Движение точки задано уравнениями найти траекторию точки

Примеры решения задач. Движение точки задано уравнениями (х, у — в метрах, t — в секундах).

Задача 2.1.

Движение точки задано уравнениями (х, у — в метрах, t — в секундах).

.

Определить траекторию, скорость и ускорение точки.

Решение.

Рис. 2.9. К задаче 2.1

Для определения траектории исключаем из уравнений движения время t. Умножая обе части первого уравнения на 3, а обе части второго — на 4 и почленно вычитая из первого равенства второе, получим: или .

Следовательно, траектория — прямая линия, наклоненная к оси Ох под углом α, где (рис. 2.9).

Определяем скорость точки. По формулам (2.1) получаем:

;

.

Теперь находим ускорение точки. Формулы (2.1) дают:

Направлены векторы и вдоль траектории, т. е. вдоль прямой АВ. Проекции ускорения на координатные оси все время отрицательны, следовательно, ускорение имеет постоянное направление от В к А. Проекции скорости при 0 1 с) обе проекции скорости отрицательны и, следовательно, скорость направлена от В к А, т. е. так же, как и ускорение.

Заметим, наконец, что при и ; при (точка В); при ; при значения и растут по модулю, оставаясь отрицательными.

Итак, заданные в условиях задачи уравнения движения рассказывают нам всю историю движения точки. Движение начинается из точки О с начальной скоростью и происходит вдоль прямой АВ, наклоненной к оси Ох под углом α, для которого . На участке OB точка движется замедленно (модуль ее скорости убывает) и через одну секунду приходит в положение В (4, 3), где скорость ее обращается в нуль. Отсюда начинается ускоренное движение в обратную сторону. В момент точка вновь оказывается в начале координат и дальше продолжает свое движение вдоль ОА, Ускорение точки все время равно 10 м/с 2 .

Задача 2.2.

Движение точки задано уравнениями:

где , ω и u — постоянные величины. Определить траекторию, скорость и ускорение точки.

Решение.

Рис. 2.10. К задаче 2.2

Возводя первые два уравнения почленно в квадрат и складывая, получаем

.

Следовательно, траектория лежит на круглом цилиндре радиуса R, ось которого направлена вдоль оси Oz (рис. 2.10). Определяя из последнего уравнения t и подставляя в первое, находим

.

Таким образом, траекторией точки будет линия пересечения синусоидальной поверхности, образующие которой параллельны оси Оу (синусоидальный гофр) с цилиндрической поверхностью радиуса R. Эта кривая называется винтовой линией. Из уравнений движения видно, что один виток винтовой линий точка проходит за время , определяемое из равенства . При этом вдоль оси z точка за это время перемещается на величину , называемую шагом винтовой линии.

Найдем скорость и ускорение точки. Дифференцируя уравнения движения по времени, получаем:

.

Стоящие под знаком радикала величины постоянны. Следовательно, движение происходит с постоянной по модулю скоростью, направленной по касательной к траектории. Теперь по формулам (2.1) вычисляем проекции ускорения;

.

Итак, движение происходит с постоянным по модулю ускорением, Для определения направления ускорения имеем формулы:

,

.

,

где α и β —углы, образуемые с осями Ох и Оу радиусом R, проведенным от оси цилиндра к движущейся точке. Так как косинусы углов α1 и β1 отличаются от косинусов α и β только знаками, то отсюда заключаем, что ускорение точки все время направлено по радиусу цилиндра к его оси.

Заметим, что хотя в данном случае движение и происходит со скоростью, постоянной по модулю, ускорение точки не равно нулю, так как направление скорости изменяется.

Задача 2.3.

На шестерню 1 радиуса r1 действует пара сил с моментом m1 (рис. 46, а). Определить момент m2 пары, которую надо приложить к шестерне 2 радиуса r2, чтобы сохранить равновесие.

Решение.

Рис. 2.11. К задаче 2.3

Рассмотрим сначала условия равновесия шестерни 1. На нее действует пара с моментом m1, которая может быть уравновешена только действием другой пары, в данном случае пары . Здесь — перпендикулярная радиусу составляющая силы давления на зуб со стороны шестерни 2, a — тоже перпендикулярная радиусу составляющая реакции оси А (сила давления на зуб и реакция оси А имеют еще составляющие вдоль радиуса, которые взаимно уравновешиваются и в условие равновесия не войдут). При этом, согласно условию равновесия (17), и .

Теперь рассмотрим условия равновесия шестерни 2 (рис. 46, б). По закону равенства действия и противодействия на нее со стороны шестерни 1 будет действовать сила , которая с перпендикулярной радиусу составляющей реакции оси В образует пару , с моментом, равным -Q2r2. Эта пара и должна уравновеситься приложенной к шестерне 2 парой с моментом m2; следовательно, по условию равновесия, . Отсюда, так как Q2=Q1 находим m2=m1/r2r1.

Естественно, что пары с моментами m1 и m2 не удовлетворяют условию равновесия , так как они приложены к разным телам.

Полученная в процессе решения задачи величина Q1 (или Q2) называется окружным усилием, действующим на шестерню. Как видим, окружное усилие равно моменту вращающей пары, деленному на радиус шестерни: Q1=m1/r1 =m2/r2.

Задача 2.4.

Человек ростом h удаляется от фонаря, висящего на высоте H, двигаясь прямолинейно со скоростью . С какой скоростью движется конец тени человека?

Решение.

Рис. 2.12. К задаче 2.4

Для решения задачи найдем сначала закон, по которому движется конец тени. Выбираем начало отсчета в точке О, находящейся на одной вертикали с фонарем, и направляем вдоль прямой, по которой движется конец тени, координатную ось Ох (рис. 2.12). Изображаем человека в произвольном положении на расстоянии x1 от точки О. Тогда конец его тени будет находиться от начала О на расстоянии х2.

Из подобия треугольников ОАМ и DAB находим:

.

Это уравнение выражает закон движения конца тени М, если закон движения человека, т.е. , известен.

Взяв производную по времени от обеих частей равенства и замечая, что по формуле (2.1) , где — искомая скорость, получим

.

Если человек движется с постоянной скоростью ( ), то скорость конца тени М будет тоже постоянна, но в раз больше, чем скорость человека.

Обращаем внимание на то, что при составлении уравнений движения надо изображать движущееся тело или механизм в произвольном положении. Только тогда мы поучим уравнения, определяющие положение движущейся точки (или тела) в любой момент времени.

Задача 2.5.

Определить траекторию, скорость и ускорение середины М шатуна кривошипно-ползунного механизма (рис. 2.13), если OA=AB=2b, а угол при вращении кривошипа растет пропорционально времени: .

Рис. 2.13. К задаче 2.5.

Начинаем с определения уравнений движения точки М. Проводя оси и обозначая координаты точки М в произвольном положении через х и у находим

.

Заменяя его значением, получаем уравнения движения точки М:

.

Для определения траектории точки М представим уравнения движения в виде

.

Возводя эти равенства почленно в квадрат и складывая, получим

.

Итак, траектория точки М — эллипс с полуосями 3b и b.

Теперь по формуле (2.1) находим скорость точки М:

.

Скорость оказывается величиной переменной, меняющейся с течением времени в пределах от до .

Далее по формулам (2.1) определяем проекции ускорения точки М;

;

,

где — длина радиуса-вектора, проведанного из центра О до точки М. Следовательно, модуль ускорения точки меняется пропорционально ее расстояние от центра эллипса.

Определелим направление ускорения

Отсюда находим, что ускорение точки М все время направлено вдоль МО к центру эллипса.

Задача 2.6.

Вал, делающий n=90 об/мин, после выключения двигателя начинает вращаться равнозамедленно и останавливается через t1=40 с. Определить, сколько оборотов сделал вал за это время.

Решение.

Так как вал вращается равнозамедленно, то для него, считая , будет

. (2.2)

Начальной угловой скоростью при замедленном вращении является та, которую вал имел до выключения двигателя. Следовательно,

.

В момент остановки при t=t1 угловая скорость вала ω1=0. Подставляя эти значения во второе из уравнений (2.2), получаем:

и .

Если обозначить число сделанных валом за время t1 оборотов через N (не смешивать с n; n — угловая скорость), то угол поворота за то же время будет равен . Подставляя найденные значения ε и в первое из уравнений (а), получим

,

.

Задача 2.7.

Маховик радиусом R=0,6 м вращается равномерно, делая n=90 об/мин. Определить скорость и ускорение точки, лежащей на ободе маховика.

Решение.

Скорость точки обода , где угловая скорость должна быть выражена в радианах в секунду. Тогда и .

Далее, так как , то ε=0, и, следовательно,

.

Ускорение точки направлено в данном случае к оси вращения.

Задача 2.8.

Найти скорость точки М обода колеса, катящегося по прямолинейному рельсу без скольжения (рис. 2.14), если скорость центра С колеса равна , а угол DKM=α.

Рис. 2.14. К задаче 2.8.

Решение

Приняв точку С, скорость которой известна, за полюс, найдем, что , где по модулю ( — радиус колеса). Значение угловой скорости со найдем из условия того, что точка колеса не скользит по рельсу и, следовательно, в данный момент времени . С другой стороны, так же как и для точки М, где . Так как для точки К скорости и направлены вдоль одной прямой, то при , откуда . В результате находим, что .

Параллелограмм, построенный на векторах и , будет при этом ромбом. Угол между и равен β, так как стороны, образующие этот угол и угол β, взаимно перпендикулярны. В свою очередь угол β=2α, как центральный угол, опирающийся на ту же дугу, что и вписанный угол α. Тогда по свойствам ромба углы между и и между и тоже равны α. Окончательно, так как диагонали ромба взаимно перпендикулярны, получим

и .

Задача 2.9.

Определить скорость точки М обода катящегося колеса, рассмотренного в предыдущей задаче, с помощью мгновенного центра скоростей.

Решение.

Рис. 2.15. К задаче 2.9.

Точка касания колеса Р (рис. 2.15) является мгновенным центром скоростей, поскольку . Следовательно, . Так как прямой угол PMD опирается на диаметр, то направление вектора скорости любой точки обода проходит через точку D. Составляя пропорцию и замечая,

что , a , находим .

Чем точка М дальше от Р, тем ее скорость больше; наибольшую скорость имеет верхний конец D вертикального диаметра. Угловая скорость колеса имеет значение

Аналогичная картина распределения скоростей имеет место при качении колеса или шестерни по любой цилиндрической поверхности.

Задача 2.10.

Центр О колеса, катящегося по прямолинейному рельсу (рис. 2.16), имеет в данный момент времени скорость и ускорение . Радиус колеса R=0,2 м. Определить ускорение точки В — конца перпендикулярного ОР диаметра АВ и ускорение точки Р, совпадающей с мгновенным центром скоростей.

Решение.

Рис. 2.16. К задаче 2.10.

1) Так как и известны, принимаем точку О за полюс.

2) Определение ω. Точка касания Р является мгновенным центром скоростей; следовательно, угловая скорость колеса

.

3) Определение ε. Так как величина PO=R остается постоянной при любом положении колеса, то

Знаки ω и ε совпадают, следовательно, вращение колеса ускоренное.

а) не следует думать, что если по условиям задачи , то . Значение в задаче указано для данного момента времени; с течением же времени изменяется, так как ;

б) в данном случае , так как движение точки O является прямолинейным. В общем случае .

4) Определение и . Так как за полюс взята точка O, то ускорение точки B определяется по фомуле:

Учитывая, что в нашем случае BO=R, находим:

.

Показав на чертеже точку B отдельно, изображаем (без соблюдения масштаба) векторы, из которых слагается ускорение , а именно: вектор (переносим из точки O), вектор (в сторону вращения, так как оно ускоренное) и вектор (всегда от B к полюсу O).

5) Вычисление . Проведя оси X и Y, находим, что

,

.

Аналогичным путем легко найти и ускорение точки P: и направлено вдоль PO. Таким образом, ускорение точки P, скорость которой в данный момент времени равна нулю, нулю не равно.

Задача 2.11.

Колесо катится по прямолинейному рельсу так, что скорость его центра С постоянна. Определить ускорение точки М обода колеса (рис. 2.17).

Решение.

Рис. 2.17. К задаче 2.11.

Так как по условиям задачи , то и точка С является мгновенным центром ускорений. Мгновенный центр скоростей находится в точке Р. Следовательно, для колеса

В результате ускорение точки М

.

Таким образом, ускорение любой точки М обода (в том числе и точки Р) равно и направлено к центру С колеса, так как угол . Заметим, что это ускорение для точки М не будет нормальным ускорением. В самом деле, скорость точки М направлена перпендикулярно РМ . Следовательно, касательная к траектории точки М направлена вдоль линии MD, а главная нормаль — вдоль МР. Поэтому

.

Зажача 2.12.

Плоский механизм состоит из стержней 1, 2, 3, 4 и ползуна С, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами (рис.2.17 а). Точка D находится в середине стержня АВ. Длины стержней равны соответственно L1=0,4 м, L2 =1,2 м, L3=1,4 м, L4=0,6 м.

Дано: = 6 с -1 , величина постоянная. Заданную угловую скорость считать направленной против часовой стрелки.

Найти: скорости точек В и C; угловую скорость ; ускорение точки В; угловое ускорение

а)
б)
Рис.2.17. К задаче 2.12.

Решение (рис.2.12б)

1. Определим скорость точки А. Стержень OAвращается вокруг точко O1, поэтому скорость точки А определяется по формуле = 1,6 м/с и направлена перпендикулярно отрезку O1А. = 1,6 м/с

2. Определим угловую скорость стержня АВ. Точка В вращается вокруг центра О2, поэтому ее скорость перпендикулярна отрезку O2B. Для нахождения мгновенного центра скоростей отрезка АВ в точках А и В восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р2 является мгновенным центром скоростей второго стержня. Угловая скорость вычисляется по формуле . Расстояние определяется из равнобедренного треугольника , то есть м. Поэтому 2,3 с -1 .

3. Определим скорость точки В по формуле = 1,6 м/с

по формуле = 0,8 м/с

4. Определим скорость точки С. Так как точка С движется прямолинейно, то ее скорость направлена вдоль движения ползуна. Для нахождения мгновенного центра скоростей отрезка CD в точках C и D восстановим перпендикуляры к векторам и . Точка пересечения этих перпендикуляров Р3 является мгновенным центром скоростей третьего стержня. Угловая скорость вычисляется по формуле , а скорость точки С . Так как треугольник равносторонний, то = 0,8 м/с

5. Определим угловую скорость отрезка О2В. Известно, что центром скоростей этого стержня является точка О2В , а также скорость точки B. Поэтому угловая скорость четвертого стержня вычисляется по формуле и 2,7 с -1 .

6. Определим ускорение точки А. Так как первый стержень вращается равномерно, то точка А имеет относительно О1 только нормальное ускорение, которое вычисляется по формуле = 6,4 м/с 2 .

7. Определим ускорение точки В, которая принадлежит двум стержням — АВ и О2В. Поэтому ускорение точки В определяется с помощью двух формул

и , где

— ускорение точки А;

— нормальное ускорение точки В относительно А;

— тангенциальное ускорение точки В относительно А;

— нормальное ускорение точки В относительно О2;

— тангенциальное ускорение точки В относительно О2.

= 6,4 м/с 2 ; = 4,3 м/с 2 .

Можно составить уравнение

, которое в проекциях на оси координат имеет вид

Решив полученную систему двух уравнений с двумя неизвестными, получим:

= 13,2 м/с 2 , аВХ = 4,1 м/с 2 , аВY =9,1 м/с 2 , аВ =10 м/с 2 .

8. Определим угловое ускорение стержня АВ, используя формулу = 13,2 с -2 .

Задача 2.13.

Круглая пластина радиуса R=60 см вращается вокруг неподвижной оси по закону (рис.2.18 а). Положительное направление угла показано на рисунке дуговой стрелкой. Ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве). По окружности радиуса R движется точка М. Закон ее движения по дуге окружности s= АМ= . На рисунке точка М показана в положении, когда s положительно, при s отрицательном точка М находится по другую сторону от точки А; L=R.

Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t=1 с.

а)
б)
Рис.2.18. К задаче 2.13.

Решение (рис.2.13 б)

В качестве подвижной системы координат xyz примем точку С. Эта система совершает вращательное движение с угловой скоростью = 5 с -1 . Угловое ускорение = -10 с -2 . Направления векторов и опледеляются по правилу буравчика и изображены на рис. Причем, вектор направлен в противоположную сторону, так как его значение его проекции на ось OХ неподвижной системы координат XYZ отрицательно. Вычислим скорость и ускорение центра подвижной системы координат С, которая движется по окружности. Скорость вычисляется по формуле , равна 600 см/с и первендикулярна плоскости рисунка. Ускорение точки С состоит из двух компонент — нормальное = 3000 см/с 2 и тангенциальное = 1200 см/с 2 ускорения.

Вычислим путь, относительную скорость и ускорение точки M. Ее положение определяется величиной дуги S, в данный момент времени S = , поэтому она располагается слева от точки А. Относительная скорость . В данный момент времени она равна 63 см/с и направлена по касательной к окружности. Относительное ускорение является суммой двух составляющих — тангенциальное = 377 см/с -2 и нормальное = 66 см/с -2 .

Абсолютная скорость точки M определяется по формуле

Где — переносная скорость вращательного движения, модуль которой = 150 см / с, ее направление определяется по правилу Жуковского. В разложении на оси координат

По теореме Пифагора = 750 м /с.

Абсолютное ускорение точки M определяется по формуле

Где и — соответственно нормальное и тангенциальное переносные ускорения вращательного движения, — кориолисово ускорение.

= 750 м / с -2 ; =300 м / с -2 ; = 546 м / с -2

;

;

iSopromat.ru

Пример решения задачи по определению траектории равноускоренного движения точки, заданного уравнениями, скорости и ускорения в некоторые моменты времени, координаты начального положения точки, а также путь, пройденный точкой за время t.

Задача

где x и y – в см, а t – в с. Определить траекторию движения точки, скорость и ускорение в моменты времени t0=0 с, t1=1 с и t2=5 с, а также путь, пройденный точкой за 5 с.

Решение

Расчет траектории

Определяем траекторию точки. Умножаем первое заданное уравнение на 3, второе – на (-4), а затем складываем их левые и правые части:

Получилось уравнение первой степени – уравнение прямой линии, значит движение точки – прямолинейное (рисунок 1.5).

Для того, чтобы определить координаты начального положения точки A0, подставим в заданные уравнения значения t0=0; из первого уравнения получим x0=2 см, из второго y0=1 см. При любом другом значении t координаты x и y движущейся точки только возрастают, поэтому траекторией точки служит полупрямая 3x-4y=2 с началом в точке A0 (2; 1).

Расчет скорости

Расчет ускорения

Определяем ускорение точки. Его проекции на оси координат:

Проекции ускорения не зависят от времени движения,

т.е. движение точки равноускоренное, векторы скорости и ускорения совпадают с траекторией точки и направлены вдоль нее.

С другой стороны, поскольку движение точки прямолинейное, то модуль ускорения можно определить путем непосредственного дифференцирования уравнения скорости:

Определение пути

Определяем путь, пройденный точкой за первые 5с движения. Выразим путь как функцию времени:

Проинтегрируем последнее выражение:

Если t=t0=0, то C=s0; в данном случае s0=0, поэтому s=2,5t 2 . Находим, что за 5с точка проходит расстояние

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Траектория и уравнения движения точки

Траектория и уравнения движения точки

  • Уравнение движения для локуса и точек 1°.Основные понятия. Траекторией точки называется линия, описываемая точкой движения в пространстве. Траектории могут быть плоскими или пространственными кривыми. Движение точки определяется установлением закона движения. Закон движения точек (уравнения) устанавливает зависимость расположения точек во временном пространстве.

Движение точки M в фиксированной системе координат xyz определяется установкой 3 функций (рис.3.1). * = / > ( ’). J’ = / *( Людмила Фирмаль

Создайте уравнение движения для точки N в декартовой системе координат. Найдите уравнение его орбиты. Определяет полный 1-кратный поворот точки N и точку, в которой координаты обеих точек равны. The solution. To составьте уравнение движения точки N, необходимо представить ее координаты в виде функции времени. Из рисунка найдите координату x в точке N. Х = О с COS Людмила Фирмаль

Затем по координатам определяется максимальное отклонение точки м от центра колебаний О. МПМ = а ХІ =-а. Величина a называется амплитудой колебаний, kt — (- (J называется фазой колебаний, ap-начальной фазой колебаний. Определите период колебаний, то есть время, в течение которого точки совершают 1 полное колебание, то есть возвращаются в исходное положение с той же скоростью и величиной. Обозначим период буквой Т и найдем его значение из условия, что приращение фазы колебаний за это время равно 2π. Иначе говоря

Задача 3.4.Точки перемещаются в соответствии с уравнением. x = A cos(kt-e), (1) г = Б, потому что КТ(2) Определите уравнение траектории движения точки. Как изменяется локус точек при увеличении разности фаз£от 0 до 2r? The solution. To найдя уравнение орбиты точки в явном виде, нужно исключить время из уравнения motion. To для этого сначала преобразуем уравнение движения. х = а соѕ(т-е)= а [потому что КТ потому что£-(- КТ грех грех ЭЖ.(3) решая уравнения (2) и (3) для cos kt и sin kt, получим: Х г — г соз£ а б. Преступление. потому что КТ =£о грех КТ = Добавьте эти уравнения, возведя их в квадрат. г, (т -£»»’) ’ 1 Б% ’ °1 (4) Sin2 е

Или в конце: — В + М — ^^ ко ^ грех ’、 уравнение (4) для любого значения e является уравнением эллипса. Из этого уравнения максимальные и минимальные значения являются Параметры±соответственно. a для x и zt b для y. таким образом, во всех случаях эллипс вписывается в прямоугольники со сторонами 2a и 2b. измените значение от 0 до 2ir. если e = 0, то выражение(4) принимает вид:

Так, если фазы обеих составляющих колебаний перпендикулярны друг другу, то эллипс вырождается в 2 совпадающие прямые, являющиеся диагоналями прямоугольника(рис. в коса -> -= учитывая it_y = 0, горизонтальная дальность полета I определяется из орбитального уравнения (4).

log A x cos2 a следовательно 2 значения x\ Т / л грех 2а х0 = 0, ХН = 1 = 8. Первое значение соответствует первому моменту (моменту отправления точки), А второе определяет горизонтальное расстояние. Сравнивая значения /и 5, можно сделать вывод, что/ = 2s, то есть точки достигают наивысшего положения в диапазоне горизонтальной половины. Итак, положение точки в пространстве в этой точке.

Уравнение (1) представляет собой параметрическое уравнение траектории a point. To найдя уравнение орбиты точки в координатной форме, нужно исключить время из уравнения(1) и получить форму зависимости. БФ,(Ци, г)= 0, 9а, КР, з)= 0. Комбинация этих 2 уравнений определяет кривую, по которой перемещаются точки. Есть и другие способы указать движение points. In векторным методом, определяющим законы движения, радиус-вектор r движущейся точки M (рис.3.1) задается как функция времени r = r (t).Связь между радиус-вектором r и Декартовыми координатами точки представлена уравнением Р = ХІ * \ — ый + ЗК. (2 ) Где i, j и k-единичные векторы (единичные векторы) осей. (2)

Если вы получаете x, y> z, текущие координаты точки A4, как определено y. уравнение(1), то (2) x Дайте закон движения точек в векторной форме. 3-й способ задания движения точек называется natural. In в этом случае движение точек определяется уравнением а = /( (). Сферические и цилиндрические координаты часто используются для изучения движения точки в пространстве. Сферическими координатами точки M (рис.3.4) являются расстояние r точки M от неподвижного центра O, угол φ (угол поворота плоскости zOM относительно неподвижной плоскости xOz) и угол ? =?(’) * (5 *)

Уравнение движения для цилиндрических координат: р = п(о> т = м р = РЗ). (си *) м г Так… 1. Рисунок 3.4. Да. Чтобы перейти от сферических координат к декартовым, используйте следующую формулу:> х = р с с COS

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://isopromat.ru/teormeh/primery-reshenia-zadach/opredelit-traektoriu-dvizenia-tocki-skorost-i-uskorenie-a-takze-put-projdennyj-tockoj

http://lfirmal.com/traektoriya-i-uravneniya-dvizheniya-tochki/