Егэ задания по математике уравнения неравенства

Уравнения и неравенства ЕГЭ
материал для подготовки к егэ (гиа) по алгебре (11 класс) на тему

Уравнения содержатся во всех частях контрольных и измерительных материалов. В части 1 – базового уровня трудности, , в части 2 – самые трудные, требующие хорошего знания теоретического материала, умения проводить исследования различных ситуаций.

Скачать:

ВложениеРазмер
Уравнения и неравенства ЕГЭ238.04 КБ

Предварительный просмотр:

Уравнения содержатся во всех частях контрольных и измерительных материалов. В части 1 – базового уровня трудности, в части 2 – более трудные, в части 3 – самые трудные, требующие хорошего знания теоретического материала, умения проводить исследования различных ситуаций. В частности, предлагаются уравнения следующих типов:

  • показательные;
  • логарифмические;
  • тригонометрические;
  • иррациональные;
  • уравнения, содержащие неизвестную в основании и показателе степени;
  • уравнения смешанного типа, включающие различные функции.

Для выполнения заданий этого раздела нужно владеть определением корня уравнения (решения неравенства), уметь решать простейшие уравнения и простейшие неравенства. Эти умения позволят успешно применить общие методы решения уравнений (метод замены, метод разложения на множители, графический метод, использование свойств функций) к различным видам уравнений.

Решение уравнений (неравенств) любого вида сопряжено с проведением тождественных преобразований различных выражений, входящих в заданное уравнение (неравенство). Владение формулами для тождественных преобразований выражений и теоремами о равносильных уравнениях (неравенствах) поможет в поиске рационального решения.

Если задания базового уровня, используемые в контрольно-измерительных материалах, нередко текстуально совпадают с заданиями учебников, то задания повышенного уровня более разнообразны. Поэтому для подготовки к ЕГЭ полезно специально тренироваться в решении заданий, содержащихся в КИМ, или аналогичных им. Начнем с уравнений смешанного типа, включающих различные функции, содержащихся во второй части КИМ.

Вначале рассмотрим уравнения, в которых равны нулю произведения двух функций. Напомним, что произведение нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а остальные существуют.

  1. Найдите сумму корней уравнения .
  1. Найдите сумму корней уравнения
  1. Найдите количество корней уравнения

В следующем примере необходимо применить функциональный подход: рассмотреть уравнение как равенство значений двух функций. Поскольку функции совершенно различны (относятся к разным классам функций), нужно сравнить множества их значений.

В левой части уравнения – квадратичная функция. Выделим полный квадрат: . Теперь понятно, что множество ее значений – интервал .

В правой части уравнения – функция . Множество ее значений – отрезок . Следовательно, решением исходного уравнения являются те и только те значения переменной, при которых значения левой и правой частей равны числу 4. Квадратичная функция принимает значение только при Найдем значение функции при полученном значении х: Итак, — единственный корень данного уравнения. Ответ: -0,75.

Если рассматривать логарифмические уравнения второй части КИМ, то основная сложность решения их связана с тем, что большинство преобразований, основанных на свойствах логарифмов, не являются тождественными – при их выполнении может изменяться область допустимых значений входящих в выражения переменных. Это может приводить к потере корней (решений) или появлению так называемых посторонних корней (решений). Поэтому желательно выполнять только тождественные преобразования.

  1. Сколько корней имеет уравнение ?

Воспользуемся основным логарифмическим тождеством и получим систему, равносильному данному уравнению: Очевидно, что полученная система не имеет решений, так как единственный корень уравнения – отрицательное число, которое не удовлетворяет неравенству системы. Итак, исходное уравнение не имеет корней.

  1. Найдите меньший корень уравнения

Учитывая, что , преобразуем исходное уравнение

  1. Найдите меньший корень уравнения

Так как логарифмическая функция определена на множестве положительных чисел, то а значит, Поэтому корни надо искать на множестве отрицательных чисел. Но тогда и уравнение принимает вид Сделав замену , приходим к уравнению , корнями которого являются числа и , откуда или . В ответ запишем, как требуется в задании, меньший корень. Ответ: -10.

Как правило, в контрольные измерительные материалы ЕГЭ включают простейшие тригонометрические уравнения. Естественно, они находятся в части 1 и, как правило, представлены заданиями с выбором ответа. Приведем несколько примеров тригонометрических уравнений, аналоги которых могут встретиться среди заданий группы В. Как правило, это тригонометрические уравнения, при решении которых нам придется отбирать корни.

  1. Сколько корней имеет уравнение
  1. Определите число корней уравнения на отрезке .

Задания второй части с кратким ответом

  1. Найдите количество целочисленных решений неравенства

Так как знаменатель дроби при всегда положителен, то данное неравенство равносильно системе В этом отрезке целых чисел 7: -2; -1; 0; 1; 2; 3; 4.

  1. Сколько целочисленных решений имеет неравенство ?

Из всех целых чисел, принадлежащих отрезку -1; 0; 1; 2; 3; 4, мы должны убрать нечетные. Остаются три числа: 0; 2; 4.

  1. Найдите количество целочисленных решений неравенства удовлетворяющих условию

Решением неравенства является отрезок . Решением неравенства являются все действительные значения переменной х, при которых определен и не равен нулю, то есть или Таким образом, условию задачи удовлетворяют все нечетные числа из отрезка Таких чисел 3.

Задания с развернутым ответом.

1. Найдите все значения х, при каждом из которых расстояние между соответствующими точками графиков функций и меньше, чем 1,5.

2. Найдите все значения х, при каждом из которых расстояние между соответствующими точками графиков функций и меньше, чем 2.

3. Найдите все значения х, для которых точки графика функции лежат выше соответствующих точек графика функции .

4. Решите неравенство

5. Решите неравенство

Ответ: .

Отметим, что выпускник вправе использовать различные способы решения, и ни один из методов не является «более верным», чем другие.

6. Решите неравенство:

Если то , т.е. вторая система не имеет решений. Решением первой системы является объединение двух промежутков Оно и будет решением логарифмического неравенства.

1. Решите неравенство

2. Решите неравенство

3. Решите неравенство

4. Найдите все значения х, при каждом из которых расстояние между соответствующими точками графиков функций и меньше, чем 0,5.

5. Найдите все значения х, для каждого из которых точка графика функции лежит ниже соответствующей точки графика функции .

6.Найдите все значения х, при которых функция принимает положительные значения.

  1. Найдите наименьшее целое положительное х, удовлетворяющее неравенству .

Задания повышенного уровня сложности с развернутым ответом С1 и С2

Задание 14. Неравенства — профильный ЕГЭ по математике

Задание 14 Профильного ЕГЭ по математике можно считать границей между «неплохо сдал ЕГЭ» и «поступил в вуз с профильной математикой». Здесь не обойтись без отличного знания алгебры. Потому что встретиться вам может любое неравенство: показательное, логарифмическое, комбинированное (например, логарифмы и тригонометрия). И еще бывают неравенства с модулем и иррациональные неравенства. Некоторые из них мы разберем в этой статье.

Хотите получить на Профильном ЕГЭ не менее 70 баллов? Учитесь решать неравенства!

Темы для повторения:

Разберем неравенства разных типов из вариантов ЕГЭ по математике.

Дробно-рациональные неравенства

1. Решите неравенство:

Решим неравенство относительно t методом интервалов:

Вернемся к переменной x:

Показательные неравенства

2. Решите неравенство

Сделаем замену Получим:

Умножим неравенство на

Дискриминант квадратного уравнения

Значит, корни этого уравнения:

Разложим квадратный трехчлен на множители.

. Вернемся к переменной x.

Внимание. Сначала решаем неравенство относительно переменной t. Только после этого возвращаемся к переменной x. Запомнили?

Следующая задача — с секретом. Да, такие тоже встречаются в вариантах ЕГЭ,

3. Решите неравенство

Сделаем замену Получим:

Вернемся к переменной

Первое неравенство решим легко: С неравенством тоже все просто. Но что делать с неравенством ? Ведь Представляете, как трудно будет выразить х?

Оценим Для этого рассмотрим функцию

Сначала оценим показатель степени. Пусть Это парабола с ветвями вниз, и наибольшее значение этой функции достигается в вершине параболы, при х = 1. При этом

Мы получили, что

Тогда , и это значит, что Значение не достигается ни при каких х.

Логарифмические неравенства

4. Решите неравенство

Запишем решение как цепочку равносильных переходов. Лучше всего оформлять решение неравенства именно так.

Следующее неравенство — комбинированное. И логарифмы, и тригонометрия!

5. Решите неравенство

А вот и метод замены множителя (рационализации). Смотрите, как он применяется. А на ЕГЭ не забудьте доказать формулы, по которым мы заменяем логарифмический множитель на алгебраический.

6. Решите неравенство:

Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что . Используем также условия

Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,

Согласно методу замены множителя, выражение заменим на

Решить ее легко.

Разберем какое-нибудь нестандартное неравенство. Такое, что не решается обычными способами.

7. Решите неравенство:

Привести обе части к одному основанию не получается. Ищем другой способ.

Заметим, что при x = 9 оба слагаемых равны 2 и их сумма равна 4.

Функции и — монотонно возрастающие, следовательно, их сумма также является монотонно возрастающей функцией и каждое свое значение принимает только один раз.

Поскольку при x=9 значение монотонно возрастающей функции равно 4, при значения этой функции меньше 4. Конечно, при этом , то есть x принадлежит ОДЗ.

Задания по теме «Неравенства»

Открытый банк заданий по теме неравенства. Задания C3 из ЕГЭ по математике (профильный уровень)

Задание №1198

Условие

Для x\geqslant 0 решите систему неравенств

\begin x^4-3x^3-3x^2+5x+12\geqslant 0,\\ x^4-4x^3+x^2+4x+6\leqslant 0. \end

Решение

1. Заметим, что x=0 решением системы не является, так как второе неравенство системы при x=0 не является верным (6 \leqslant 0). Пусть x>0.

Вычитая из первого неравенства второе, получаем

x^3-4x^2+x+6 \geqslant 0.

А вычитая из второго неравенства системы последнее неравенство, получаем

x^4-5x^3+5x^2+3x \leqslant 0,

x(x^3-5x^2+5x+3) \leqslant 0.

Так как x>0, то из последнего неравенства получаем:

x^3-5x^2+5x+3 \leqslant 0.

Таким образом система неравенств

\begin x^3-4x^2+x+6 \geqslant 0, \\ x^3-5x^2+5x+3 \leqslant 0 \end

является следствием исходной.

Вычитая из первого неравенства последней системы второе, умноженное на 2 , и деля полученное неравенство на -x (причём снова обращаем внимание на известное нам ограничение x>0 ), получаем x^2-6x+9 \leqslant 0.

Последнее неравенство (следствие исходной системы) имеет единственное решение x=3. Простой подстановкой убеждаемся, что x=3 является решением системы.

Ответ

Задание №1197

Условие

Решите неравенство \frac1<\log_x 0,5>+6\geqslant 16\log_<4x>2.

Решение

ОДЗ неравенства: \begin x>0, \\ x\neq 1, \\ x\neq \frac14. \end

Т.к. \frac1<\log_x 0,5>= -\frac1<\log_x 2>= -\log_2 x, а \log_ <4x>2 =\frac1<\log_2 x+2>, то неравенство примет вид: -\log_2 x+6 \geqslant \frac<16><\log_2 x+2>. Пусть \log_2 x=t, тогда \frac<16>+ t-6 \leqslant 0, \frac<(t-2)^2>\leqslant 0, t=2 или t \log_2 x=2, откуда x=4 или \log_2 x откуда x Учитывая ОДЗ, получим 0 x=4.

Ответ

\left( 0;\,\frac14\right) , 4.

Задание №1196

Условие

Решите неравенство \log_x2+2\log_<2x>2\geqslant 2.

Решение

Заметим, что x>0, x \neq \frac12, x \neq 1.

Используя свойства логарифмов, преобразуем неравенство:

Пусть \log_2x=t, тогда получим неравенство, которое удобно решить методом интервалов:

Получим два двойных неравенства, решим их, возвращаясь к переменной x :

Так как найденные значения переменной удовлетворяют ОДЗ, то решение неравенства — \left( \frac12; \frac1<\sqrt 2>\right] \cup (1; 2].

Ответ

\left( \frac12; \frac1<\sqrt 2>\right] \cup (1; 2].

Задание №1195

Условие

Решение

Заметим, что \sqrt 2>1,4, a \sqrt 3>1,7. Тогда \frac<\sqrt 2+\sqrt 3>3>1.

Получаем неравенство 5\geqslant 7-2^x, 2^x\geqslant 2, x\geqslant 1.

С учетом ОДЗ имеем x\in[1; \log_27).

Ответ

Задание №1194

Условие

Решение

1. Отдельно преобразуем числитель и знаменатель.

1.1. В числителе вынесем за скобки 5^x, чтобы в скобке осталась разность некоторого числа в степени x и константы (вместо этого можно вынести за скобки 3^x, а потом дополнительно преобразовать, или сразу вынести за скобки 3^ ).

1.2. В знаменателе «избавимся» от \log_2 5 в показателе степени (преобразуем его в множитель). После этого получим квадратичное выражение от 2^x (если сделать замену t=2^x, то получим квадратичное выражение от t ). Квадратичное выражение разложим на множители.

2. Все множители в числителе и знаменателе заменим более простыми, совпадающими по знаку (в том числе равными нулю одновременно с исходными — таким образом, не надо будет дополнительно думать об ОДЗ).

3. Решим неравенство, полученное на предыдущем шаге, методом интервалов.

Выражения \left( \frac35\right) ^x-5, 2^x-2^2, 2^x-2^0 совпадают по знаку с выражениями \left( \frac35-1\right)\cdot 5>, (2-1)\cdot (x-2) и (2-1)\cdot (x-0) соответственно.


источники:

http://ege-study.ru/ru/ege/materialy/matematika/zadanie-15-profilnogo-ege-po-matematike-neravenstva/

http://academyege.ru/theme/neravenstva.html