Движение точки задано уравнением найти среднюю скорость

Примеры решения задач. Движение точки задано уравнениями (х, у — в метрах, t — в секундах).

Задача 2.1.

Движение точки задано уравнениями (х, у — в метрах, t — в секундах).

.

Определить траекторию, скорость и ускорение точки.

Решение.

Рис. 2.9. К задаче 2.1

Для определения траектории исключаем из уравнений движения время t. Умножая обе части первого уравнения на 3, а обе части второго — на 4 и почленно вычитая из первого равенства второе, получим: или .

Следовательно, траектория — прямая линия, наклоненная к оси Ох под углом α, где (рис. 2.9).

Определяем скорость точки. По формулам (2.1) получаем:

;

.

Теперь находим ускорение точки. Формулы (2.1) дают:

Направлены векторы и вдоль траектории, т. е. вдоль прямой АВ. Проекции ускорения на координатные оси все время отрицательны, следовательно, ускорение имеет постоянное направление от В к А. Проекции скорости при 0 1 с) обе проекции скорости отрицательны и, следовательно, скорость направлена от В к А, т. е. так же, как и ускорение.

Заметим, наконец, что при и ; при (точка В); при ; при значения и растут по модулю, оставаясь отрицательными.

Итак, заданные в условиях задачи уравнения движения рассказывают нам всю историю движения точки. Движение начинается из точки О с начальной скоростью и происходит вдоль прямой АВ, наклоненной к оси Ох под углом α, для которого . На участке OB точка движется замедленно (модуль ее скорости убывает) и через одну секунду приходит в положение В (4, 3), где скорость ее обращается в нуль. Отсюда начинается ускоренное движение в обратную сторону. В момент точка вновь оказывается в начале координат и дальше продолжает свое движение вдоль ОА, Ускорение точки все время равно 10 м/с 2 .

Задача 2.2.

Движение точки задано уравнениями:

где , ω и u — постоянные величины. Определить траекторию, скорость и ускорение точки.

Решение.

Рис. 2.10. К задаче 2.2

Возводя первые два уравнения почленно в квадрат и складывая, получаем

.

Следовательно, траектория лежит на круглом цилиндре радиуса R, ось которого направлена вдоль оси Oz (рис. 2.10). Определяя из последнего уравнения t и подставляя в первое, находим

.

Таким образом, траекторией точки будет линия пересечения синусоидальной поверхности, образующие которой параллельны оси Оу (синусоидальный гофр) с цилиндрической поверхностью радиуса R. Эта кривая называется винтовой линией. Из уравнений движения видно, что один виток винтовой линий точка проходит за время , определяемое из равенства . При этом вдоль оси z точка за это время перемещается на величину , называемую шагом винтовой линии.

Найдем скорость и ускорение точки. Дифференцируя уравнения движения по времени, получаем:

.

Стоящие под знаком радикала величины постоянны. Следовательно, движение происходит с постоянной по модулю скоростью, направленной по касательной к траектории. Теперь по формулам (2.1) вычисляем проекции ускорения;

.

Итак, движение происходит с постоянным по модулю ускорением, Для определения направления ускорения имеем формулы:

,

.

,

где α и β —углы, образуемые с осями Ох и Оу радиусом R, проведенным от оси цилиндра к движущейся точке. Так как косинусы углов α1 и β1 отличаются от косинусов α и β только знаками, то отсюда заключаем, что ускорение точки все время направлено по радиусу цилиндра к его оси.

Заметим, что хотя в данном случае движение и происходит со скоростью, постоянной по модулю, ускорение точки не равно нулю, так как направление скорости изменяется.

Задача 2.3.

На шестерню 1 радиуса r1 действует пара сил с моментом m1 (рис. 46, а). Определить момент m2 пары, которую надо приложить к шестерне 2 радиуса r2, чтобы сохранить равновесие.

Решение.

Рис. 2.11. К задаче 2.3

Рассмотрим сначала условия равновесия шестерни 1. На нее действует пара с моментом m1, которая может быть уравновешена только действием другой пары, в данном случае пары . Здесь — перпендикулярная радиусу составляющая силы давления на зуб со стороны шестерни 2, a — тоже перпендикулярная радиусу составляющая реакции оси А (сила давления на зуб и реакция оси А имеют еще составляющие вдоль радиуса, которые взаимно уравновешиваются и в условие равновесия не войдут). При этом, согласно условию равновесия (17), и .

Теперь рассмотрим условия равновесия шестерни 2 (рис. 46, б). По закону равенства действия и противодействия на нее со стороны шестерни 1 будет действовать сила , которая с перпендикулярной радиусу составляющей реакции оси В образует пару , с моментом, равным -Q2r2. Эта пара и должна уравновеситься приложенной к шестерне 2 парой с моментом m2; следовательно, по условию равновесия, . Отсюда, так как Q2=Q1 находим m2=m1/r2r1.

Естественно, что пары с моментами m1 и m2 не удовлетворяют условию равновесия , так как они приложены к разным телам.

Полученная в процессе решения задачи величина Q1 (или Q2) называется окружным усилием, действующим на шестерню. Как видим, окружное усилие равно моменту вращающей пары, деленному на радиус шестерни: Q1=m1/r1 =m2/r2.

Задача 2.4.

Человек ростом h удаляется от фонаря, висящего на высоте H, двигаясь прямолинейно со скоростью . С какой скоростью движется конец тени человека?

Решение.

Рис. 2.12. К задаче 2.4

Для решения задачи найдем сначала закон, по которому движется конец тени. Выбираем начало отсчета в точке О, находящейся на одной вертикали с фонарем, и направляем вдоль прямой, по которой движется конец тени, координатную ось Ох (рис. 2.12). Изображаем человека в произвольном положении на расстоянии x1 от точки О. Тогда конец его тени будет находиться от начала О на расстоянии х2.

Из подобия треугольников ОАМ и DAB находим:

.

Это уравнение выражает закон движения конца тени М, если закон движения человека, т.е. , известен.

Взяв производную по времени от обеих частей равенства и замечая, что по формуле (2.1) , где — искомая скорость, получим

.

Если человек движется с постоянной скоростью ( ), то скорость конца тени М будет тоже постоянна, но в раз больше, чем скорость человека.

Обращаем внимание на то, что при составлении уравнений движения надо изображать движущееся тело или механизм в произвольном положении. Только тогда мы поучим уравнения, определяющие положение движущейся точки (или тела) в любой момент времени.

Задача 2.5.

Определить траекторию, скорость и ускорение середины М шатуна кривошипно-ползунного механизма (рис. 2.13), если OA=AB=2b, а угол при вращении кривошипа растет пропорционально времени: .

Рис. 2.13. К задаче 2.5.

Начинаем с определения уравнений движения точки М. Проводя оси и обозначая координаты точки М в произвольном положении через х и у находим

.

Заменяя его значением, получаем уравнения движения точки М:

.

Для определения траектории точки М представим уравнения движения в виде

.

Возводя эти равенства почленно в квадрат и складывая, получим

.

Итак, траектория точки М — эллипс с полуосями 3b и b.

Теперь по формуле (2.1) находим скорость точки М:

.

Скорость оказывается величиной переменной, меняющейся с течением времени в пределах от до .

Далее по формулам (2.1) определяем проекции ускорения точки М;

;

,

где — длина радиуса-вектора, проведанного из центра О до точки М. Следовательно, модуль ускорения точки меняется пропорционально ее расстояние от центра эллипса.

Определелим направление ускорения

Отсюда находим, что ускорение точки М все время направлено вдоль МО к центру эллипса.

Задача 2.6.

Вал, делающий n=90 об/мин, после выключения двигателя начинает вращаться равнозамедленно и останавливается через t1=40 с. Определить, сколько оборотов сделал вал за это время.

Решение.

Так как вал вращается равнозамедленно, то для него, считая , будет

. (2.2)

Начальной угловой скоростью при замедленном вращении является та, которую вал имел до выключения двигателя. Следовательно,

.

В момент остановки при t=t1 угловая скорость вала ω1=0. Подставляя эти значения во второе из уравнений (2.2), получаем:

и .

Если обозначить число сделанных валом за время t1 оборотов через N (не смешивать с n; n — угловая скорость), то угол поворота за то же время будет равен . Подставляя найденные значения ε и в первое из уравнений (а), получим

,

.

Задача 2.7.

Маховик радиусом R=0,6 м вращается равномерно, делая n=90 об/мин. Определить скорость и ускорение точки, лежащей на ободе маховика.

Решение.

Скорость точки обода , где угловая скорость должна быть выражена в радианах в секунду. Тогда и .

Далее, так как , то ε=0, и, следовательно,

.

Ускорение точки направлено в данном случае к оси вращения.

Задача 2.8.

Найти скорость точки М обода колеса, катящегося по прямолинейному рельсу без скольжения (рис. 2.14), если скорость центра С колеса равна , а угол DKM=α.

Рис. 2.14. К задаче 2.8.

Решение

Приняв точку С, скорость которой известна, за полюс, найдем, что , где по модулю ( — радиус колеса). Значение угловой скорости со найдем из условия того, что точка колеса не скользит по рельсу и, следовательно, в данный момент времени . С другой стороны, так же как и для точки М, где . Так как для точки К скорости и направлены вдоль одной прямой, то при , откуда . В результате находим, что .

Параллелограмм, построенный на векторах и , будет при этом ромбом. Угол между и равен β, так как стороны, образующие этот угол и угол β, взаимно перпендикулярны. В свою очередь угол β=2α, как центральный угол, опирающийся на ту же дугу, что и вписанный угол α. Тогда по свойствам ромба углы между и и между и тоже равны α. Окончательно, так как диагонали ромба взаимно перпендикулярны, получим

и .

Задача 2.9.

Определить скорость точки М обода катящегося колеса, рассмотренного в предыдущей задаче, с помощью мгновенного центра скоростей.

Решение.

Рис. 2.15. К задаче 2.9.

Точка касания колеса Р (рис. 2.15) является мгновенным центром скоростей, поскольку . Следовательно, . Так как прямой угол PMD опирается на диаметр, то направление вектора скорости любой точки обода проходит через точку D. Составляя пропорцию и замечая,

что , a , находим .

Чем точка М дальше от Р, тем ее скорость больше; наибольшую скорость имеет верхний конец D вертикального диаметра. Угловая скорость колеса имеет значение

Аналогичная картина распределения скоростей имеет место при качении колеса или шестерни по любой цилиндрической поверхности.

Задача 2.10.

Центр О колеса, катящегося по прямолинейному рельсу (рис. 2.16), имеет в данный момент времени скорость и ускорение . Радиус колеса R=0,2 м. Определить ускорение точки В — конца перпендикулярного ОР диаметра АВ и ускорение точки Р, совпадающей с мгновенным центром скоростей.

Решение.

Рис. 2.16. К задаче 2.10.

1) Так как и известны, принимаем точку О за полюс.

2) Определение ω. Точка касания Р является мгновенным центром скоростей; следовательно, угловая скорость колеса

.

3) Определение ε. Так как величина PO=R остается постоянной при любом положении колеса, то

Знаки ω и ε совпадают, следовательно, вращение колеса ускоренное.

а) не следует думать, что если по условиям задачи , то . Значение в задаче указано для данного момента времени; с течением же времени изменяется, так как ;

б) в данном случае , так как движение точки O является прямолинейным. В общем случае .

4) Определение и . Так как за полюс взята точка O, то ускорение точки B определяется по фомуле:

Учитывая, что в нашем случае BO=R, находим:

.

Показав на чертеже точку B отдельно, изображаем (без соблюдения масштаба) векторы, из которых слагается ускорение , а именно: вектор (переносим из точки O), вектор (в сторону вращения, так как оно ускоренное) и вектор (всегда от B к полюсу O).

5) Вычисление . Проведя оси X и Y, находим, что

,

.

Аналогичным путем легко найти и ускорение точки P: и направлено вдоль PO. Таким образом, ускорение точки P, скорость которой в данный момент времени равна нулю, нулю не равно.

Задача 2.11.

Колесо катится по прямолинейному рельсу так, что скорость его центра С постоянна. Определить ускорение точки М обода колеса (рис. 2.17).

Решение.

Рис. 2.17. К задаче 2.11.

Так как по условиям задачи , то и точка С является мгновенным центром ускорений. Мгновенный центр скоростей находится в точке Р. Следовательно, для колеса

В результате ускорение точки М

.

Таким образом, ускорение любой точки М обода (в том числе и точки Р) равно и направлено к центру С колеса, так как угол . Заметим, что это ускорение для точки М не будет нормальным ускорением. В самом деле, скорость точки М направлена перпендикулярно РМ . Следовательно, касательная к траектории точки М направлена вдоль линии MD, а главная нормаль — вдоль МР. Поэтому

.

Зажача 2.12.

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна С, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами (рис.2.17 а). Точка D находится в середине стержня АВ. Длины стержней равны соответственно L1=0,4 м, L2 =1,2 м, L3=1,4 м, L4=0,6 м.

Дано: = 6 с -1 , величина постоянная. Заданную угловую скорость считать направленной против часовой стрелки.

Найти: скорости точек В и C; угловую скорость ; ускорение точки В; угловое ускорение

а)
б)
Рис.2.17. К задаче 2.12.

Решение (рис.2.12б)

1. Определим скорость точки А. Стержень OAвращается вокруг точко O1, поэтому скорость точки А определяется по формуле = 1,6 м/с и направлена перпендикулярно отрезку O1А. = 1,6 м/с

2. Определим угловую скорость стержня АВ. Точка В вращается вокруг центра О2, поэтому ее скорость перпендикулярна отрезку O2B. Для нахождения мгновенного центра скоростей отрезка АВ в точках А и В восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р2 является мгновенным центром скоростей второго стержня. Угловая скорость вычисляется по формуле . Расстояние определяется из равнобедренного треугольника , то есть м. Поэтому 2,3 с -1 .

3. Определим скорость точки В по формуле = 1,6 м/с

по формуле = 0,8 м/с

4. Определим скорость точки С. Так как точка С движется прямолинейно, то ее скорость направлена вдоль движения ползуна. Для нахождения мгновенного центра скоростей отрезка CD в точках C и D восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р3 является мгновенным центром скоростей третьего стержня. Угловая скорость вычисляется по формуле , а скорость точки С . Так как треугольник равносторонний, то = 0,8 м/с

5. Определим угловую скорость отрезка О2В. Известно, что центром скоростей этого стержня является точка О2В , а также скорость точки B. Поэтому угловая скорость четвертого стержня вычисляется по формуле и 2,7 с -1 .

6. Определим ускорение точки А. Так как первый стержень вращается равномерно, то точка А имеет относительно О1 только нормальное ускорение, которое вычисляется по формуле = 6,4 м/с 2 .

7. Определим ускорение точки В, которая принадлежит двум стержням — АВ и О2В. Поэтому ускорение точки В определяется с помощью двух формул

и , где

— ускорение точки А;

— нормальное ускорение точки В относительно А;

— тангенциальное ускорение точки В относительно А;

— нормальное ускорение точки В относительно О2;

— тангенциальное ускорение точки В относительно О2.

= 6,4 м/с 2 ; = 4,3 м/с 2 .

Можно составить уравнение

, которое в проекциях на оси координат имеет вид

Решив полученную систему двух уравнений с двумя неизвестными, получим:

= 13,2 м/с 2 , аВХ = 4,1 м/с 2 , аВY =9,1 м/с 2 , аВ =10 м/с 2 .

8. Определим угловое ускорение стержня АВ, используя формулу = 13,2 с -2 .

Задача 2.13.

Круглая пластина радиуса R=60 см вращается вокруг неподвижной оси по закону (рис.2.18 а). Положительное направление угла показано на рисунке дуговой стрелкой. Ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве). По окружности радиуса R движется точка М. Закон ее движения по дуге окружности s= АМ= . На рисунке точка М показана в положении, когда s положительно, при s отрицательном точка М находится по другую сторону от точки А; L=R.

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1 с.

а)
б)
Рис.2.18. К задаче 2.13.

Решение (рис.2.13 б)

В качестве подвижной системы координат xyz примем точку С. Эта система совершает вращательное движение с угловой скоростью = 5 с -1 . Угловое ускорение = -10 с -2 . Направления векторов и опледеляются по правилу буравчика и изображены на рис. Причем, вектор направлен в противоположную сторону, так как его значение его проекции на ось OХ неподвижной системы координат XYZ отрицательно. Вычислим скорость и ускорение центра подвижной системы координат С, которая движется по окружности. Скорость вычисляется по формуле , равна 600 см/с и первендикулярна плоскости рисунка. Ускорение точки С состоит из двух компонент — нормальное = 3000 см/с 2 и тангенциальное = 1200 см/с 2 ускорения.

Вычислим путь, относительную скорость и ускорение точки M. Ее положение определяется величиной дуги S, в данный момент времени S = , поэтому она располагается слева от точки А. Относительная скорость . В данный момент времени она равна 63 см/с и направлена по касательной к окружности. Относительное ускорение является суммой двух составляющих — тангенциальное = 377 см/с -2 и нормальное = 66 см/с -2 .

Абсолютная скорость точки M определяется по формуле

Где — переносная скорость вращательного движения, модуль которой = 150 см / с, ее направление определяется по правилу Жуковского. В разложении на оси координат

По теореме Пифагора = 750 м /с.

Абсолютное ускорение точки M определяется по формуле

Где и — соответственно нормальное и тангенциальное переносные ускорения вращательного движения, — кориолисово ускорение.

= 750 м / с -2 ; =300 м / с -2 ; = 546 м / с -2

;

;

Движение точки задано уравнением x = 5 + 4t + t²?

Физика | 5 — 9 классы

Движение точки задано уравнением x = 5 + 4t + t².

Определите среднюю скорость движения в интервале времени от t1 = 2 с до t2 = 5 с.

X = x0 + v0t + (at ^ 2) \ 2

Vср = (v0a + v1a + v2a + v3a) \ 4 = (6 + 8 + 10 + 12) \ 4 = 9м \ с.

Движение матереальной точки задано уравнением x = 10t + 0, 4t ^ 2?

Движение матереальной точки задано уравнением x = 10t + 0, 4t ^ 2.

Написать уравнение зависимости скорости от времени движения, описать движение, построить играфик зависимости скорости от времени.

Скорость движения материальной точки в любой момент времени задана уравнением v = 3 + 2t чему равна начальная скорость и ускорение тела?

Скорость движения материальной точки в любой момент времени задана уравнением v = 3 + 2t чему равна начальная скорость и ускорение тела?

Составьте зависимость перемещения тела от времени S = S(t), определите перемещение точки через 5 с движения.

Движение материальной точки задано уравнением х = 5 — t + 2t ^ 2 уравнением выражающим зависимость проекции скорости этой точки от времени будет ?

Движение материальной точки задано уравнением х = 5 — t + 2t ^ 2 уравнением выражающим зависимость проекции скорости этой точки от времени будет ?

На рисунке 1 приведен график зависимости мгновенной скорости материальной точки от времени?

На рисунке 1 приведен график зависимости мгновенной скорости материальной точки от времени.

Определите среднюю скорость движения точки за промежуток времени дельтаt = 8 секунд.

Как определить среднюю скорость движения?

Как определить среднюю скорость движения?

ПОМОГИТЕ, ПОЖАЛУЙСТА) СРОЧНОО?

ПОМОГИТЕ, ПОЖАЛУЙСТА) СРОЧНОО!

Движение точки задано уравнением х = 12t — 2t ^ 2.

Определите среднюю скорость движения точки в интервале времени от t1 = 1с до t2 = 4 с.

Уравнение движения тела имеет вид : x = (5t + 0, 8t2) м?

Уравнение движения тела имеет вид : x = (5t + 0, 8t2) м.

Определить среднюю скорость в интервале времени от 2 с до 5 с.

Движение точки задано уравнением x = 12t – 2t2?

Движение точки задано уравнением x = 12t – 2t2.

Определите среднюю скорость движения точки в интервале времени от t1 = 1 c до t2 = 4 с.

ДАЮ 50 БАЛЛОВ Пользуясь графиком зависимости скорости движения тела от времени, определите его среднюю скорость за 8 с движения?

ДАЮ 50 БАЛЛОВ Пользуясь графиком зависимости скорости движения тела от времени, определите его среднюю скорость за 8 с движения.

Пользуясь графиком зависимости скорости движения тела от времени, определите его среднюю скорость за 8 с движения?

Пользуясь графиком зависимости скорости движения тела от времени, определите его среднюю скорость за 8 с движения.

На этой странице находится ответ на вопрос Движение точки задано уравнением x = 5 + 4t + t²?, из категории Физика, соответствующий программе для 5 — 9 классов. Чтобы посмотреть другие ответы воспользуйтесь «умным поиском»: с помощью ключевых слов подберите похожие вопросы и ответы в категории Физика. Ответ, полностью соответствующий критериям вашего поиска, можно найти с помощью простого интерфейса: нажмите кнопку вверху страницы и сформулируйте вопрос иначе. Обратите внимание на варианты ответов других пользователей, которые можно не только просмотреть, но и прокомментировать.

A = F * l ; F = mg ; A = mgl ; A = 500кг * 0, 6м * 10 н / кг = 3000 дж = 3кДж.

На провідник діє сила Амперу = BILsin90. Sin90 = 1. Ми знаємо індукцію(0. 1 Тл), силу (0. 2 Н) та струм(5 А). Отже, L = Fa / BI = 0. 2 / 0. 5 = 0. 4м.

Биология нам нужна для изучения людей, животных, растений. Что бы знать анатомию человека, как устроен его организм, для того, что бы знать животных, их классификацию и т. Д.

Для изучения природы, грибов, анатомию, микробы.

Прости не знаю : ( ПРОСТИ.

Расширение железа при нагревании, расширение воды при охлаждении, сжатие — сжатый воздух.

Изотоп Нептуния : З ответ В.

12 * 10 ^ — 7 Тл кажется так.

В = 1, 2 мТл = 1, 2 * 0, 001 Тл = 0, 0012 Тл.

D = 40 см = 0, 4 м оптическая сила : Γ = 1 / 4 = 0, 25 D = 1 / d + 1 / f ; т. К. Γ = f / d ⇒ f = Γd, то _____________ D = 1 / d + 1 / Γd = 1 / 0, 4 + 1 / 0, 25 * 0, 4 = 10 / 4 + / 0, 1 = D — ? = 10 / 4 + 10 / 1 = 12, 5 дптр ; Ответ : D = 12, 5 дптр..

Прямолинейное движение точки задано уравнением x=-2+3t-0,5t^2 (м). Найти

Условие задачи:

Прямолинейное движение точки задано уравнением \(x=-2+3t-0,5t^2\) (м). Найти путь за 8 с.

Задача №1.3.48 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Решение задачи:

В условии дано уравнение движения точки, давайте попробуем найти как меняется со временем её скорость. Это можно сделать двумя способами.

Первый способ – простой, его следует использовать, если вы не умеете брать производные от функций. В общем случае уравнение прямолинейного ускоренного движения точки выглядит так:

Мы же имеем такое уравнение:

Просто сопоставим эти уравнения. Тогда начальная координата \(x_0\), начальная скорость \(\upsilon _0\) и ускорение \(a\) в нашем случае равны:

Уравнение скорости в общем виде такое:

Подставив полученные нами значения, мы имеем такое уравнение скорости:

Суть второго способа заключается в том, что первая производная от функции координаты есть функция скорости.

\[\upsilon = ( – 2 + 3t – 0,5)’\]

Как видите, мы получили то же самое.

Зная тот факт, что площадь фигуры под графиком зависимости скорости от времени есть пройденный путь, построим график \(\upsilon = 3 – t\) (рисунок справа). Получается, чтобы узнать путь \(S\) нужно посчитать площади двух треугольников и сложить их.

Кстати, расположение этих треугольников (над или под осью) также несет смысл. Если график скорости пересекает ось, значит тело меняет направление своего движения. Поэтому, в случае если мы ищем путь, по полученные площади необходимо сложить, если же мы пытаемся найти перемещение, то нужно отнять из большего меньшее.

Площадь прямоугольных треугольников определяется как половина произведения двух катетов, поэтому ответ такой:

\[S = \frac<1> <2>\cdot 3 \cdot 3 + \frac<1> <2>\cdot \left( <8 – 3>\right) \cdot 5 = 17\; м\]

Наша точка прошла 4,5 м по оси \(x\) и 12,5 м против нее.

Ответ: 17 м.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.


источники:

http://fizika.my-dict.ru/q/1123835_dvizenie-tocki-zadano-uravneniem-x-5/

http://easyfizika.ru/zadachi/kinematika/pryamolinejnoe-dvizhenie-tochki-zadano-uravneniem-x-2-3t-0-5t-2-m-najti/