Электролиз раствора карбоната натрия уравнение реакции

Электролиз

Электролиз

Химические реакции, сопровождающиеся переносом электронов (окислительно-восстановительные реакции) делятся на два типа: реакции, протекающие самопроизвольно и реакции, протекающие при прохождении тока через раствор или расплав электролита.

Раствор или расплав электролита помещают в специальную емкость — электролитическую ванну .

Электрический ток — это упорядоченное движение заряженных частиц — ионов, электронов и др. под действием внешнего электрического поля. Электрическое поле в растворе или расплаве электролита создают электроды .

Электроды — это, как правило, стержни из материала, проводящего электрический ток. Их помещают в раствор или расплав электролита, и подключают к электрической цепи с источником питания.

При этом отрицательно заряженный электрод катод — притягивает положительно заряженные ионы — катионы . Положительно заряженный электрод ( анод ) притягивает отрицательно заряженные частицы ( анионы ). Катод выступает в качестве восстановителя, а анод — в качестве окислителя.

Различают электролиз с активными и инертными электродами. Активные (растворимые) электроды подвергаются химическим превращениям в процессе электролиза. Обычно их изготавливают из меди, никеля и других металлов. Инертные (нерастворимые) электроды химическим превращениям не подвергаются. Их изготавливают из неактивных металлов, например, платины , или графита .

Электролиз растворов

Различают электролиз раствора или расплава химического вещества. В растворе присутствует дополнительное химическое вещество — вода, которая может принимать участие в окислительно-восстановительных реакциях.

Катодные процессы

В растворе солей катод притягивает катионы металлов. Катионы металлов могут выступать в качестве окислителей. Окислительные способности ионов металлов различаются. Для оценки окислительно-восстановительных способностей металлов применяют электро-химический ряд напряжений :

Каждый металл характеризуется значением электрохимического потен-циала. Чем меньше потенциал , тем больше восстановительные свойства металла и тем меньше окислительные свойства соответствующего иона этого металла. Разным ионам соответствуют разные значения этого потенциала. Электрохимический потенциал — относительная величина. Электрохимический потенциал водорода принят равным нулю.

Также около катода находятся молекулы воды Н2О. В составе воды есть окислитель — ион H + .

При электролизе растворов солей на катоде наблюдаются следующие закономерности:

1. Если металл в соли — активный ( до Al 3+ включительно в ряду напряжений ), то вместо металла на катоде восстанавливается (разряжается) водород , т.к. потенциал водорода намного больше. Протекает процесс восстановления молекулярного водорода из воды, при этом образуются ионы OH — , среда возле катода — щелочная:

2H2O +2ē → H2 + 2OH —

Например , при электролизе раствора хлорида натрия на катоде будет вос-станавливаться только водород из воды.

2. Если металл в соли – средней активности (между Al 3+ и Н + ) , то на катоде восстанавливается (разряжается) и металл , и водород , так как потенциал таких металлов сравним с потенциалом водорода:

Me n+ + nē → Me 0

2 H + 2O +2ē → H2 0 + 2OH —

Например , при электролизе раствора сульфата железа (II) на катоде будет восстанавливаться (разряжаться) и железо, и водород:

Fe 2+ + 2ē → Fe 0

2 H + 2O +2ē → H2 0 + 2OH —

3. Если металл в соли — неактивный (после водорода в ряду стандартных электрохимических металлов) , то ион такого металла является более сильным окислителем, чем ион водорода, и на катоде восстанавливается только металл:

Me n+ + nē → Me 0

Например, при электролизе раствора сульфата меди (II) на катоде будет восстанавливаться медь:

Cu 2+ + 2ē → Cu 0

4. Если на катод попадают катионы водорода H + , то они и восстанавливаются до молекулярного водорода:

2H + + 2ē → H2 0

Анодные процессы

Положительно заряженный анод притягивает анионы и молекулы воды. Анод – окислитель. В качестве восстановителей выступаю либо анионы кислотных остаток, либо молекулы воды (за счет кислорода в степени окисления -2: H 2 O -2 ).

При электролизе растворов солей на аноде наблюдаются следующие закономерности:

1. Если на анод попадает бескислородный кислотный остаток , то он окисляется до свободного состояния (до степени окисления 0):

неМе n- – nē = неМе 0

Например : при электролизе раствора хлорида натрия на аноде окисляют-ся хлорид-ионы:

2Cl — – 2ē = Cl2 0

Действительно, если вспомнить Периодический закон: при увеличении электроотрицательности неметалла его восстановительные свойства уменьшаются. А кислород – второй по величине электроотрицательности элемент. Таким образом, проще окислить практически любой неметалл, а не кислород. Правда, есть одно исключение . Наверное, вы уже догадались. Конечно же, это фтор. Ведь электроотрицательность фтора больше, чем у кислорода. Таким образом, при электролизе растворов фторидов окисляться будут именно молекулы воды, а не фторид-ионы :

2H2 O -2 – 4ē → O2 0 + 4H +

2. Если на анод попадает кислородсодержащий кислотный остаток, либо фторид-ион , то окислению подвергается вода с выделением молекулярно-го кислорода:

2H2 O -2 – 4ē → O2 0 + 4H +

3. Если на анод попадает гидроксид-ион, то он окисляется и происходит выделение молекулярного кислорода:

4 O -2 H – – 4ē → O2 0 + 2H2O

4. При электролизе растворов солей карбоновых кислот окислению под-вергается атом углерода карбоксильной группы, выделяется углекислый газ и соответствующий алкан.

Например , при электролизе растворов ацетатов выделяется углекислый газ и этан:

2 CH3 C +3 OO – –2ē → 2 C +4 O2+ CH3-CH3

Суммарные процессы электролиза

Рассмотрим электролиз растворов различных солей.

Например , электролиз раствора сульфата меди. На катоде восстанавливаются ионы меди:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются молекулы воды:

Анод (+): 2H2 O -2 – 4ē → O2 + 4H +

Сульфат-ионы в процессе не участвуют. Мы их запишем в итоговом уравнении с ионами водорода в виде серной кислоты:

2 Cu 2+ SO4 + 2H2 O -2 → 2 Cu 0 + 2H2SO4 + O2 0

Электролиз раствора хлорида натрия выглядит так:

На катоде восстанавливается водород:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются хлорид-ионы:

Анод (+): 2 Cl – – 2ē → Cl2 0

Ионы натрия в процессе электролиза не участвуют. Мы записываем их с гидроксид-анионами в суммарном уравнении электролиза раствора хлорида натрия :

2 H + 2O +2Na Cl – → H2 0 + 2NaOH + Cl2 0

Следующий пример : электролиз водного раствора карбоната калия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются молекулы воды до молекулярного кислорода:

Анод (+): 2H2 O -2 – 4ē → O2 0 + 4H +

Таким образом, при электролизе раствора карбоната калия ионы калия и карбонат-ионы в процессе не участвуют. Происходит электролиз воды:

2 H2 + O -2 → 2 H2 0 + O2 0

Еще один пример : электролиз водного раствора хлорида меди (II).

На катоде восстанавливается медь:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются хлорид-ионы до молекулярного хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Таким образом, при электролизе раствора карбоната калия происходит электролиз воды:

Cu 2+ Cl2 – → Cu 0 + Cl2 0

Еще несколько примеров: электролиз раствора гидроксида натрия.

На катоде восстанавливается водород из воды:

Катод (–): 2 H + 2O +2ē → H2 0 + 2OH –

На аноде окисляются гидроксид-ионы до молекулярного кислорода:

Анод (+): 4 O -2 H – – 4ē → O2 0 + 2H2O

Таким образом, при электролизе раствора гидроксида натрия происходит разложение воды, катионы натрия в процессе не участвуют:

2 H2 + O -2 → 2 H2 0 + O2 0

Электролиз расплавов

При электролизе расплава на аноде окисляются анионы кислотных остатков, а на катоде восстанавливаются катионы металлов. Молекул воды в системе нет.

Например: электролиз расплава хлорида натрия. На катоде восстанавли-ваются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются анионы хлора:

Анод (+): 2 Cl – – 2ē → Cl2 0

Суммарное уравнение электролиза расплава хлорида натрия:

2 Na + Cl → 2 Na 0 + Cl2 0

Еще один пример: электролиз расплава гидроксида натрия. На катоде восстанавливаются катионы натрия:

Катод (–): Na + + ē → Na 0

На аноде окисляются гидроксид-ионы:

Анод (+): 4 OH – – 4ē → O2 0 + 2H2O

Суммарное уравнение электролиза расплава гидроксида натрия:

4 Na + OH → 4 Na 0 + O2 0 + 2H2O

Многие металлы получают в промышленности электролизом расплавов.

Например , алюминий получают электролизом раствора оксида алюминия в расплаве криолита. Криолит – Na3[AlF6] плавится при более низкой температуре (1100 о С), чем оксид алюминия (2050 о С). А оксид алюминия отлично растворяется в расплавленном криолите.

В растворе криолите оксид алюминия диссоциирует на ионы:

На катоде восстанавливаются катионы алюминия:

Катод (–): Al 3+ + 3ē → Al 0

На аноде окисляются алюминат-ионы:

Анод (+): 4Al O 3 3 – – 12ē → 2Al2O3 + 3 O2 0

Общее уравнение электролиза раствора оксида алюминия в расплаве криолита:

2 Al 2 О 3 = 4 Al 0 + 3 О 2 0

В промышленности при электролизе оксида алюминия в качестве электродов используют графитовые стержни. При этом электроды частично окисляются (сгорают) в выделяющемся кислороде:

C 0 + О2 0 = C +4 O2 -2

Электролиз с растворимыми электродами

Если материал электродов выполнен из того же металла, который присут-ствует в растворе в виде соли, или из более активного металла, то на аноде разряжаются не молекулы воды или анионы, а окисляются частицы самого металла в составе электрода.

Например , рассмотрим электролиз раствора сульфата меди (II) с медными электродами.

На катоде разряжаются ионы меди из раствора:

Катод (–): Cu 2+ + 2ē → Cu 0

На аноде окисляются частицы меди из электрода :

Анод (+): Cu 0 – 2ē → Cu 2+

Правила составления уравнений электронно-ионного баланса электролиза расплавов и растворов электролитов

Правила составления уравнений электронно-ионного баланса

электролиза расплавов и растворов электролитов.

I. Электролиз Р А С П Л А В О В.

На катоде НЕЗАВИСИМО от места расположения

металла в ряду активностей металлов ( в ряду напряжений )

ВСЕГДА восстанавливаются катионы металла:

n — заряд иона металла

На аноде рассматривают процессы окисления анионов

( ионов кислотных остатков ) и гидроксид ионов ( ОН — ).

( F -, Cl — , Br — , I — , S 2- ),

то происходит его

окисление до простого

(где Г-галоген: F, Cl, Br, I )

SO4 2- или СO3 2- ),

до молекул кислорода.

При этом образуется

стабильный в условиях

2 CO3e Þ 2 CO2 + O2

Гидроксид ионы ( ОН — ),

кислорода и воды:

4 ОН — — 4 е Þ O2 + 2 H2O

Если электролизу подвергается расплав оксида металла,

на аноде образуется кислород:

Оксид алюминия сначала диссоциирует в расплаве:

Al2O3 Þ Al 3+ + AlO3 3-

на аноде: 2 AlO3e Þ Al2O3 + 1,5 O2

II. Электролиз Р А С Т В О Р О В.

На катоде рассматривают процессы восстановления катионов металлов, ионов водорода и молекул воды. Для определения катодного процесса необходимо знать активность металла в водном растворе. Эту активность определяют по ряду активностей металлов в водных растворах ( ряд напряжений металлов ):

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Металл стоит в ряду

Металл стоит в ряду

МЕЖДУ алюминием и водородом.

Металл стоит в ряду

На катоде металл не

водород из воды:

2 H2O + 2 e Þ H2 + 2 OH —

На катоде происходят

восстановление металла и

n — заряд иона металла

2 H2O + 2 e Þ H2 + 2 OH —

происходит только процесс восстановления

n — заряд иона металла

На аноде рассматривают процессы окисления анионов

( ионов кислотных остатков ), гидроксид ионов ( ОН — ) и молекул воды.

Если анод из активного

металла (Сu, Ni, Fe),

то происходит только

( Cl — , Br — , I — , S 2- ),

то происходит его

окисление до простого

(где Г-галоген: Cl, Br, J )

( SO3 2- , SO4 2-, NO3 — ,

СO3 2- , PO4 3-, SiO3 2- и

кислорода из воды

до молекул кислорода:

2 H2O — 4 e Þ O2 + 4 H +

Если электролизу подвергается раствор щёлочи, то окислению подвергаются

атомы кислорода до молекул кислорода:

4 ОН — — 4 е Þ O2 + 2 H2O

Примеры составления уравнений электролиза.

I. Электролиз Р А С П Л А В О В.

Пример 1. Электролиз расплава хлорида меди (II).

Уравнение диссоциации соли в расплаве: СuCl2 Cu 2+ + 2 Cl —

Катод ( ¾ ) : Cu 2+ + 2 e Þ Cu • 1

Катионы металла ( Cu 2+ )

при электролизе расплава

на катоде всегда

до простого вещества:

Анод ( + ) : 2 Cl — — 2 e Þ Cl2 • 1

кислоты ( Cl — ) при электролизе

расплава на аноде всегда окисляются

до простого вещества:

Cуммарное ионное уравнение электродных реакций:

Cu 2+ + 2 Сl — Þ Cu + Cl2 ­

Над знаком Þ запишите

слово электролиз и знак

Cуммарное молекулярное уравнение

CuСl2 Þ Cu + Cl2 ­

на катоде на аноде

Над знаком Þ запишите

слово электролиз и знак

Пример 2. Электролиз расплава сульфата калия.

Уравнение диссоциации соли в расплаве: K2SO4 2 K+ + SO4 2-

Катод ( ¾ ) : K+ + e Þ K • 2

Катионы металла ( K+ )

при электролизе расплава

на катоде всегда

до простого вещества:

Анод ( + ) : SO4e Þ SO2 + O2 • 1

кислоты ( SO4 2-) при электролизе

расплава на аноде всегда окисляются до кислорода и оксида неметалла:

Cуммарное ионное уравнение электродных реакций:

электролиз, t

2 K+ + SO4 2- Þ 2 K + SO2 ­ + О2 ­

на катоде на аноде

Над знаком Þ запишите

слово электролиз и знак

Cуммарное молекулярное уравнение

электролиз, t

K2SO4 Þ 2 K + SO2 ­ + О2 ­

на катоде на аноде

Над знаком Þ запишите

слово электролиз и знак

Пример 3. Электролиз расплава гидроксида натрия.

Уравнение диссоциации соли в расплаве: NaOH Na+ + OH —

Катод ( ¾ ) : Na+ + e Þ Na • 4

Катионы металла ( Na + )

при электролизе расплава

на катоде всегда

до простого вещества:

Анод ( + ) : 4 OH — — 4 e Þ 2 H2O + O2 • 1

Гидроксид ионы ( OH — )

при электролизе расплава

на аноде всегда окисляются до

кислорода и воды:

Cуммарное ионное уравнение

электролиз, t

4 Na+ + 4 OH — Þ 4 Na + 2 H2O + О2 ­

на катоде на аноде

Над знаком Þ запишите

слово электролиз и знак

Cуммарное молекулярное уравнение

электролиз, t

4 NaOH Þ 4 Na + 2 H2O + О2 ­

на катоде на аноде

Над знаком Þ запишите

слово электролиз и знак

Электролиз растворов с инертными электродами.

Инертные электроды — электроды, которые при электролизе служат лишь передатчиками электронов. Материал таких электродов не участвует в электродных процессах (например: Pt, Ir, C (графит)).

Пример 1. Электролиз раствора иодида натрия.

Уравнение диссоциации соли в растворе: NaJ Na + + I —

Ряд напряжений металлов:

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : 2 H2O + 2 e Þ H2 + 2 OH — • 1

Натрий — стоит в ряду напряжений

левее алюминия, поэтому,

натрий при электролизе раствора

на катоде не восстанавливается,

а восстанавливается водород

Анод ( + ) : 2 I — — 2 e Þ I2 • 1

кислоты ( J — ) при электролизе

раствора на аноде всегда окисляются

до простого вещества:

Cуммарное ионное уравнение электродных реакций:

электролиз

2 H2O + 2 I — Þ H2 + 2 OH — + I2

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение

электролиз

2 NaI + 2 H2O Þ H2 + 2 NaOH + I2

на катоде на аноде

Над знаком Þ запишите

Пример 2. Электролиз раствора бромида железа (III).

Уравнение диссоциации соли в растворе: FeBr3 Fe 3+ + 3 Br —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : Fe 3+ + 3 e Þ Fe

2 H2O + 2 e Þ H2 + 2 OH-

Железо — стоит в ряду напряжений

между алюминием и водородом,

поэтому, при электролизе раствора

на катоде железо восстанавливается,

вместе с водородом из молекул воды:

Анод ( + ) : 2 Br — — 2 e Þ Br2

кислоты ( Br — ) при электролизе

раствора на аноде всегда окисляются

до простого вещества:

На катоде происходят 2 реакции восстановления, поэтому, необходимо составить 2 суммарных уравнения электролиза. Для этого реакцию на аноде суммируют с каждой катодной реакцией.

Первая пара полуреакций:

Вторая пара полуреакций:

_

Катод (-): Fe 3+ + 3 e Þ Fe •2

Анод ( + ) : 2 Br — — 2 e Þ Br2 •3

Катод (-): 2 H2O + 2 e Þ H2 + 2 OH — •1

Анод ( + ): 2 Br — — 2 e Þ Br2 •1

Первое суммарное ионное

Второе суммарное ионное

электролиз

2 Fe 3+ + 6 Br — Þ 2 Fe + 3 Br2

на катоде на аноде

Над знаком Þ запишите слово электролиз.

2 H2O + 2 Br — Þ H2 + 2 OH — + Br2

на катоде на аноде

Над знаком Þ запишите слово электролиз.

Cуммарное молекулярное уравнение

Cуммарное молекулярное уравнение

электролиз

2 FeBr3 Þ 2 Fe + 3 Br2

на катоде на аноде

6 H2O+2 FeBr3 Þ 3 H2 +2 Fe(OH)3 ¯ + 3 Br2

на катоде на аноде

Пример 3. Электролиз раствора хлорида меди (II).

Уравнение диссоциации соли в растворе: СuCl2 Cu 2+ + 2 Cl —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : Cu 2+ + 2 e Þ Cu • 1

Медь ( Cu )- стоит в ряду напряжений

поэтому, при электролизе раствора

на катоде восстанавливаются

только атомы меди:

Анод ( + ) : 2 Cl — — 2 e Þ Cl2 • 1

кислоты ( Cl — ) при электролизе

раствора на аноде всегда окисляются

до простого вещества:

Cуммарное ионное уравнение электродных реакций:

Сu 2+ + 2 Cl — Þ Cu + Cl2 ­

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение

СuCl2 Þ Cu + Cl2 ­

на катоде на аноде

Над знаком Þ запишите

Пример 4. Электролиз раствора карбоната калия.

Уравнение диссоциации соли в растворе: K2CO3 2 K + + CO3 2-

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : 2 H2O + 2 e Þ H2 + 2 OH — • 2

Калий ( K ) — стоит в ряду напряжений

левее алюминия, поэтому,

калий при электролизе раствора

на катоде не восстанавливается,

а восстанавливается водород

из молекул воды:

Анод ( + ) : 2 H2O — 4 e Þ O2 + 4 H+ • 1

кислоты ( CO3 2- ) при электролизе

раствора на аноде не окисляются,

а окисляются атомы кислорода

из молекул воды:

Cуммарное ионное уравнение электродных реакций:

электролиз

4 H2O + 2 H2O Þ 2 H2 + 4 OH — + O2 + 4 H+

на катоде на аноде

6 H2O Þ 2 H2 + 4 OH — + O2 + 4 H+

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение электродных реакций:

электролиз

6 H2O + 2 K2CO3 Þ 2 H2 + 4 KOH + O2 + 2 H2СО3

на катоде на аноде

6 H2O + 2 K2CO3 Þ 2 H2 + 4 KOH + O2 + 2 H2О + 2 CO2

электролиз на катоде на аноде

4 H2O + 2 K2CO3 Þ 2 H2 + 4 KOH + O2 + 2 CO2

на катоде на аноде

Над знаком Þ запишите

Пример 5. Электролиз раствора сульфата цинка.

Уравнение диссоциации соли в растворе: ZnSO4 Zn2+ + SO4 2-

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : Zn 2+ + 2 e Þ Zn

2 H2O + 2 e Þ H2 + 2 OH-

Цинк ( Zn )- стоит в ряду напряжений

между алюминием и водородом,

поэтому, при электролизе раствора

на катоде железо восстанавливается,

вместе с водородом из молекул воды:

Анод ( + ) : 2 H2O — 4 e Þ O2 + 4 H+

кислоты ( SO4 2- ) при электролизе

раствора на аноде не окисляются,

а окисляются атомы кислорода

из молекул воды:

На катоде происходят 2 реакции восстановления, поэтому, необходимо составить 2 суммарных уравнения электролиза. Для этого реакцию на аноде суммируют с каждой катодной реакцией.

Первая пара полуреакций:

Вторая пара полуреакций:

_

Катод (-): Zn 2+ + 2 e Þ Zn • 2

Анод ( + ) : 2 H2O — 4 e Þ O2 + 4 H+ • 1

Катод (-): 2 H2O + 2 e Þ H2 + 2 OH — • 2

Анод ( + ): 2 H2O — 4 e Þ O2 + 4 H+ • 1

Первое суммарное ионное

Второе суммарное ионное

2 Zn 2+ + 2 H2O Þ 2 Zn + O2 ­ + 4 H+

на катоде на аноде

Над знаком Þ запишите слово электролиз.

4 H2O + 2 H2O Þ 2 H2 ­ + 4 OH — + O2 ­ + 4 H+

6 H2O Þ 2 H2 ­ + 4 OH — + O2 ­ + 4 H+

на катоде на аноде

Над знаком Þ запишите слово электролиз.

Cуммарное молекулярное уравнение

Cуммарное молекулярное уравнение

2 ZnSO4 + 2 H2O Þ 2 Zn + O2 ­+ 2 H2SO4

на катоде на аноде

6 H2O + 4 ZnSO4 Þ 2 H2 ­+ 2 Zn(OH)2 + O2­+ 2 H2SO4

на катоде на аноде

Пример 6. Электролиз раствора нитрата серебра.

Уравнение диссоциации соли в растворе: AgNO3 Ag+ + NO3 —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

Катод ( ¾ ) : Ag+ + e Þ Ag • 4

Серебро ( Ag )- стоит в ряду

напряжений правее водорода,

поэтому, при электролизе раствора

на катоде восстанавливаются

только атомы меди:

Анод ( + ) : 2 H2O — 4 e Þ O2 + 4 H+ • 1

кислоты ( NO3 — ) при электролизе

раствора на аноде не окисляются,

а окисляются атомы кислорода

из молекул воды:

Cуммарное ионное уравнение электродных реакций:

электролиз

4 Ag + + 2 H2O Þ 4 Ag + O2 ­ + 4 H+

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение

электролиз

4 AgNO3 + 2 H2O Þ 4 Ag + O2 ­ + 4 HNO3

на катоде на аноде

Над знаком Þ запишите

Пример 7. Электролиз раствора соляной кислоты.

Уравнение диссоциации соли в растворе: HCl H+ + Cl —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

_

Катод ( ¾ ) : 2 H + + 2 e Þ H2 • 1

Ионы водорода ( H+ )

при электролизе раствора

на катоде восстанавливаются

до молекул водорода

Анод ( + ) : 2 Cl — — 2 e Þ Cl2 • 1

кислоты ( Cl — ) при электролизе

раствора на аноде всегда окисляются

до простого вещества:

Cуммарное ионное уравнение электродных реакций:

2 H + + 2 Cl — Þ H2 ­ + Cl2 ­

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение

2 HCl Þ H2 ­ + Cl2 ­

на катоде на аноде

Над знаком Þ запишите

Пример 8. Электролиз раствора серной кислоты.

Уравнение диссоциации соли в растворе: H2SO4 2 H+ + SO4 2-

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

_

Катод ( ¾ ) : 2 H + + 2 e Þ H2 • 2

Ионы водорода ( H+ )

при электролизе раствора

на катоде восстанавливаются

до молекул водорода

Анод ( + ) : 2 H2O — 4 e Þ O2 + 4 H+ • 1

кислоты ( SO4 2- ) при электролизе

раствора на аноде не окисляются,

а окисляются атомы кислорода

из молекул воды:

Cуммарное ионное уравнение электродных реакций:

4 H + + 2 H2O Þ 2 H2 ­ + O2 ­ + 4 H+

на катоде на аноде

Над знаком Þ запишите

В этом уравнении в левой и правой частях есть одинаковых частицы

( H + ), поэтому, в левой и правой

частях уравнения сократите эти

Cуммарное молекулярное уравнение

электролиз

2 H2SO4 + 2 H2O Þ 2 H2 ­ + O2 ­ + 2 H2SO4

на катоде на аноде

2 H2O Þ 2 H2 ­ + O2 ­

на катоде на аноде

Над знаком Þ запишите

Пример 9. Электролиз раствора гидроксида калия.

Уравнение диссоциации соли в растворе: KOH K + + OH —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

_

Катод ( ¾ ) : 2 H2O + 2 e Þ H2 + 2 OH — • 2

Калий ( K )- стоит в ряду напряжений

левее алюминия, поэтому,

калий при электролизе раствора

на катоде не восстанавливается,

а восстанавливается водород

из молекул воды:

Анод ( + ) : 4 OH — — 4 e Þ 2 H2O + O2 • 1

Гидроксид ионы ( OH — )

при электролизе раствора

на аноде всегда окисляются до

кислорода и воды:

Cуммарное ионное уравнение электродных реакций:

электролиз

4 H2O + 4 OH — Þ 2 H2 ­ + 4 OH — + 2 H2O + O2 ­

cокращаем на 2 молекулы воды

Над знаком Þ запишите

В этом уравнении в левой и правой частях есть одинаковых частицы

( OH — и H2O ), поэтому, в левой и правой частях уравнения

сократите эти частицы.

Cуммарное молекулярное уравнение

После сокращения имеем:

2 H2O Þ 2 H2 ­ + O2 ­

на катоде на аноде

Над знаком Þ запишите

Материал для дополнительного изучения.

II. Электролиз Р А С Т В О Р О В

C использованием растворимого анода.

При электролизе раствора электролита ( соли, щёлочи или кислоты ) с растворимым анодом ( например медным ( Cu ), никелевым ( Ni ), железным ( Fe ) ) не происходят процессы окисления анионов кислотного остатка, гидроксид-ионов (ОН — ) и молекул воды, а происходит разрушение анода ( окисление ) по реакции: _

n — заряд иона металла

Если анод из меди ( Сu ):

Если анод из меди ( Ni ):

Если анод из меди ( Fe ):

Пример 1. Электролиз раствора иодида натрия на медных электродах.

Уравнение диссоциации соли в растворе: NaJ Na+ + J —

Ряд напряжений металлов.

Li Rb K Ba Sr Ca Na Mg Al

Mn Zn Cr Fe Cd Co Ni Sn Pb

H2 Sb Bi Cu Hg Ag Pd Pt Au

_

Катод ( ¾ ) : 2 H2O + 2 e Þ H2 + 2 OH — • 1

Натрий (Na )- стоит в ряду напряжений

левее алюминия, поэтому,

натрий при электролизе раствора

на катоде не восстанавливается,

а восстанавливается водород

из молекул воды:

Анод ( + ) : Cu — 2 e Þ Cu 2+ • 1

Независимо от того, каким анионом

всегда окисляется растворимый анод.

Cуммарное ионное уравнение электродных реакций:

2 H2O + Cu Þ H2 ­ + 2 OH — + Cu 2+

на катоде на аноде

Над знаком Þ запишите

Cуммарное молекулярное уравнение

2 H2O + Cu + 2 NaJ Þ H2 ­ + 2 NaOH + CuJ2

на катоде на аноде

Над знаком Þ запишите

Задания для самостоятельного решения.

Задание 1: Составьте уравнения электронного баланса процессов протекающих на электродах при электролизе расплавов. Напишите уравнения реакций электролиза.

1) хлорид кальция

2) бромид натрия

3) сульфат калия

4) карбонат натрия

5) гидроксид калия

6) хлорид железа (III)

7) сульфат натрия

8) карбонат калия

9) гидроксид натрия

Задание 2: Составьте уравнения электронного баланса процессов протекающих на электродах при электролизе растворов. Напишите уравнения реакций электролиза.

1.4.9. Электролиз расплавов и растворов (солей, щелочей, кислот).

Что такое электролиз? Для более простого понимания ответа на этот вопрос давайте представим себе любой источник постоянного тока. У каждого источника постоянного тока всегда можно найти положительный и отрицательный полюс:

Подсоединим к нему две химически стойких электропроводящих пластины, которые назовем электродами. Пластину, присоединенную к положительному полюсу назовем анодом, а к отрицательному катодом:

Далее, представьте, что у вас есть возможность опустить эти два электрода в расплав хлорида натрия:

Хлорид натрия является электролитом, при его расплавлении происходит диссоциация на катионы натрия и хлорид-ионы:

Очевидно, что заряженные отрицательно анионы хлора направятся к положительно заряженному электроду – аноду, а положительно заряженные катионы Na + направятся к отрицательно заряженному электроду – катоду. В результате этого и катионы Na + и анионы Cl − разрядятся, то есть станут нейтральными атомами. Разрядка происходит посредством приобретения электронов в случае ионов Na + и потери электронов в случае ионов Cl − . То есть на катоде протекает процесс:

Поскольку каждый атом хлора имеет по неспаренному электрону, одиночное существование их невыгодно и атомы хлора объединяются в молекулу из двух атомов хлора:

Таким образом, суммарно, процесс, протекающий на аноде, правильнее записать так:

То есть мы имеем:

Катод: Na + + 1e − = Na 0

Анод: 2Cl − − 2e − = Cl2

Подведем электронный баланс:

Na + + 1e − = Na 0 |∙2

2Cl − − 2e − = Cl2 |∙1 + + 2e − + 2Cl − − 2e − = 2Na 0 + Cl2

Сократим два электрона аналогично тому, как это делается в алгебре получим ионное уравнение электролиза:

2Na + + 2Cl − = 2Na 0 + Cl2

далее, объединив ионы Na + и Cl − получим, уравнение электролиза расплава хлорида натрия:

Рассмотренный выше случай является с теоретической точки зрения наиболее простым, поскольку в расплаве хлорида натрия из положительно заряженных ионов были только ионы натрия, а из отрицательных – только анионы хлора.

Другими словами, ни у катионов Na + , ни у анионов Cl − не было «конкурентов» за катод и анод.

А, что будет, например, если вместо расплава хлорида натрия ток пропустить через его водный раствор? Диссоциация хлорида натрия наблюдается и в этом случае, но становится невозможным образование металлического натрия в водном растворе. Ведь мы знаем, что натрий – представитель щелочных металлов – крайне активный металл, реагирующий с водой очень бурно. Если натрий не способен восстановиться в таких условиях, что же тогда будет восстанавливаться на катоде?

Давайте вспомним строение молекулы воды. Она представляет собой диполь, то есть у нее есть отрицательный и положительный полюсы:

Именно благодаря этому свойству, она способна «облеплять» как поверхность катода, так и поверхность анода:

При этом могут происходить процессы:

Таким образом, получается, что если мы рассмотрим раствор любого электролита, то мы увидим, что катионы и анионы, образующиеся при диссоциации электролита, конкурируют с молекулами воды за восстановление на катоде и окисление на аноде.

Так какие же процессы будут происходить на катоде и на аноде? Разрядка ионов, образовавшихся при диссоциации электролита или окисление/восстановление молекул воды? Или, возможно, будут происходить все указанные процессы одновременно?

В зависимости от типа электролита при электролизе его водного раствора возможны самые разные ситуации. Например, катионы щелочных, щелочноземельных металлов, алюминия и магния просто не способны восстановиться в водной среде, так как при их восстановлении должны были бы получаться соответственно щелочные, щелочноземельные металлы, алюминий или магний т.е. металлы, реагирующие с водой.

В таком случае является возможным только восстановление молекул воды на катоде.

Запомнить то, какой процесс будет протекать на катоде при электролизе раствора какого-либо электролита можно, следуя следующим принципам:

1) Если электролит состоит из катиона металла, который в свободном состоянии в обычных условиях реагирует с водой, на катоде идет процесс:

Это касается металлов, находящихся в начале ряда активности по Al включительно.

2) Если электролит состоит из катиона металла, который в свободном виде не реагирует с водой, но реагирует с кислотами неокислителями, идут сразу два процесса, как восстановления катионов металла, так и молекул воды:

К таким металлам относятся металлы, находящиеся между Al и Н в ряду активности.

3) Если электролит состоит из катионов водорода (кислота) или катионов металлов, не реагирующих с кислотами неокислителями — восстанавливаются только катионы электролита:

2Н + + 2е − = Н2 – в случае кислоты

Me n + + ne = Me 0 – в случае соли

На аноде тем временем ситуация следующая:

1) Если электролит содержит анионы бескислородных кислотных остатков (кроме F − ), то на аноде идет процесс их окисления, молекулы воды не окисляются. Например:

Фторид-ионы не окисляются на аноде поскольку фтор не способен образоваться в водном растворе (реагирует с водой)

2) Если в состав электролита входят гидроксид-ионы (щелочи) они окисляются вместо молекул воды:

3) В случае того, если электролит содержит кислородсодержащий кислотный остаток (кроме остатков органических кислот) или фторид-ион (F − ) на аноде идет процесс окисления молекул воды:

4) В случае кислотного остатка карбоновой кислоты на аноде идет процесс:

2RCOO − − 2e − = R-R + 2CO2

Давайте потренируемся записывать уравнения электролиза для различных ситуаций:

Пример №1

Напишите уравнения процессов протекающих на катоде и аноде при электролизе расплава хлорида цинка, а также общее уравнение электролиза.

При расплавлении хлорида цинка происходит его диссоциация:

Далее следует обратить внимание на то, что электролизу подвергается именно расплав хлорида цинка, а не водный раствор. Другими словами, без вариантов, на катоде может происходить только восстановление катионов цинка, а на аноде окисление хлорид-ионов т.к. отсутствуют молекулы воды:

Катод: Zn 2+ + 2e − = Zn 0 |∙1

Анод: 2Cl − − 2e − = Cl2 |∙1

Пример №2

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора хлорида цинка, а также общее уравнение электролиза.

Так как в данном случае, электролизу подвергается водный раствор, то в электролизе, теоретически, могут принимать участие молекулы воды. Так как цинк расположен в ряду активности между Al и Н то это значит, что на катоде будет происходить как восстановление катионов цинка, так и молекул воды.

Zn 2+ + 2e − = Zn 0

Хлорид-ион является кислотным остатком бескислородной кислоты HCl, поэтому в конкуренции за окисление на аноде хлорид-ионы «выигрывают» у молекул воды:

В данном конкретном случае нельзя записать суммарное уравнение электролиза, поскольку неизвестно соотношение между выделяющимися на катоде водородом и цинком.

Пример №3

Напишите уравнения процессов протекающих на катоде и аноде при электролизе водного раствора нитрата меди, а также общее уравнение электролиза.

Нитрат меди в растворе находится в продиссоциированном состоянии:

Медь находится в ряду активности правее водорода, то есть на катоде восстанавливаться будут катионы меди:

Cu 2+ + 2e − = Cu 0

Нитрат-ион NO3 − — кислородсодержащий кислотный остаток, это значит, что в окислении на аноде нитрат ионы «проигрывают» в конкуренции молекулам воды:

Катод: Cu 2+ + 2e − = Cu 0 |∙2

2Cu 2+ + 2H2O = 2Cu 0 + O2 + 4H +

Полученное в результате сложения уравнение является ионным уравнением электролиза. Чтобы получить полное молекулярное уравнение электролиза нужно добавить по 4 нитрат иона в левую и правую часть полученного ионного уравнения в качестве противоионов. Тогда мы получим:

Пример №4

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора ацетата калия, а также общее уравнение электролиза.

Решение:

Ацетат калия в водном растворе диссоциирует на катионы калия и ацетат-ионы:

Калий является щелочным металлом, т.е. находится в ряду электрохимическом ряду напряжений в самом начале. Это значит, что его катионы не способны разряжаться на катоде. Вместо них восстанавливаться будут молекулы воды:

Как уже было сказано выше, кислотные остатки карбоновых кислот «выигрывают» в конкуренции за окисление у молекул воды на аноде:

Таким образом, подведя электронный баланс и сложив два уравнения полуреакций на катоде и аноде получаем:

Катод: 2H2O + 2e − = 2OH − + H2 |∙1

Мы получили полное уравнение электролиза в ионном виде. Добавив по два иона калия в левую и правую часть уравнения и сложив с противоионами мы получаем полное уравнение электролиза в молекулярном виде:

Пример №5

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора серной кислоты, а также общее уравнение электролиза.

Серная кислота диссоциирует на катионы водорода и сульфат-ионы:

На катоде будет происходить восстановление катионов водорода H + , а на аноде окисление молекул воды, поскольку сульфат-ионы являются кислородсодержащими кислотными остатками:

Катод: 2Н + + 2e − = H2 |∙2

Сократив ионы водорода в левой и правой и левой части уравнения получим уравнение электролиза водного раствора серной кислоты:

Как можно видеть, электролиз водного раствора серной кислоты сводится к электролизу воды.

Пример №6

Напишите уравнения процессов, протекающих на катоде и аноде при электролизе водного раствора гидроксида натрия, а также общее уравнение электролиза.

Диссоциация гидроксида натрия:

На катоде будут восстанавливаться только молекулы воды, так как натрий – высокоактивный металл, на аноде только гидроксид-ионы:

Катод: 2H2O + 2e − = 2OH − + H2 |∙2

Сократим две молекулы воды слева и справа и 4 гидроксид-иона и приходим к тому, что, как и в случае серной кислоты электролиз водного раствора гидроксида натрия сводится к электролизу воды:


источники:

http://pandia.ru/text/80/007/26432.php

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/jelektroliz-rasplavov-i-rastvorov