Эквивалентные преобразования системы линейных уравнений

Метод Гаусса онлайн

Данный онлайн калькулятор находит решение системы линейных уравнений (СЛУ) методом Гаусса. Дается подробное решение. Для вычисления выбирайте количество переменных и количество уравнений. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить.»

Предупреждение

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Метод Гаусса

Метод Гаусса − это метод перехода от исходной системы линейных уравнений (при помощи эквивалентных преобразований) к системе, которая решается проще, чем исходная система.

Эквивалентными преобразованиями системы линейных уравнений являются:

  • перемена местами двух уравнений в системе,
  • умножение какого-либо уравнения в системе на ненулевое действительное число,
  • прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Рассмотрим систему линейных уравнений:

(1)

Запишем систему (1) в матричном виде:

Ax=b(2)
(3)

A-называется матрица коэффициентов системы, b − правая часть ограничений, x− вектор переменных, которую нужно найти. Пусть rang(A)=p.

Эквивалентные преобразования не меняют ранг матрицы коэффициентов и ранг расширеннной матрицы системы. Не меняется также множество решений системы при эквивалентных преобразованиях. Суть метода Гаусса заключается в приведении матрцы коэффициентов A к диагональному или ступенчатому.

Построим расшренную матрицу системы:

(4)

Предположим a11≠0. Если это не так, то можно поменять местами эту строку со строкой с ненулевым элементом в столбце 1 (если нет таких строк, то переходим к следующему столбцу). Обнуляем все элементы столбца 1 ниже ведущего элемента a11. Для этого сложим строки 2,3, . m со строкой 1, умноженной на −a21/a11, −a31/a11, . −am1/a11, соответственно. Тогда (4) примет следующий вид:

(5)

На следующем этапе обнуляем все элементы столбца 2, ниже элемента . Если данный элемент нулевой, то эту строку меняем местами со строкой, лежащий ниже данной строки и имеющий ненулевой элемент во втором столбце. Далее обнуляем все элементы столбца 2 ниже ведущего элемента a22. Для этого сложим строки 3, . m со строкой 2, умноженной на −a32/a22, . −am2/a22, соответственно. Продолжая процедуру, получим матрицу диагонального или ступенчатого вида. Пусть полученная расширенная матрица имеет вид:

(6)

Обратим внимание на последние строки. Если . равны нулю, то система линейных уравнений имеет решение, если же хотя бы один из этих чисел отлично от нуля, то система несовместна. Иными словами, система (2) совместна тогда и только тогда, когда ранг матрицы A навен рангу расширенной матрицы (A|b).

Пусть . Тогда

(7)

Так как rangA=rang(A|b), то множество решений (7) есть (n−p)− многообразие. Следовательно n−p неизвестных можно выбрать произвольно. Остальные неизвестные из системы (7) вычисляются так. Из последнего уравнения выражаем xp через остальные переменные и вставляем в предыдущие выражения. Далее из предпоследнего уравнения выражаем xp−1 через остальные переменные и вставляем в предыдущие выражения и т.д. Рассмотрим метод Гаусса на конкретных примерах.

Примеры решения системы линейных уравнений методом Гаусса

Пример 1. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, запишем расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a1 1. Для этого сложим строки 2,3 со строкой 1, умноженной на -2/3,-1/2 соответственно:

Исключим элементы 2-го столбца матрицы ниже элемента a2 2. Для этого сложим строку 3 со строкой 2, умноженной на 9/8:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Из вышеизложенной таблицы можно записать:

Подставив верхние выражения в нижние, получим решение.

,,.

Пример 2. Найти общее решение системы линейных уравнений методом Гаусса:

Матричный вид записи: Ax=b, где

Для решения системы, построим расширенную матрицу:

Обозначим через aij элементы i-ой строки и j-ого столбца.

Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/5,-6/5 соответственно:

Исключим элементы 2-го столбца матрицы ниже элемента a22. Для этого сложим строку 3 со строкой 2, умноженной на -1:

Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):

Выразим переменные x1, x2 относительно остальных переменных.

где x3, x4− произвольные действительные числа.

Подставив верхние выражения в нижние, получим решение.

где x3, x4− произвольные действительные числа.

Векторный вариант решения:

Запишем вышеизложенное решение, представив свободные переменные в виде тождеств:

Тогда векторное решение можно представить так:

где x3, x4− произвольные действительные числа.

Эквивалентные системы линейных уравнений

Две системы линейных уравнений от одного набора x1. xn неизвестных и соответственно из m и p уравнений

называются эквивалентными, если их множества решений и совпадают (т. е. подмножества и в Kn совпадают, ). Это означает, что: либо они одновременно являются пустыми подмножествами (т. е. обе системы (I) и (II) несовместны), либо они одновременно непустые , и (т. е. каждое решение системы I является решением системы II и каждое решение системы II является решением системы I).

Элементарные преобразования систем линейных уравнений (строк матриц)

Определение 3.4.1 (элементарное преобразование 1-го типа). При к i -му уравнению системы прибавляется k -е уравнение, умноженное на число (обозначение: (i)’=(i)+c(k) ; т. е. лишь одно i -е уравнение (i) заменяется на новое уравнение (i)’=(i)+c(k) ). Новое i -е уравнение имеет вид (ai1+cak1)x1+. +(ain+cakn)xn=bi+cbk, или, кратко,

т. е. в новом i -м уравнении aij’=aij+cakj, bi’=bi+cbk.

Определение 3.4.2 (элементарное преобразование 2-го типа). При i -е и k -е уравнение меняются местами, остальные уравнения не изменяются (обозначение: (i)’=(k), (k)’=(i) ; для коэффициентов это означает следующее: для j=1. n

где – числа, называемые коэффициентами л.у., ,

– число, называемое свободным членом л.у.

53. Метод Гаусса решения систем линейных уравнений
Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса, состоящий в последовательном исключении неизвестных по следующей схеме. Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали, содержащей элементы будут располагаться нули. Разрешается: 1) изменять порядок строк матрицы, что соответствует изменению порядка уравнений; 2) умножать строки на любые отличные от нуля числа, что соответствует умножению соответствующих уравнений на эти числа; 3) прибавлять к любой строке матрицы другую, умноженную на отличное от нуля число, что соответствует прибавлению к одному уравнению системы другого, умноженного на число. С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т. е. такой системы, решение которой совпадает с решением исходной системы. Рассмотрим метод Гаусса на примерах. Пример 14. Установить совместность и решить систему Решение. Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент равнялся единице (так удобнее производить преобразования матрицы). . Имеем Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно. Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований: Итак, имеем Далее, подставляя в третье уравнение, найдем Подставляя и во второе уравнение, получим и, наконец, подставляя в первое уравнение найденные получим Таким образом, имеем решение системы 54. Однородные системы линейных уравнений Однородной системой m линейных уравнений с n неизвестными называется система вида
      
a11x1 + a12x2 + … + a1nxn = 0
a21x1 + a22x2 + … + a2nxn = 0
… … … … … … … … … … …
am1x1 + am2x2 + … + amnxn = 0
(1)

Эта система может быть записана в виде матричного уравнения

и операторного уравнения

^Ax = θ(2)

Система (1) всегда совместна, так как:

имеет очевидное решение x10 = x20 = … = xn0 = 0 , которое называется нулевым, или тривиальным;

добавление нулевого столбца не меняет ранга матрицы, следовательно, выполняется достаточное условие теоремы Кронекера–Капелли;

θ О Img ^A , так как Img ^A — линейное пространство.

Естественно, нас интересуют нетривиальные решения однородной системы.

Условие нетривиальной совместности:

Для того, чтобы однородная система имела нетривиальное решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных.

Доказательство см. в книге О.В. Зиминой «Линейная алгебра и аналитическая геометрия», стр. 77.

Следствие. Для того, чтобы однородная система n линейных уравнений с n неизвестными (матрица системы A — квадратная) имела нетривиальное решение, необходимо и достаточно, чтобы определитель матрицы этой системы был равен нулю ( det A = 0 ).

Общим решением системы линейных уравнений называется формула, которая определяет любое ее решение.

Так как система (1) эквивалентна операторному уравнению (2), то множество всех ее решений есть ядро оператора ^A . Пусть Ker ^A ≠ θ , Rg ^A = r и x1, x2, … , xn − r — базис в ядре оператора.

Фундаментальной системой решений однородной системы (1) называется базис ядра оператора ^A (точнее, координатные столбцы базисных векторов в Ker ^A ).

Это определение можно сформулировать несколько иначе:

Фундаментальной системой решений однородной системы (1) называется n − r линейно независимых решений этой системы.

Будем обозначать координатные столбцы базисных векторов в Ker ^A X1, X2, … , Xn − r .

Теорема о структуре общего решения однородной системы уравнений:

Любое решение однородной системы линейных уравнений определяется формулой

X = C1 · X1 + C2 · X2 + … + Cn − r · Xn − r,(3)

где X1, X2, … , Xn − r — фундаментальная система решений однородной системы линейных уравнений и C1, C2, … , Cn − r — произвольные постоянные.

Свойства общего решения однородной системы уравнений:

При любых значениях C1, C2, … , Cn − r X , определяемое формулой (3), является решением системы (1).

Каково бы ни было решение X0 , существуют числа C10, … , Cn − r0 такие, что

X0 = C10 · X1 + C20 · X2 + … + Cn − r0 · Xn − r.

Вывод: Чтобы найти фундаментальную систему и общее решение однородной системы, нужно найти базис ядра соответствующего линейного оператора.

Эквивалентные преобразования системы линейных уравнений

Системы линейных уравнений

Линейное уравнение (л.у.) – уравнение вида

Система линейных уравнений (СЛУ) – система вида

где – числа, называемые коэффициентами СЛУ, ,

– числа, называемые свободными членами СЛУ, ,

– переменные СЛУ, ,

– количество уравнений СЛУ,

– количество переменных СЛУ.

Сокращенная форма записи СЛУ (2)

, .

Матричная форма записи СЛУ (2)

где – матрица коэффициентов СЛУ размерности ,

– вектор свободных членов СЛУ размерности ,

– вектор переменных СЛУ размерности ,

0 – нуль-вектор размерности .

Квадратная СЛУ – СЛУ, состоящая из n уравнений с n переменными.

Решение СЛУ с n переменными – упорядоченная совокупность чисел ( для(4)), являющихся решением каждого из уравнений, входящих в систему.

1. Точные методы решения – методы решения, дающие точное решение задачи за конечное число арифметических и логических операций в предположении отсутствия округлений. Применяются для решения задач с малым числом переменных – не более 10 3 .

2. Итеративные методы решения – методы решения, дающие возможность получить решение с заданной точностью или точное решение. Применяются для решения задач со средним числом переменных – не более 10 6 . Требуют меньше вычислений, чем точные методы решения.

3. Вероятностные методы решения. Применяются для решения задач с большим числом переменных – более 10 6 .

Совместная СЛУ – СЛУ, имеющая одно или несколько решений.

Определенная СЛУ – совместная СЛУ, имеющая единственное решение.

Неопределенная СЛУ – совместная СЛУ, имеющая более одного решения.

Несовместная СЛУ – СЛУ, не имеющая ни одного решения.

Однородная СЛУ (ОСЛУ) – СЛУ, все свободные члены которой равны нулю

,

, ,

.

1. Любая ОСЛУ имеет хотя бы одно решение – тривиальное решение, т.е. .

2. Для того чтобы ОСЛУ имела нетривиальные решения, необходимо и достаточно, чтобы ранг матрицы коэффициентов системы был меньше количества переменных системы.

Неоднородная СЛУ (НСЛУ) – СЛУ, у которой хотя бы один свободный член отличен от нуля

.

1. Для того чтобы НСЛУ была совместной СЛУ, необходимо и достаточно, чтобы ранг матрицы коэффициентов равен рангу расширенной матрицы (7).

2. Квадратная НСЛУ с вырожденной матрицей коэффициентов может быть совместной неопределенной системой или несовместной системой.

,

где – коэффициенты СЛУ, ,

– свободные члены СЛУ, ,

– количество уравнений СЛУ,

– количество переменных СЛУ.

Равносильные СЛУ – две СЛУ, множества решений которых совпадают.

1. Всякие две несовместные системы считаются равносильными.

Элементарные преобразования СЛУ :

— умножение некоторого уравнения системы на отличное от нуля число;

— прибавление к одному уравнению системы другого ее уравнения, умноженного на произвольное число;

— перестановка местами двух уравнений системы;

— перестановка местами двух неизвестных вместе с коэффициентами у всех уравнений.

Эквивалентные СЛУ – две СЛУ, полученные одна из другой с помощью элементарных преобразований.

1. Любые две эквивалентные СЛУ – равносильные.

2. Любая СЛУ приводится посредством элементарных преобразований к системе с трапециевидной матрицей.

3. Любая квадратная СЛУ с невырожденной матрицей коэффициентов A приводится посредством элементарных преобразований к системе с треугольной матрицей.


источники:

http://lektsii.org/7-2182.html

http://algmet.simulacrum.me/theory_a4m/slau/index.htm