными(или, линейная система) в линейной алгебре — это система уравнений вида

a11x1 + a12x2 + … + a1nxn = b1,(1)
a21x1 + a22x2 + … + a2nxn = b2,
. . . . . . . . . . . . . . . . . .
am1x1 + am2x2 + … + amnxn = bm.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1 (1) , c2 (1) , …, cn (1) и c1 (2) , c2 (2) , …, cn (2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1 (1) = c1 (2) , c2 (1) = c2 (2) , …, cn (1) = cn (2) .

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Матричная форма Править

Система линейных уравнений может быть представлена в матричной форме как:

или, согласно правилу перемножения матриц,

Методы решения системы (1) Править

Прямые методы Править

§ Метод прогонки — Для трехдиагональных матриц

Приближенные методы Править

§ Метод Якоби (метод итераций)

Метод Крамера (Крамера правило) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причем для таких уравнений решение существует и единственно).

Описание метода

Для системы линейных уравнений с неизвестными (над произвольным полем) (число уравнений совпадает с числом переменных).

с определителем матрицы системы , отличным от нуля, решение записывается в виде:

,

.

(i-й столбец матрицы системы заменяется столбцом свободных членов).

Рангом матрицы A называется наибольший из порядков миноров матрицы A , отличных от нуля. Ранг нулевой матрицы считается равным нулю.

Алгоритм вычисления ранга матрицы:

  • матрица приводится к ступенчатому с помощью элементарных преобразований;
  • количество ненулевых строк в полученной матрице будет равно рангу первоначальной матрицы.

Свойства ранга матрицы:

  • ранг матрицы не превосходит меньшего из ее размеров;
  • ранг матрицы равен нулю тогда и только тогда, когда матрица нулевая;
  • ранг матрицы не изменится, если из нее вычеркнуть все нулевые строки и столбцы;
  • ранг матрицы не изменится при ее транспонировании;
  • элементарные преобразования матрицы не меняют ее ранга

Элементарные преобразования матрицы.

Элементарные преобразования матрицы — это такие преобразования матрицы, в результате которых сохраняется эквивалентность матриц. Таким образом, элементарные преобразования не изменяют множество решений системы линейных алгебраических уравнений, которую представляет эта матрица.

Элементарные преобразования используются в методе Гаусса для приведения матрицы к треугольному или ступенчатому виду.

Определение

Элементарными преобразованиями строк называют:

§ перестановка местами любых двух строк матрицы;

§ умножение любой строки матрицы на константу , ;

§ прибавление к любой строке матрицы другой строки, умноженной на константу , .

Аналогично определяются элементарные преобразования столбцов.

Элементарные преобразования обратимы.

Обозначение указывает на то, что матрица может быть получена из путём элементарных преобразований (или наоборот).

Свойства

Инвариантность ранга при элементарных преобразованиях

Теорема (об инвариантности ранга при элементарных преобразованиях). Если , то .

Эквивалентность СЛАУ при элементарных преобразованиях

Назовём элементарными преобразованиями над системой линейных алгебраических уравнений:

§ умножение уравнения на ненулевую константу;

§ сложение одного уравнения с другим, умноженным на некоторую константу.

Т.е. элементарные преобразования над её расширенной матрицей. Тогда справедливо следующее утверждение:

Теорема (об эквивалентности систем уравнений при элементарных преобразованиях). Система линейных алгебраических уравнений, полученная путём элементарных преобразований над исходной системой, эквивалентна ей.

Напомним, что две системы называются эквивалентными, если множества их решений совпадают.


источники:

http://vmath.ru/vf5/algebra2/linearsystems

http://megaobuchalka.ru/6/27833.html