Эквивалентная система линейных уравнений примеры

Понимание эквивалентных уравнений в алгебре

Понимание эквивалентных уравнений в алгебре — Науки

Содержание:

Эквивалентные уравнения — это системы уравнений, которые имеют одинаковые решения. Выявление и решение эквивалентных уравнений — ценный навык не только на уроках алгебры, но и в повседневной жизни. Взгляните на примеры эквивалентных уравнений, как решить их для одной или нескольких переменных и как вы можете использовать этот навык за пределами классной комнаты.

Ключевые выводы

  • Эквивалентные уравнения — это алгебраические уравнения, которые имеют одинаковые решения или корни.
  • Добавление или вычитание одного и того же числа или выражения к обеим сторонам уравнения дает эквивалентное уравнение.
  • Умножение или деление обеих частей уравнения на одно и то же ненулевое число дает эквивалентное уравнение.

Линейные уравнения с одной переменной

В простейших примерах эквивалентных уравнений нет переменных. Например, эти три уравнения эквивалентны друг другу:

  • 3 + 2 = 5
  • 4 + 1 = 5
  • 5 + 0 = 5

Признать, что эти уравнения эквивалентны, — это здорово, но не особенно полезно. Обычно задача эквивалентного уравнения просит вас решить для переменной, чтобы убедиться, что она такая же (та же корень) как одно в другом уравнении.

Например, следующие уравнения эквивалентны:

В обоих случаях x = 5.Откуда нам это знать? Как вы решите это для уравнения «-2x = -10»? Первый шаг — узнать правила эквивалентных уравнений:

  • Добавление или вычитание одного и того же числа или выражения к обеим сторонам уравнения дает эквивалентное уравнение.
  • Умножение или деление обеих частей уравнения на одно и то же ненулевое число дает эквивалентное уравнение.
  • Возведение обеих частей уравнения в одну и ту же нечетную степень или получение одного и того же нечетного корня приведет к эквивалентному уравнению.
  • Если обе части уравнения неотрицательны, возведение обеих сторон уравнения в одну четную степень или получение одного и того же четного корня даст эквивалентное уравнение.

пример

Применяя эти правила на практике, определите, эквивалентны ли эти два уравнения:

  • х + 2 = 7
  • 2x + 1 = 11

Чтобы решить эту проблему, вам нужно найти «x» для каждого уравнения. Если «x» одинаково для обоих уравнений, то они эквивалентны. Если «x» отличается (т.е. уравнения имеют разные корни), то уравнения не эквивалентны. Для первого уравнения:

  • х + 2 = 7
  • x + 2-2 = 7-2 (вычитая обе части на одно и то же число)
  • х = 5

Для второго уравнения:

  • 2x + 1 = 11
  • 2x + 1-1 = 11-1 (вычитая обе части на одно и то же число)
  • 2x = 10
  • 2x / 2 = 10/2 (разделив обе части уравнения на одно и то же число)
  • х = 5

Итак, да, два уравнения эквивалентны, потому что x = 5 в каждом случае.

Практические эквивалентные уравнения

Вы можете использовать эквивалентные уравнения в повседневной жизни. Это особенно полезно при покупках. Например, вам нравится определенная рубашка. Одна компания предлагает рубашку за 6 долларов с доставкой за 12 долларов, в то время как другая компания предлагает рубашку за 7,50 долларов с доставкой за 9 долларов. Какая рубашка имеет лучшую цену? Сколько рубашек (может быть, вы хотите подарить друзьям) вам придется купить, чтобы цена была одинаковой для обеих компаний?

Чтобы решить эту проблему, пусть x будет числом рубашек. Для начала установите x = 1 для покупки одной рубашки. Для компании №1:

  • Цена = 6x + 12 = (6) (1) + 12 = 6 + 12 = 18 $
  • Цена = 7,5x + 9 = (1) (7,5) + 9 = 7,5 + 9 = 16,50 $

Итак, если вы покупаете одну рубашку, вторая компания предлагает более выгодную сделку.

Чтобы найти точку, в которой цены равны, оставьте «x» числом рубашек, но приравняйте два уравнения друг к другу. Чтобы узнать, сколько рубашек вам нужно купить, решите для «x»:

  • 6х + 12 = 7,5х + 9
  • 6x — 7,5x = 9-12 (вычитая одинаковые числа или выражения с каждой стороны)
  • -1,5х = -3
  • 1,5x = 3 (деление обеих сторон на одно и то же число, -1)
  • x = 3 / 1,5 (деление обеих сторон на 1,5)
  • х = 2

Если вы покупаете две рубашки, цена будет одинаковой, независимо от того, где вы ее купите. Вы можете использовать ту же математику, чтобы определить, какая компания предлагает вам более выгодную сделку с крупными заказами, а также рассчитать, сколько вы сэкономите, используя одну компанию по сравнению с другой. Видите ли, алгебра полезна!

Эквивалентные уравнения с двумя переменными

Если у вас есть два уравнения и две неизвестные (x и y), вы можете определить, эквивалентны ли два набора линейных уравнений.

Например, если вам даны уравнения:

Вы можете определить, эквивалентна ли следующая система:

Чтобы решить эту проблему, найдите «x» и «y» для каждой системы уравнений. Если значения совпадают, то системы уравнений эквивалентны.

Начнем с первого подхода. Чтобы решить два уравнения с двумя переменными, выделите одну переменную и подставьте ее решение в другое уравнение. Чтобы изолировать переменную «y»:

  • -3x + 12y = 15
  • -3x = 15–12 лет
  • x = — (15 — 12y) / 3 = -5 + 4y (подставьте «x» во втором уравнении)
  • 7x — 10y = -2
  • 7 (-5 + 4лет) — 10лет = -2
  • -35 + 28–10 лет = -2
  • 18лет = 33
  • у = 33/18 = 11/6

Теперь вставьте «y» обратно в любое уравнение, чтобы найти «x»:

Проработав это, вы в конечном итоге получите x = 7/3.

Чтобы ответить на вопрос, вы мог примените те же принципы ко второму набору уравнений, чтобы решить для «x» и «y», чтобы обнаружить, что да, они действительно эквивалентны. В алгебре легко увязнуть, поэтому неплохо проверить свою работу с помощью онлайн-программы для решения уравнений.

Однако умный ученик заметит, что две системы уравнений эквивалентны без каких-либо сложных вычислений. Единственная разница между первым уравнением в каждом наборе состоит в том, что первое в три раза больше второго (эквивалентного). Второе уравнение точно такое же.

Эквивалентные системы линейных уравнений

Две системы линейных уравнений от одного набора x1. xn неизвестных и соответственно из m и p уравнений

называются эквивалентными, если их множества решений и совпадают (т. е. подмножества и в Kn совпадают, ). Это означает, что: либо они одновременно являются пустыми подмножествами (т. е. обе системы (I) и (II) несовместны), либо они одновременно непустые , и (т. е. каждое решение системы I является решением системы II и каждое решение системы II является решением системы I).

Элементарные преобразования систем линейных уравнений (строк матриц)

Определение 3.4.1 (элементарное преобразование 1-го типа). При к i -му уравнению системы прибавляется k -е уравнение, умноженное на число (обозначение: (i)’=(i)+c(k) ; т. е. лишь одно i -е уравнение (i) заменяется на новое уравнение (i)’=(i)+c(k) ). Новое i -е уравнение имеет вид (ai1+cak1)x1+. +(ain+cakn)xn=bi+cbk, или, кратко,

т. е. в новом i -м уравнении aij’=aij+cakj, bi’=bi+cbk.

Определение 3.4.2 (элементарное преобразование 2-го типа). При i -е и k -е уравнение меняются местами, остальные уравнения не изменяются (обозначение: (i)’=(k), (k)’=(i) ; для коэффициентов это означает следующее: для j=1. n

53. Метод Гаусса решения систем линейных уравнений
Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса, состоящий в последовательном исключении неизвестных по следующей схеме. Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали, содержащей элементы будут располагаться нули. Разрешается: 1) изменять порядок строк матрицы, что соответствует изменению порядка уравнений; 2) умножать строки на любые отличные от нуля числа, что соответствует умножению соответствующих уравнений на эти числа; 3) прибавлять к любой строке матрицы другую, умноженную на отличное от нуля число, что соответствует прибавлению к одному уравнению системы другого, умноженного на число. С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т. е. такой системы, решение которой совпадает с решением исходной системы. Рассмотрим метод Гаусса на примерах. Пример 14. Установить совместность и решить систему Решение. Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент равнялся единице (так удобнее производить преобразования матрицы). . Имеем Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно. Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований: Итак, имеем Далее, подставляя в третье уравнение, найдем Подставляя и во второе уравнение, получим и, наконец, подставляя в первое уравнение найденные получим Таким образом, имеем решение системы 54. Однородные системы линейных уравнений Однородной системой m линейных уравнений с n неизвестными называется система вида
      
a11x1 + a12x2 + … + a1nxn = 0
a21x1 + a22x2 + … + a2nxn = 0
… … … … … … … … … … …
am1x1 + am2x2 + … + amnxn = 0
(1)

Эта система может быть записана в виде матричного уравнения

и операторного уравнения

^Ax = θ(2)

Система (1) всегда совместна, так как:

имеет очевидное решение x10 = x20 = … = xn0 = 0 , которое называется нулевым, или тривиальным;

добавление нулевого столбца не меняет ранга матрицы, следовательно, выполняется достаточное условие теоремы Кронекера–Капелли;

θ О Img ^A , так как Img ^A — линейное пространство.

Естественно, нас интересуют нетривиальные решения однородной системы.

Условие нетривиальной совместности:

Для того, чтобы однородная система имела нетривиальное решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных.

Доказательство см. в книге О.В. Зиминой «Линейная алгебра и аналитическая геометрия», стр. 77.

Следствие. Для того, чтобы однородная система n линейных уравнений с n неизвестными (матрица системы A — квадратная) имела нетривиальное решение, необходимо и достаточно, чтобы определитель матрицы этой системы был равен нулю ( det A = 0 ).

Общим решением системы линейных уравнений называется формула, которая определяет любое ее решение.

Так как система (1) эквивалентна операторному уравнению (2), то множество всех ее решений есть ядро оператора ^A . Пусть Ker ^A ≠ θ , Rg ^A = r и x1, x2, … , xn − r — базис в ядре оператора.

Фундаментальной системой решений однородной системы (1) называется базис ядра оператора ^A (точнее, координатные столбцы базисных векторов в Ker ^A ).

Это определение можно сформулировать несколько иначе:

Фундаментальной системой решений однородной системы (1) называется n − r линейно независимых решений этой системы.

Будем обозначать координатные столбцы базисных векторов в Ker ^A X1, X2, … , Xn − r .

Теорема о структуре общего решения однородной системы уравнений:

Любое решение однородной системы линейных уравнений определяется формулой

X = C1 · X1 + C2 · X2 + … + Cn − r · Xn − r,(3)

где X1, X2, … , Xn − r — фундаментальная система решений однородной системы линейных уравнений и C1, C2, … , Cn − r — произвольные постоянные.

Свойства общего решения однородной системы уравнений:

При любых значениях C1, C2, … , Cn − r X , определяемое формулой (3), является решением системы (1).

Каково бы ни было решение X0 , существуют числа C10, … , Cn − r0 такие, что

X0 = C10 · X1 + C20 · X2 + … + Cn − r0 · Xn − r.

Вывод: Чтобы найти фундаментальную систему и общее решение однородной системы, нужно найти базис ядра соответствующего линейного оператора.

Метод Гаусса онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Гаусса

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

(1)

Запишем систему (1) в матричном виде:

Ax=b(2)
(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

(4)

Предположим a11≠0. Если это не так, то можно поменять местами эту строку со строкой с ненулевым элементом в столбце 1 (если нет таких строк, то переходим к следующему столбцу). Обнуляем все элементы столбца 1 ниже ведущего элемента a11. Для этого сложим строки 2,3, . m со строкой 1, умноженной на −a21/a11, −a31/a11, . −am1/a11, соответственно. Тогда (4) примет следующий вид:

(5)

На следующем этапе обнуляем все элементы столбца 2, ниже элемента . Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце. Далее обнуляем все элементы столбца 2 ниже ведущего элемента a22. Для этого сложим строки 3, . m со строкой 2, умноженной на −a32/a22, . −am2/a22, соответственно. Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

(6)

Обратим внимание на последние строки. Если . равны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть . Тогда

(7)

Так как rangA=rang(A|b), то множество решений (7) есть (n−p)− многообразие. Следовательно n−p неизвестных можно выбрать произвольно. Остальные неизвестные из системы (7) вычисляются так. Из последнего уравнения выражаем xp через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем xp−1 через остальные переменные и вставляем в предыдущие выражения и т.д. Рассмотрим метод Гаусса на конкретных примерах.

Примеры решения системы линейных уравнений методом Гаусса

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, запишем расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 9/8:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Из вышеизложенной таблицы можно записать:

Подставив верхние выражения в нижние, получим решение.

,,.

Пример 2. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на -1:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Выразим переменные x1, x2 относительно остальных переменных.

где x3, x4− произвольные действительные числа.

Подставив верхние выражения в нижние, получим решение.

где x3, x4− произвольные действительные числа.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Тогда векторное решение можно представить так:

где x3, x4− произвольные действительные числа.


источники:

http://lektsii.org/7-2182.html

http://matworld.ru/calculator/gauss-method-online.php