Электронное уравнение и ионно электронное образование

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Правила составления уравнений ионно-электронным методом

1) Если исходные соединения или ионы содержат больше атомов кислорода, чем продукты реакции, то в кислых растворах избыток кислорода связывается ионами водорода с образованием молекул воды:

MnО — 4 + 8H + + 5eMn +2 + 4H2O,

а в нейтральных и щелочных – молекулами воды с образованием гидроксид ионов

NO — 3 + 6H2ONH3 + 9OH — (нейтральная или щелочная)

MnО — 4 + 2H2O +3eMnO2 + 4OH —

2) Если исходные соединения содержат меньше атомов кислорода, чем продукты реакции, то недостаток кислорода восполняется в кислой и нейтральной средах за счет молекул воды с образованием ионов водорода,

I2 + 6H2O2 IO — 3 + 12H + +10e (кислая или нейтральная)

а в щелочной среде – за счет гидроксид-ионов, с образованием молекул воды.

CrO — 2 + 4OH — = CrO -2 4 + 2H2O + 3e

SO3 -2 + H2O – 2eSO4 -2 + 2H +

SO3 -2 + 2OH — -2eSO4 -2 + H2O

Это же правило, но в более короткой формулировке:

1) если исходные вещества полуреакции содержат больше кислорода, чем продукты реакции, то в кислых растворах освобождающийся кислород связывается в воду, а в нейтральных и в щелочных в гидроксид ион (OH — )

O 2- +2H + = H 2O

O 2- +HOH = 2OH —

2) если исходные вещества содержат меньше атомов кислорода, чем образующие, то недостаток их восполняется в кислых и нейтральных растворах за счет молекул воды, а в щелочных за счет гидроксид — ионов.

H2O = O 2- +2H +

2OH — = O 2- + H2O

MnO4 — + e = MnO4 2- 2

SO3 -2 + 2OH — 2e = SO4 -2 +H2O 1

Метод полуреакций (электронно – ионный метод) применяют для реакций, протекающих в растворах.

Электронно-ионные уравнения точнее отражают истинные изменения веществ в процессе окислительно-восстановительной реакции и облегчают составление уравнений этих процессов в ионно-молекулярной формуле.

Ионно — электронный метод ( метод полуреакций ) – основан на составлении раздельных ионных уравнений полуреакций – процессов окисления и восстановления – с последующим их суммированием в общее ионное уравнение.

1)записывается общая молекулярная схема

2)составляется ионная схема реакции. При этом сильные электролиты представлены в виде ионов, а слабые электролиты, осадки и газы – в молекулярном виде. В схеме определяется частица, определяется характер среды ( H + ,H2O или OH — )

Cr2O7 2- + Fe + H +Cr 3+ + Fe 2+

3) Cоставляются уравнения 2-х полуреакций.

а) уравнивается число всех атомов, кроме водорода и кислорода

Cr2O7 2- + H +2Cr 3+

FeFe 2+

б) уравнивается кислород с использованием молекул H2O или связывания его в H2O

Cr2O7 2- + 14H +2Cr 3+ + 7 H2O

в)уравниваются заряды с помощью прибавления электронов

Cr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O

Fe – 2eFe 2+

4) уравнивается общее число участвующих электронов путем подбора дополнительных множителей по правилу наименьшего кратного и суммируются уравнения обеих полуреакций.

Cr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O 2 1

Fe – 2eFe 2+ 6 3

Cr2O7 2- + 3Fe + 14H +2Cr 3+ + 3Fe 2+ + 7 H2O

5) записываются уравнения в молекулярной форме, с добавлением ионов, не участвующих в процессе окисления- восстановления.

Достоинства метода: видна роль среды, учитывается реальное состояние частиц в реакции, но применим лишь для реакций в растворах.

6. ЭДС окислительно-восстановительного процесса, направление протекания ОВР

7. Электродный потенциал

Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциаловмежду точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Вывод уравнения Нернста

,

· — электродный потенциал, — стандартный электродный потенциал, измеряется в вольтах;

· — универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

· — абсолютная температура;

· — постоянная Фарадея, равная 96485,35 Кл·моль −1 ;

· — число моль электронов, участвующих в процессе;

· и — активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант и и перейти от натуральных логарифмов к десятичным, то при получим

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани.

Всякий гальванический элемент состоит из двух электродов-металлов, погруженных в растворы электролитов; последние сообщаются друг с другом — обычно через пористую перегородку.

Электрод, на котором происходит процесс окисления, называется анодом (он заряжен отрицательно и имеет меньшее значение электродного потенциала).

Электрод, на котором происходит процесс восстановления, называется катодом (он заряжен положительно и имеет большее значение электродного потенциала).

10.ЭДС гальванического элемента

Максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой гальванического элемента и обозначается E.

E = j + — j , если E > 0, следовательно, гальванический элемент работать будет.

При схематическом изображении гальванического элемента граница раздела между металлом и раствором обозначается вертикальной чертой, граница между растворами электролитов — двойной вертикальной чертой.

Химическая реакция, которая лежит в основе работы гальванического элемента называется токообразующей.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный [1] . Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы —анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [источник не указан 1346 дней] , диоксида марганца [2] , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

12. Законы Фарадея

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:

если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

(1)

(2)

(3)

(4)

, где z — валентность атома (иона) вещества, e — заряд электрона (5)

Подставляя (2)-(5) в (1), получим

где — постоянная Фарадея.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где — постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

где — молярная масса данного вещества,образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; — сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; — время, в течение которого проводился электролиз, с; — постоянная Фарадея, Кл·моль −1 ; — число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

Обучение ионно-электронному методу составления уравнений окислительно-восстановительных реакций

Разделы: Химия

Для составления уравнений окислительно-восстановительных реакций (ОВР) применяется два метода – метод электронного баланса и метод полуреакций, или ионно-электронный метод. Первый основан на сравнении степеней окисления атомов в исходных веществах и в продуктах реакции. Этот метод достаточно подробно изучается в курсе школьной программы. Второй метод изучается менее подробно, особенно применительно к ОВР с участием органических соединений. Тем не менее именно этот метод оперирует частицами (молекулами или ионами), реально существующими в реакционной смеси, в отличие от метода электронного баланса, пользующегося строением частиц, реально не существующих. Например, используя метод электронного баланса, записывают: S +6 >S +4 . Однако это не частицы, реально принимающие участие в химическом процессе. На самом деле, в реакцию вступает (как один из возможных вариантов) сульфат-анион, а в результате образуется, например, оксид серы (IV). Таким образом, с учетом реально существующих частиц запись процесса будет следующей: SO4 2- >SO2 0 . Сделав ее, ученик неизбежно задается вопросом о судьбе кислорода, освобождающегося в ходе превращения. Для ответа на этот вопрос возникает необходимость проанализировать роль среды, в которой протекает ОВР. Таким образом, использование метода полуреакций формирует у учащихся более полное и глубокое представление о происходящем взаимодействии; развивает способность к анализу химической ситуации.

О каком бы окислительно-восстановительном взаимодействии ни шла речь, поведение реагирующих молекул или ионов можно свести к трем случаям:

1) количество кислорода в реагирующей частице возрастает;

2) количество кислорода в реагирующей частице убывает;

3) количество кислорода в реагирующей частице не меняется, как например, в случае превращения перманганат-аниона в манганат-анион: MnО4 — –>MnO4 2- или в случае окисления спирта первичного или вторичного соответственно до альдегида или кетона:

Каждый случай изменения количества кислорода в реагирующей частице возможен в кислой, нейтральной и щелочной среде. Все обозначенные ситуации для удобства восприятия их учащимися целесообразно систематизировать, сведя в одну таблицу:

Изменение количества кислородаРеакция средыСхема реакции
1. ВозрастаетКислаяВ кислой среде источником кислорода являются молекулы воды:

Н2О–>О -2 +2Н +

НейтральнаяСитуация такая же, как и в случае кислой среды:

Н2О–>О -2 +2Н +

ЩелочнаяИсточник кислорода – гидроксогруппы. Две гидроксогруппы выделяют один кислород, образуя при этом воду.

2 — ОН–>О -2 +Н2О

2. УбываетКислаяОсвобождающийся кислород образует с катионами водорода среды воду:

О -2 +2Н + –>Н2О

НейтральнаяОсвобождающийся кислород соединяется с молекулами воды с образованием гидроксогрупп:

О -2 +Н2О–>2 — ОН

ЩелочнаяСитуация такая же, как и в случае нейтральной среды:

О -2 +Н2О–>2 — ОН

Предлагая учащимся заполнить такую таблицу, следует вместе с ними логически проанализировать перечисленные в ней ситуации, приведя в дальнейшем конкретные примеры ОВР, в которых присутствует каждая из них. Подобного рода анализ развивает у учеников логику и, как следствие, самостоятельность химического мышления, формируя умение находить общее в частном и наоборот. Такой подход к изучению данного вопроса удобен в любом случае независимо от природы веществ – участников ОВР.

Приведу два примера:

I. Составим уравнение реакции окисления этена водным раствором перманганата калия (гидроксилирование по Вагнеру).

1. Записываем исходные вещества и известные продукты реакции. При этом необходимо помнить, что перманганат-анион в нейтральной среде переходит в диоксид марганца, а этен в указанных условиях окисляется до этиленгликоля.

Неизвестный пока продукт этой реакции будет выявлен в процессе составления уравнений так называемых полуреакций для процессов окисления и восстановления и дальнейшего их сложения.

Составляем ионные уравнения для процессов окисления и восстановления, последовательно анализируя происходящие с реагирующими частицами изменения

Из данной записи видно, что в процессе взаимодействия количество атомов кислорода в молекуле возрастает. Поскольку реакция протекает в нейтральной среде источником кислорода являются молекулы воды, что соответствует схеме реакции: Н2О—>О -2 +2Н + (см. таблицу). Так как в нашем конкретном случае количество кислорода в молекуле увеличивается на два атома перед водой необходимо поставить коэффициент “2”.

Далее находим количество электронов, участвующих в данном превращении. Суммарный заряд исходных частиц равен “0”, так как в реакцию вступают электронейтральные молекулы. Суммарный заряд продуктов реакции равен “+2” (обусловлен образованием двух протонов). Чтобы заряд “0” перешел в заряд “+2” необходимо, чтобы в процессе взаимодействия было отдано два электрона.

В итоге получаем:

Это уравнение полуреакции для процесса окисления.

б) Рассуждая аналогичным образом, составляем уравнение полуреакции для процесса восстановления.

Перманганат – анион в нейтральной сред переходит в диоксид марганца: MnO4 — >MnO2v

Количество атомов кислорода при этом убывает.

Поскольку процесс протекает в нейтральной среде, освобождающийся кислород присоединяет вода, т.е. реакция идет по схеме О -2 +Н2О—> 2 — ОН (см.таблицу). Но одна молекула воды присоединяет только один кислород, а нашем случае количество кислорода убывает на два. Значит для осуществления этого превращения на один моль перманганат – анионов потребуется два моль воды. Таким образом, получаем запись: MnO4 — + 2H2O —> MnO2v + 4 — OH

Затем подсчитываем суммарный заряд частиц в левой и правой частях уравнения и количество электронов, участвующих в процессе.

Суммарный заряд частиц в левой части уравнения равен “-1” (обусловлен зарядом перманганат-аниона). Суммарный заряд частиц в правой части уравнения равен “-4” (обусловлен зарядом четырех гидроксогрупп). Таким образом, чтобы заряд “-1” перешел в заряд “-4” необходимо, чтобы в процессе взаимодействия было приобретено три электрона.

Теперь можно записать уравнение полуреакции для процесса восстановления:

Далее необходимо учесть, что в ОВР происходит только эквивалентный обмен электронов между восстановителем и окислителем, т.е. суммарно количество электронов, отдаваемых восстановителем должно быть равно количеству электронов, приобретаемых окислителем. При этом свободных электронов никогда не образуется.

В нашем примере в процессе окисления участвует два электрона, а в процессе восстановления – три. Чтобы уравнять количество отданных и приобретенных электронов уравнение полуреакции для процесса окисления умножим на три, а уравнение полуреакции для процесса восстановления – на два. Еще раз перепишем:

Умножив уже имеющиеся коэффициенты на соответствующие множители получим:

Теперь суммируем полученные ионные уравнения для процессов окисления и восстановления, составляя тем самым общее ионное уравнение реакции. При этом электроны, участвующие в отдельно рассматриваемых процессах окисления и восстановления сократятся

В правой части уравнения присутствует шесть протонов и восемь гидроксогрупп. Их комбинация дает шесть молекул воды и две гидроксогруппы. После сокращения воды в левой и правой части данного ионного уравнения получаем:

Чтобы составить молекулярную форму уравнения реакции, допишем ионы калия, в растворе присутствующие, но в химическое взаимодействие не вступающие

В итоге определен третий продукт реакции – щёлочь гидроксид калия.

II. Составим уравнение реакции окисления эталона бихроматом натрия в сернокислой среде (t = 20 0 С)

а) Являясь первичным спиртом, этанол окисляется до альдегида. При этом количество атомов кислорода остается неизменным.

б) Бихромат-анион в кислой среде переходит в ион Сr 3+ . Освобождающийся при этом кислород соединяется с протонами с образованием воды, т.е. реакция идет по схеме: О -2 + 2Н + —> Н2О (см. таблицу).

Уравняем количество отданных и приобретенных электронов, умножив уже имеющиеся в уравнениях полуреакций коэффициенты на соответствующие множители и затем суммируем полученные ионные уравнения.

Сократим катионы водорода в левой и правой части полученного ионного уравнения

Для составления молекулярной формы уравнения реакции допишем ионы, присутствующие в растворе, но в химическое взаимодействие не вступающие, в необходимом количестве (речь идет о сульфат-анионах и ионах натрия).

Хочется отметить, что смена окраски, наблюдаемая в ходе данной реакции (с оранжевой, обусловленной присутствием бихромат-анионов, на сине-зеленую, обусловленную образованием ионов Cr 3+ ) позволяет обнаружить даже следовые количества спиртов. В связи с этим трубка с бихроматом натрия используется для контроля водителей автотранспорта.

Таким образом, суть ионно-электронного метода состоит в составлении ионных уравнений процессов окисления и восстановления, т.е. двух полуреакций, сложение которых дает полную ОВР в ионном виде.


источники:

http://allrefrs.ru/4-29750.html

http://urok.1sept.ru/articles/500378