Электронно ионные схемы и молекулярные уравнения

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Правила составления уравнений ионно-электронным методом

1) Если исходные соединения или ионы содержат больше атомов кислорода, чем продукты реакции, то в кислых растворах избыток кислорода связывается ионами водорода с образованием молекул воды:

MnО — 4 + 8H + + 5eMn +2 + 4H2O,

а в нейтральных и щелочных – молекулами воды с образованием гидроксид ионов

NO — 3 + 6H2ONH3 + 9OH — (нейтральная или щелочная)

MnО — 4 + 2H2O +3eMnO2 + 4OH —

2) Если исходные соединения содержат меньше атомов кислорода, чем продукты реакции, то недостаток кислорода восполняется в кислой и нейтральной средах за счет молекул воды с образованием ионов водорода,

I2 + 6H2O2 IO — 3 + 12H + +10e (кислая или нейтральная)

а в щелочной среде – за счет гидроксид-ионов, с образованием молекул воды.

CrO — 2 + 4OH — = CrO -2 4 + 2H2O + 3e

SO3 -2 + H2O – 2eSO4 -2 + 2H +

SO3 -2 + 2OH — -2eSO4 -2 + H2O

Это же правило, но в более короткой формулировке:

1) если исходные вещества полуреакции содержат больше кислорода, чем продукты реакции, то в кислых растворах освобождающийся кислород связывается в воду, а в нейтральных и в щелочных в гидроксид ион (OH — )

O 2- +2H + = H 2O

O 2- +HOH = 2OH —

2) если исходные вещества содержат меньше атомов кислорода, чем образующие, то недостаток их восполняется в кислых и нейтральных растворах за счет молекул воды, а в щелочных за счет гидроксид — ионов.

H2O = O 2- +2H +

2OH — = O 2- + H2O

MnO4 — + e = MnO4 2- 2

SO3 -2 + 2OH — 2e = SO4 -2 +H2O 1

Метод полуреакций (электронно – ионный метод) применяют для реакций, протекающих в растворах.

Электронно-ионные уравнения точнее отражают истинные изменения веществ в процессе окислительно-восстановительной реакции и облегчают составление уравнений этих процессов в ионно-молекулярной формуле.

Ионно — электронный метод ( метод полуреакций ) – основан на составлении раздельных ионных уравнений полуреакций – процессов окисления и восстановления – с последующим их суммированием в общее ионное уравнение.

1)записывается общая молекулярная схема

2)составляется ионная схема реакции. При этом сильные электролиты представлены в виде ионов, а слабые электролиты, осадки и газы – в молекулярном виде. В схеме определяется частица, определяется характер среды ( H + ,H2O или OH — )

Cr2O7 2- + Fe + H +Cr 3+ + Fe 2+

3) Cоставляются уравнения 2-х полуреакций.

а) уравнивается число всех атомов, кроме водорода и кислорода

Cr2O7 2- + H +2Cr 3+

FeFe 2+

б) уравнивается кислород с использованием молекул H2O или связывания его в H2O

Cr2O7 2- + 14H +2Cr 3+ + 7 H2O

в)уравниваются заряды с помощью прибавления электронов

Cr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O

Fe – 2eFe 2+

4) уравнивается общее число участвующих электронов путем подбора дополнительных множителей по правилу наименьшего кратного и суммируются уравнения обеих полуреакций.

Cr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O 2 1

Fe – 2eFe 2+ 6 3

Cr2O7 2- + 3Fe + 14H +2Cr 3+ + 3Fe 2+ + 7 H2O

5) записываются уравнения в молекулярной форме, с добавлением ионов, не участвующих в процессе окисления- восстановления.

Достоинства метода: видна роль среды, учитывается реальное состояние частиц в реакции, но применим лишь для реакций в растворах.

6. ЭДС окислительно-восстановительного процесса, направление протекания ОВР

7. Электродный потенциал

Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциаловмежду точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Вывод уравнения Нернста

,

· — электродный потенциал, — стандартный электродный потенциал, измеряется в вольтах;

· — универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

· — абсолютная температура;

· — постоянная Фарадея, равная 96485,35 Кл·моль −1 ;

· — число моль электронов, участвующих в процессе;

· и — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант и и перейти от натуральных логарифмов к десятичным, то при получим

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани.

Всякий гальванический элемент состоит из двух электродов-металлов, погруженных в растворы электролитов; последние сообщаются друг с другом — обычно через пористую перегородку.

Электрод, на котором происходит процесс окисления, называется анодом (он заряжен отрицательно и имеет меньшее значение электродного потенциала).

Электрод, на котором происходит процесс восстановления, называется катодом (он заряжен положительно и имеет большее значение электродного потенциала).

10.ЭДС гальванического элемента

Максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой гальванического элемента и обозначается E.

E = j + — j , если E > 0, следовательно, гальванический элемент работать будет.

При схематическом изображении гальванического элемента граница раздела между металлом и раствором обозначается вертикальной чертой, граница между растворами электролитов — двойной вертикальной чертой.

Химическая реакция, которая лежит в основе работы гальванического элемента называется токообразующей.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный [1] . Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы —анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [источник не указан 1346 дней] , диоксида марганца [2] , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

12. Законы Фарадея

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

(1)

(2)

(3)

(4)

, где z — валентность атома (иона) вещества, e — заряд электрона (5)

Подставляя (2)-(5) в (1), получим

где — постоянная Фарадея.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

где — молярная масса данного вещества,образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; — время, в течение которого проводился электролиз, с; — постоянная Фарадея, Кл·моль −1 ; — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Составление уравнений окислительно-восстановительных реакций

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Составление уравнений окислительно-восстановительных реакций.

Для составления уравнений окислительно-восстановительных реакций и определения коэффициентов применяют два метода: метод электронного баланса и ионно-электронный метод (метод полуреакций).

Метод электронного баланса является более простым и учитывает изменение степени окисления элементов в реакциях. Ионно-электронный метод учитывает характер химической связи в молекуле и наличие тех ионов, которые в действительности существуют в растворе, например, MnO4 – , SO4 2- , Cr2O7 2- . При реакциях окисления-восстановления электроны не берутся откуда-то со стороны, а только переходят от одних атомов или ионов к другим, поэтому число электронов, принятых окислителем, равно числу электронов, отданных восстановителем. При составлении уравнений окислительно-восстановительных реакций для того, чтобы правильно написать продукты реакции, необходимо знать свойства реагирующих веществ.

8.3.1.Метод электронного баланса.

Подбор коэффициентов в реакции методом электронного баланса осуществляется по следующей схеме:

1) Составить схему реакции

Разбавленная азотная кислота с а) неактивными металлами (Cu), б) неметаллами (P, As, S) и в) производными этих неметаллов (AsH3, PH3, As2S3) образует оксид азота (II), понижая свою степень окисления:

Атом элемента в своей высшей положительной степени окисления является окислителем, следовательно, окислитель

Атом фосфора проявляет восстановительные свойства в данной реакции, отдавая электроны с последнего энергетического уровня и повышая свою степень окисления до +5.

Следовательно, молекулярное уравнение реакции имеет следующий вид:

2) Определить величину и знак степени окисления элементов до реакции и после реакции.

3) Составить электронный баланс

4) Подставить найденные коэффициенты в уравнение реакции.

5) Подсчитать количество атомов водорода в правой и левой части равенства и уравнять их за счет добавления молекул воды в ту часть равенства, где их недостаточно.

6) Подсчитать количество атомов кислорода.

При правильно написанном и решенном уравнении количество атомов кислорода в правой и левой части равенства совпадает.

Пример 1. Написать уравнение окислительно-восстановительной реакции, подобрав коэффициенты к нему: FeSO4 + KMnO4 + H2SO4→ Fe2(SO4)3 + + MnSO4 + K2SO4 + H2O. Определяем степень окисления элементов до реакции и после реакции.

Составляем уравнения электронного баланса

Подставляем найденные коэффициенты в уравнение реакции. Подсчитываем количество групп в правой части уравнения (15+2+1=18), добавляем в левую часть равенства недостающие -группы в виде коэффициента при H2SO4. уравниваем число атомов водорода в правой и левой части равенства.

Правильность написанного уравнения проверяем по числу атомов кислорода в правой и левой части равенства.

8.3.2. Ионно-электронный метод.

При составлении электронно-ионных уравнений следует исходить не из изменения степени окисления элементов в реагирующих веществах, а нужно учитывать действительно существующие ионы в водном растворе с точки зрения теории электролитической диссоциации. Например, если реакция происходит с участием перманганата калия, то в реакции окислителем будут ионы MnO4 – , а не ионы Mn 7+ , так как перманганат калия в водном растворе диссоциирует KMnO4↔K + +MnO4 – . При этом вещества неионного характера и недиссоциирующие изображаются в электронных уравнениях в виде молекул: NH3, CO, NO2, SiO2, P.

В окислительно-восстановительных реакциях могут получаться различные продукты реакции в зависимости от характера среды – кислой, щелочной, нейтральной. Для таких реакций в молекулярной схеме необходимо указывать окислитель, восстановитель и вещество, характеризующее реакцию среды (кислоту, щелочь, воду). В этом случае в ионном уравнении необходимо руководствоваться правилами стяжения, указывать ионы, характеризующие реакцию среды: H + , OH – , H2O. Правила стяжения сводятся к следующему:

1. В кислой среде избыток ионов O +2 образует с ионами H + молекулы воды:

2. В нейтральной или щелочной среде избыток ионов O 2- образует с молекулами воды гидроксид – ионы:

3. В щелочной среде недостаток ионов O 2– компенсируется двумя ионами OH – , одновременно образуется одна молекула воды:

Реакция средыИзбыток ионов О 2–Недостаток ионов О 2–
окислительвосстановитель
КислаяН + Н2ОН2O 2Н +
изб. O 2– + 2H + = Н2ОН2О 2Н + + O 2–
Нейтраль­наяH2O OH –Н2O 2Н +
изб. О 2– + Н2О 2OН –Н2О 2Н + + О 2–
ЩелочнаяН2O ОН –2OН – Н2О
изб. О 2– + Н2O 2OН –2OН – Н2О + О 2–

Разберем на конкретных примерах.

Пример 1. Составить уравнение реакции, которая протекает при пропускании сероводорода Н2S через подкисленный раствор перманганата калия КМnO4

При протекании реакции малиновая окраска исчезает и раствор мутнеет. Опыт показывает, что помутнение раствора происходит в результате образования элементарной серы из сероводорода:

В этой схеме число атомов одинаково в левой и правой частях. Для уравнивания зарядов надо от левой части схемы отнять два электрона, после чего можно стрелку заменить на знак равенства:

Эта первая полуреакция — процесс окисления восстановителя H2S.

Обесцвечивание раствора связано с переходом иона МnО – 4 (он имеет малиновую окраску) в ион Mn 2+ (почти бесцветный и лишь при большой концентрации имеет розоватую окраску), что можно выразить схемой

Опыт показывает, что в кислом растворе кислород, входящий в состав ионов MnO – 4, вместе с ионами водорода в конечном итоге образует воду. Поэтому процесс перехода записываем так:

Чтобы стрелку заменить на знак равенства, надо уравнять и за­ряды. Поскольку исходные вещества имеют семь положительных заря­дов (7+), а конечные – два положительных (2+), то для выполнения условия сохранения зарядов надо к левой части схемы прибавить пять электронов:

MnO – 4 + 8H + +5e – = Mn 2+ +4H2О

Это вторая полуреакция – процесс восстановления окислителя – иона MnO – 4.

Для составления общего (суммарного) уравнения реакции надо уравнение полуреакций почленно суммировать, предварительно уравнять число отданных и полученных электронов. В этом случае по правилам нахождения наименьшего кратного определяют соответствующие множители, на которые умножаются равенства полуреакций. Сокращенно запись проводится так:

Сократив на 10 Н + , окончательно получим

Проверяем правильность составленного ионного уравнения. В примере число атомов кислорода в левой части 8, в правой 8; число зарядов в левой части (2-) + (6+) == 4+, в правой 2(2+) = 4+. Уравне­ние составлено правильно.

Методом полуреакций составляется ионное уравнение реакции. Чтобы от ионного уравнения перейти к молекулярному, поступаем так: в левой части ионного уравнения к каждому аниону подбираем соответствующий катион, а к каждому катиону — анион. Затем такие же ионы в таком же количестве записываем и в правую часть уравнения, после чего ионы объединяем в молекулы:

Пример 2. Реакция среды кислая

1. Составить схему реакции

Из опытных данных знаем, что окислителем является КМnO4. Ион MnO4 – восстанавливается в кислой среде до Мn 2+ (фиолетово-малиновая окраска иона MnO4 – становит­ся бесцветной, переходя в Мn 2+ – ион), следовательно, ион SO3 2 – будет являться восстановителем, переходя в ион SO4 2- .

2. Составить электронно-ионные уравнения

а) для окислителя

Из ионной схемы видно, что, ион MnO4 – – превращается в ион Мn 2+ , при этом освобождаются ионы О 2- , которые по правилу стяжения в кислой среде связываются ионами Н + , образуя молекулы Н2O.

б) для восстановителя

Из ионной схемы видно, что ион SO3 2- превращается в ион SO4 2- . Для этого превращения необходимо добавить ион О 2- , который берется из молекулы H2O (реакция протекает в водной среде), при этом освобождаются два иона Н+.

3. Подсчитать число зарядов в правой и левой части равенства, добавляя или уменьшая необходимое число электронов. Алгебраическая сумма зарядов в обеих частях равенства должна быть одинакова.

MnO4 – + 8H + + 5ē = Mn 2+ + 4H2O

4. Найти основные коэффициенты, т. е. коэффициенты при окислителе и восстановителе:

5. Написать суммарное электронно-ионное уравнение, учи­тывая найденные коэффициенты:

6. Сократить в левой и правой части уравнения 10 Н + и 5Н2O. Получается ионное уравнение:

7. По ионному уравнению составить молекулярное уравнение реакции:

8. Число ионов и атомов каждого элемента в правой и ле­вой части равенства, должно быть равно.

Пример 3. Реакция среды щелочная.

1. Составить схему реакции

Окислителем в данной реакции является молекула брома, следовательно, восстановителем будет являться метахромит калия, а именно ион СrO2 – .

2. Составить электронно-ионное уравнение

а) для окислителя

б) для восстановителя

Из ионной схемы видно, что ион CrO2 – превращается в ион СгО4 2– . Каждый недостающий ион О 2– берется по пра­вилу стяжения из двух гидроксильных ионов (среда щелочная ОН – ), при этом одновременно образуется одна молекула воды.

3. Подсчитать число зарядов в правой и левой части ра­венства. Найти коэффициенты при окислителе и восстанови­теле.

4. Написать суммарное уравнение, учитывая найденные коэффициенты:

5. По ионному уравнению составить молекулярное уравне­ние реакции.

6. Число атомов и ионов каждого элемента в правой и ле­вой части уравнения должно быть равно.

Пример 4. Реакция среды нейтральная.

1. Составить схему реакции

Окислителем является КМnO4, так как ион элемента в своей высшей степени окисления не способен более отдавать электроны (Мn +7 ). Восстановителем является сульфит калия K2SO3.

2. Составить электронно-ионное уравнение

а) для окислителя

В нейтральной среде избыток ионов кислорода стягивается с молекулами воды, образуя гидроксид-ионы.

б) для восстановителя

Из ионной схемы видно, что ион SО3 2- превращается в ион SO4 2- , для этого необходимо добавить один ион О 2- , ко­торый берется из молекулы Н2O (реакция протекает в водной среде). При этом освобождаются два иона Н + .

3. Подсчитать число зарядов в правой и левой части ра­венства. Найти коэффициенты при окислителе и восстанови­теле.

4.Написать электронно-ионное уравнение, учитывая найденные коэффициенты:

Сокращаем левую и правую часть равенства на 6Н20. По­лучаем окончательное ионное уравнение.

5. По ионному уравнению составить молекулярное урав­нение реакции.

6. Число атомов и ионов каждого элемента в правой и ле­вей части уравнения должно быть равно.

Пример 5. Исходя из степени окисления (п) азота, серы и марганца в соединениях NН3, HNO2, HNO3, H2S, Н2SO3, Н24, MnO2 и КМnO4, определите, какие из них могут быть только восстановителями, только окислителями и какие проявляют как окислительные, так и восстановительные свойства.

Решение. Степень окисления азота в указанных соединениях соответственно равна: -3 (низшая), +3 (промежуточная), +5 (выс­шая); n(S), соответственно, равна: -2 (низшая), +4 (промежуточная), +6 (высшая); n(Мn), соответственно, равна: + 4 (промежуточная), +7 (высшая). Отсюда: NН3, H2S — только восстановители; HNO3, H2SO4, КMnО4 — только окислители; НNО2, Н23, MnO2 — окислители и восстановители.

Пример 6. Могут ли происходить окислительно-восста­новительные реакции между следующими веществами: a) H2S и HI; б) H2S и Н23; в) Н23 и НС1O4?

а) Степень окисления в Н2S n(S) = -2; в HI n(I) = -1. Так как и сера и иод находятся в своей низшей степени окис­ления, то оба вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;

б) в H2S n(S) = -2 (низшая), в H2SO3 n(S) = +4 (промежуточная).

Следовательно, взаимодействие этих веществ возможно, при­чем, Н23 является окислителем;

в) в Н2SO3 n(s) = +4 (промежуточная); в НС1O4 n(Сl) = +7 (высшая). Взятые вещества могут взаимодействовать, Н23 в этом случае будет проявлять восстановительные свойства.

Пример 7. Составьте уравнения окислительно-восстано­вительной реакции, идущей по схеме:

Решение. Если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электрон­ного баланса с помощью электронных уравнений. Вычисляем, как изменяют степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 10. Разделив это число на 5, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 10 на 2 получаем коэффициент 5 для восстановителя и продукта его окисления. Коэффициент перед веществами, атомы которых не меняют свою степень окисления, находят подбором. Уравнение реакции будет иметь вид:

Пример 8. Составьте уравнение реакции взаимодействия цинка с концентрированной серной кислотой, учитывая макси­мальное восстановление последней.

Решение. Цинк, как любой металл, проявляет только восстановительные свойства. В концентрированной серной кис­лоте окислительная функция принадлежит сере (+6). Макси­мальное восстановление серы означает, что она приобретает минимальную степень окисления. Минимальная степень окис­ления серы как p-элемента VIA-группы равна -2. Цинк как ме­талл IIВ-группы имеет постоянную степень окисления +2. Отра­жаем сказанное в электронных уравнениях:

Составляем уравнение реакции:

Перед H2SO4 стоит коэффициент 5, а не 1, ибо четыре молекулы H2SO4 идут на связывание четырех ионов Zn 2+ .


источники:

http://allrefrs.ru/4-29750.html

http://farmf.ru/lekcii/sostavlenie-uravnenij-okislitelno-vosstanovitelnyh-reaktsij/