Движение жидкости уравнение бернулли видео

Движение жидкости уравнение бернулли видео

Документальные учебные фильмы. Серия «Физика».

Даниил Бернулли (Daniel Bernoulli; 29 января (8 февраля) 1700 — 17 марта 1782), швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики. Академик и иностранный почётный член (1733) Петербургской академии наук, член Академий: Болонской (1724), Берлинской (1747), Парижской (1748), Лондонского королевского общества (1750). Сын Иоганна Бернулли.

Закон (уравнение) Бернулли является (в простейших случаях) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

— плотность жидкости, — скорость потока, — высота, на которой находится рассматриваемый элемент жидкости, — давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости, — ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости.

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли(не следует путать с дифференциальным уравнением Бернулли), теоремой Бернулли или интегралом Бернулли.

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых — единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления и не представляет собой запаса какого-либо специального вида энергии («энергии давления»).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли. В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .

Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарных потоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины — гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Известны обобщения интеграла Бернулли для некоторых классов течений вязкой жидкости (например, для плоскопараллельных течений), в магнитной гидродинамике, феррогидродинамике.

В статье были спользованны материалы Wikipedia

Уравнение Бернулли ( формула пример)

Уравнение Бернулли Статическое и динамическое давление

Силы притяжения между молекулами в жидкости больше, чем в газах, но значительно меньше, чем в твердых телах. Частицы жидкости легко взаимно смещаются и под действие тления легко перемещаются из области более высокого давления в сторону более низкого. Это называется тече нием жидкости.

Вследствие наличия сил притяжения взаимное смещение частиц жидкости сопровождается некоторым сопротивлением, которое подобно механическому трению между мелкими частицами твердого вещества и называется внутренним трением, или вязкостью, жидкости. Вязкость жидкости проявляется, например, сопротивлением при помешивании жидкости, замедлением при падении в жидкости предметов и т. д.

Рассмотрим вначале стационарное течение идеальной жидкости (идеальной называется несжимаемая жидкость, не имеющая вязкости; стационарным называется течение, при котором величина скорости в любой точке жидкости со временем не изменяется). Установим для этих условий соотношение между давлением р в жидкости, скоростью движения v ее частиц и положением их в поле силы тяжести, характеризуемое высотой Л над некоторым уровнем отсчета (рис. 2).

Уравнение Бернулли

В соответствии с законом сохранения энергии полная энергия некоторой массы m (имеющей объем V) идеальной жидкости при течении остается неизменной, так как в ней отсутствуют потери на внутреннее трение.

Полная энергия составляется из потенциальной энергии давления (Еn = pV), потенциальной энергии тяжести (E«п = mgh) и кинетической энергии (Ек = m υ 2 /2). На основании сказанного: pV + mgh + (m υ 2 /2) = const.

Соответственно для каких-либо двух положений массы т идеальной жидкости, например в точках А и Б (рис. 2):

Если предпоследнее уравнение разделить почленно на объем V жидкости, то учитывая, что m/V есть плотность ρ жидкости, получим:

Это и есть уравнение Бернулли.

Для движения жидкости в горизонтальных трубках силу тяжести можно не учитывать и тогда уравнение Бернулли принимает вид:

Из этого уравнения следует вывод, называемый правилом Бернулли: давление невязкой жидкости, текущей по горизонтальной трубе, выше там, где скорость ее меньше, и наоборот.

Пример расчета по формуле

Рассмотрим течение жидкости по трубе с неодинаковым сечением. Течение называется непрерывным, если через любое сечение трубы в единицу времени протекает одинаковое количество (объем) жидкости. При этом скорость движения жидкости на участках трубы обратно пропорциональна площади их сечений.

Действительно не трудно доказать, что объем V0 жидкости, протекающей в единицу времени через любое сечение трубы, может быть выражен произведением площади S сечения трубы на скорость υ течения жидкости: V0=Sυ. По условию этот объем постоянен для любого сечения трубы, следовательно,

т. е. произведение скорости течения жидкости на поперечное сечение струи есть величина постоянная. Это соотношение называют уравнением неразрывности струи.

Если обозначить сечение и скорость движения на участках трубы соответственно S1 и υ1 S2 и υ2, то согласно сказанному:

Скорость течения жидкости в трубе с переменным сечением обратно пропорциональна площади этих сечений.

При этом в соответствии с правилом Бернулли на участках меньшего сечения трубы давление будет ниже, на участках большего сечения — выше (рис. , а). Поясним механизм этого явления. При переходе на участок трубы меньшего сечения (линия ab на рис. , б) частицы жидкости ускоряются, на что затрачивается часть силы Р4, создающей давление на более широком участке (по условию равновесия частиц жидкости Р1= Р2+Fу, где Р2 — сила, создающая давление на суженном участке, Fу — сила, обеспечивающая ускорение частиц).

Наоборот, при переходе на участок с большим сечением (линия cd на рис. 82, б) частицы жидкости набегают на лежащую впереди и более медленно двигающуюся массу жидкости и, затормаживаясь, создают дополнительную силу Fт, повышающую давление на более широком участке (аналогично P3=P2 + Fт).

Можно подобрать условия, при которых давление жидкости в сужен ном участке трубы станет ниже атмосферного и тогда в этом месте струя будет обладать всасывающим действием. Всасывающее действие струи газа, пара или воды, выходящей из суженного отверстия с большой скоростью, используется в ряде приборов, применяемых в медицинской практике (ингалятор, водоструйный насос и др.).

Паровой ингалятор

Это прибор для вдыхания жидких лекарственных веществ в распыленном виде. Он состоит из кипятильника В, стакана К с лекарственной жидкостью и вставленной в него тонкой трубкой Т и направляющего патрубка С. Струя пара выходит из трубки кипятильника с большой скоростью. Вследствие этого давление около ее отверстия падает и лекарственная жидкость, всасываясь по трубке Т, поступает в струю, распыляется и, смешиваясь с паром, вдыхается больным через патрубок С

Водоструйный насос состоит из стеклянного сосуда Н, в который впаяно три трубки. Трубка имеет на конце коническое сужение. Насос присоединяется к водоводу и колбе К, из которой производится отсасывание. Вода, имеющая достаточно высокое давление, выходит из суженного конца трубки 1 с большей скоростью. Давление у отверстия трубки резко снижается и в сосуд А через трубку 2 засасывается воздух или жидкость, которые вместе с водой удаляются через трубку 3. Водоструйный насос удобен тем, что он не имеет вращающихся частей, требующих смазки, бесшумен и гигиеничен. Поэтому он часто применяется в лабораториях, операционных и т. п.

В уравнении Бернулли давление р называется статическим давлением рс жидкости. Оно может быть измерено обычным манометром, который двигается вместе с жидкостью, или практически при помощи неподвижной манометрической трубки, плоскость отверстия которой расположена параллельно направлению движения жидкости.

Второй член уравнения Бернулли (ρυ2/2)также имеет размерность давления и называется динамическим давлением рд в жидкости. Сумма статического и динамического давлений называется полным давлением р в жидкости:

Для измерения его применяют манометрическую трубку, изогнутую под прямым углом и помещенную отверстием навстречу движению жидкости. Частицы жидкости, заходящие в отверстие трубки полностью тормозятся в ней: скорость υ2 частиц жидкости в отверстии рав няется нулю: υ 2=0. Тогда по уравнению Бернулли

Следовательно, давление р2 в трубке:

где р1 — давление и υ1 — скорость движущейся жидкости

Если в струю жидкости поставить рядом две такие трубки, то разность уровней в трубках будет соответствовать динамическому давлению. На этом основан способ измерения скорости движения жидкости или газа В струю погружают две скрепленные вместе измерительные трубки, прямую и изогнутую (подобное устройство называется трубкой Пито), которые соединяются с U= образным манометром. Манометр покажет динамическое давление, по величине которого, пользуясь приведенной выше формулой, вычисляют искомую скорость:

Статья на тему Уравнение Бернулли

Похожие страницы:

Понравилась статья поделись ей

Leave a Comment

Для отправки комментария вам необходимо авторизоваться.

Движение жидкости уравнение бернулли видео

Уравнение Бернулли для реальной и идеальной жидкости

Уравнение Бернулли позволяет выполнить расчет водоснабжения и отопления: Подобрать диаметры и насосы. В этой статье будет расписан энергетический и геометрический смысл уравнения Бернулли.

График Бернулли и уравнение Бернулли для идеальной жидкости:

График Бернулли и уравнение Бернулли для реальной жидкости:

Смысл уравнения Бернулли

Смысл уравнения Бернули в том, чтобы показать, что внутри системы заполненной жидкостью (участка трубопровода) сохраняется общая энергия между разными точками. То есть на участке трубопровода необходимо выделить две точки, и эти две точки равны друг другу по значению полной энергии. Полная энергия состоит из потенциальной и кинетической энергии.

Назначение уравнения Бернули

Понять, как распределяется давление в системе трубопроводов. А также с помощью уравнения находить неизвестные параметры внутри системы. Например, найти давление в каждой течке пространства системы заполненной жидкостью.

Подробнее на видео: (для запуска видео кликните по окошку) На видео намного больше информации

Решая задачу с уравнением Бернулли, Вы фактически занимаетесь гидравлическим расчетом. О том, как делать гидравлический расчет — написано тут: Конструктор водяного отопления

Задача. Пример решения уравнения Бернулли

По решению задачи необходимо найти давление в точке 2 при известных параметрах: давление и расход.

Как понять уравнение Бернулли?

Для расчета уравнения Бернулли необходимо выбрать две точки в пространстве

Точка 1 – это место где известно давление

Точка 2 – это место где нужно узнать давление

Поймите, что каждый кусок формулы измеряется давлением: м.в.ст. (метр водяного столба)

То есть для того, чтобы быстро считать гидравлику систем водоснабжения и отопления, необходимо меньше всего выражаться в Барах, Паскалях и тому подобное.

Проще выражать давление в единице измерения: м.в.ст. (метр водяного столба)

Вы этим самым упростите себе жизнь… просто другая единица это еще один процесс, который отнимает время.

Сборка формулы уравнения Бернулли

Как избавится от минуса?

Как избавится от множителя (-1)?

Необходимо множитель (-1) помножить на каждый слагаемый член. Знак каждого слагаемого члена меняется на противоположный. То есть (+ на -) (- на +). Далее перестановка слагаемых.

Что такое идеальная жидкость?

Идеальная жидкость — это жидкость, не обладающая внутренним трением. То есть такая жидкость не создает гидравлическое сопротивление.

Реальная жидкость — это жидкость, которая обладает вязкостью. То есть внутренним сопротивлением.

Формула Бернулли для реальной жидкости

Коэффициент Кориолиса – это поправка кинетической энергии на реальную жидкость.

Потому что реальная жидкость движется не равномерно

У реальной жидкости серединная струйка воды движется быстрее остальных. При ламинарном режиме градиент: Чем ближе к стенке, тем медленнее движется поток воды.

Формула коэффициента Кориолиса

Что такое коэффициент Кориолиса?

Коэффициент Кориолиса характеризует отношение действительной кинетической энергии потока жидкости в данном сечении к той кинетической энергии потока, которую он имел бы, если бы все частицы двигались с одинаковой скоростью, равной средней скорости потока.

Чему равен коэффициент Кориолиса?

Нд.п. – Это динамические потери. Это потери вызванные движением воды.

Имеются дополнительные задачи с уравнением Бернули на реальную жидкость:

Посмотрите видеоурок по составлению уравнения Бернулли:

Как сделать гидравлический расчет погружного насоса?


источники:

http://znaesh-kak.com/e/d/%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5-%D0%B1%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8

http://infosantehnik.ru/str/91.html