Эллипс и его каноническое уравнение реферат

Реферат: Кривые второго порядка эллипс, окружность, парабола, гипербола

Федеральное агентство по образованию Российской Федерации

Государственное образовательное учреждение высшего профессионального образования Южно-Уральский государственный университет.

Кафедра «Товароведение и экспертиза потребительских товаров»

«Кривые второго порядка: эллипс, окружность, парабола, гипербола»

По дисциплине Высшая математика.

Пермина Александра Николаевна

студент группы 131

Кравченко Ольга Владимировна

Кривые второго порядка: эллипс, окружность, парабола, гипербола.

Кривыми второго порядка на плоскости называются линии пересечения кругового конуса с плоскостями, не проходящими через его вершину.

Если такая плоскость пересекает все образующие одной полости конуса, то в сечении получается эллипс , при пересечении образующих обеих полостей – гипербола , а если секущая плоскость параллельна какой-либо образующей, то сечением конуса является парабола .

Кривая второго порядка на плоскости в прямоугольной системе координат описывается уравнением:

Множество всех точек на плоскости, для которых сумма расстояний до двух фиксированных точек F 1 и F 2 есть заданная постоянная величина, называется эллипсом .

Каноническое уравнение эллипса.

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

,где

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат. Число a называют большой полуосью эллипса , а число bего малой полуосью .

  • Фокальное свойство. Если F1 и F2 — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой ( F1X ) равен углу между этой касательной и прямой ( F2X ) .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида.
  • Эксцентриситетом эллипса называется отношение . Эксцентриситет характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.

Эллипс также можно описать как

  • фигуру, которую можно получить из окружности, применяя аффинное преобразование
  • ортогональную проекцию окружность на плоскость.
  • Пересечение плоскости и кругового цилиндра.

Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой её центром, на заданное ненулевое расстояние, называемое её радиусом.

Каноническое уравнение окружности.

Общее уравнение окружности записывается как:

Точка — центр окружности, R — её радиус.

Уравнение окружности радиуса R с центром в начале координат:

  • Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная); иметь с ней две общие точки (секущая).
  • Касательная к окружности всегда перпендикулярна её диаметру, один из концов которого является точкой касания.
  • Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.
  • Точка касания двух окружностей лежит на линии, соединяющей их центры.
  • Длину окружности с радиусом R можно вычислить по формуле C = 2π R .
  • Вписанный угол либо равен половине центрального угла, опирающегося на его дугу, либо дополняет половину этого угла до 180°.
    • Два вписанных угла, опирающиеся на одну и ту же дугу, равны.
    • Вписанный угол, опирающийся на дугу длиной в половину окружности равен 90°.
  • Угол между двумя секущими, проведенными из точки, лежащей вне окружности равен полуразности мер дуг, лежащих между секущими.
  • Угол между пересекающимися хордами равен полусумме мер дуги лежащей в угле и дуги напротив нее.
  • Угол между касательной и хордой равен половине дуги, стягиваемой хордой.
  • Отрезки касательных к окружности, проведённых из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
  • При пересечении двух хорд произведение отрезков, на которые делится одна из них точкой пересечения, равно произведению отрезков другой.
  • Произведение длин расстояний от выбранной точки до двух точек пересечения окружности и секущей проходящей через выбранную точку не зависит от выбора секущей и равно абсолютной величине степени точки относительно окружности.
      Квадрат длины отрезка касательной равен произведению длин отрезков секущей и равен абсолютной величине степени точки относительно окружности.
  • Окружность является простой плоской кривой второго порядка.
  • Окружность является коническим сечением и частным случаем эллипса.

Параболой называется множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки, называемой фокусом, и от данной прямой, называемой директрисой и не проходящей через фокус.

Каноническое уравнение параболы в прямоугольной системе координат:

(или , если поменять местами оси)

где р (фокальный параметр) — расстояние от фокуса до директрисы

  • Парабола — кривая второго порядка.
  • Она имеет ось симметрии, называемой осью параболы . Ось проходит через фокус и перпендикулярна директрисе.
  • Пучок лучей параллельных оси, отражаясь в параболе, собирается в её фокусе. Для параболы с вершиной в начале координат (0; 0) и положительным направлением ветвей фокус находится в точке (0; 0,25).
  • Если фокус параболы отразить относительно касательной, то его образ будет лежать на директрисе.
  • Парабола является антиподерой прямой.
  • Все параболы подобны. Расстояние между фокусом и директрисой определяет масштаб.
  • При вращении параболы вокруг оси симметрии получается эллиптический параболоид.

· Прямая пересекает параболу не более чем в двух точках.

· Эксцентриситет параболы е =1.

Геометрическое место точек плоскости, для которых разность расстояний до двух фиксированных точек есть величина постоянная, называют гиперболой .

Для любой гиперболы можно найти декартову систему координат такую, что гипербола будет описываться уравнением :

Числа и называются соответственно вещественной и мнимой полуосями гиперболы.

· Гипербола имеет две оси симметрии (главные оси гиперболы) и центр симметрии (центр гиперболы). При этом одна из этих осей пересекается с гиперболой в двух точках, называемых вершинами гиперболы. Она называется действительной осью гиперболы (ось Ох для канонического выбора координатной системы). Другая ось не имеет общих точек с гиперболой и называется ее мнимой осью (в канонических координатах – ось Оу ). По обе стороны от нее расположены правая и левая ветви гиперболы. Фокусы гиперболы располагаются на ее действительной оси.

· Каждая гипербола имеет пару асимптот: и .

· Расстояние от начала координат до одного из фокусов гиперболы называют фокусным расстоянием гиперболы .

· Эксцентриситетом гиперболы называется величина е = с / а. Эксцентриситет гиперболы e > 1

· Расстояние от вершины гиперболы до асимптоты вдоль направления параллельного оси ординат называется малой или мнимой полуосью гиперболы .

· Расстояние от фокуса до гиперболы вдоль прямой, параллельной оси ординат называется фокальным параметром ..

Канатиков А.Н., Крищенко А.П. Аналитическая геометрия: Учеб. для вузов. 2-е изд. / Под ред. В.С. Зарубина, А.П. Крищенко. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2000 – 388с.(Сер. Математика в техническом университете; Вып. III ).

Реферат по высшей математике «Кривые второго порядка», Ташкент — 2014

МИНИСТЕРСТВО ВЫСШЕГО И СРЕДНЕГО

Кафедра: Высшая математика

Тема: Кривые второго порядка

Выполнил: Студент группы 463-13

Принял: Старший препадаватель. Сайдалиев. З

Кривые второго порядка.

Понятие линии определилось в сознании человека в доисторические времена. Наблюдения за изгибами берега реки, траекторией брошенного камня, очертаниями листьев растений и цветов послужили основой для постепенного установления понятия кривой. Однако потребовалось очень много времени, прежде чем люди начали сравнивать между собой различные линии и отличать одну кривую от другой. Лишь в XVIIв. появилось абстрактное понятие линии, начались исследования свойств кривых.

Кривая (линия) — след, оставленный движущейся точкой или телом. Обычно кривую представляют лишь как плавно изгибающуюся линию, вроде параболы или окружности. Но математическое понятие кривой охватывает и прямую, и фигуры, составленные из отрезков прямых, например, треугольник или квадрат.

В школьном курсе математики в качестве кривых рассматриваются графики функций. В новых стандартах по математике профильного уровня обучения предусматривается изучение параболы, эллипса, гиперболы.

Некоторые понятия кривых встречаются нам в нашей повседневной жизни, хотя чаще всего мы этого не замечаем. Например, по круговой траектории движутся люди при катании на колесе обозрения, карусели, по гиперболе движутся альфа-частицы в опыте Резерфорда при рассеивании их ядром атома; по эллипсам движутся планеты вокруг Солнца, по параболе — тело в однородном поле силы тяжести, брошенное под углом к горизонту.

Знакомство с кривыми, изучение их свойств позволит расширить геометрические представления, углубить знания, повысить интерес к геометрии; создаст содержательную основу для дальнейшего изучения математики, физики и других наук.

Все вышесказанное подчеркивает актуальность выбранной темы дипломной работы.

Целью является изучение теории замечательных кривых.

Объектом исследования явились замечательные кривые, а также задачи, связанные с ними.

Предметом исследования является изучение теории замечательных кривых.

Цель исследования обусловила выбор следующих частных задач:

1. отобрать теоретический материал по теме дипломной работы;

2. обобщить и систематизировать материал;

. рассмотреть основные типы задач и их решение.

Структура дипломной работы следующая. Первая глава содержит теоретический материал по теории кривых. Здесь рассматриваются такие кривые, как окружность, эллипс, гипербола, парабола, а также кривые, наиболее часто встречающиеся в математическом анализе: Анъези локон, Декартов лист, Бернулли лемниската, кардиоида, цепная линия, астроида, циклоида.

Вторая часть дипломной работы представлена в виде рабочей тетради. Данная тетрадь разработана для студентов I и II-го курсов. В ней предлагаются задания по степени возрастания сложности по данной теме.

При работе над дипломной работой использовались в качестве основных источников учебники , , ,

Замечательные кривые

Кривые второго порядка. Общее уравнение кривой второго порядка.

Важной задачей аналитической геометрии является исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам.

Определение: Кривой второго порядка называется множество точек на плоскости , координаты которых удовлетворяют следующему общему уравнению кривой второго порядка:

(1)

где коэффициенты А, 2В, С, 2D, 2E и F — любые числа и, кроме того, числа А, В и С не равны нулю одновременно, т. е. . ()

Уравнения окружности, эллипса, гиперболы и параболы являются частными случаями уравнения (1). ()

Теорема 1. Пусть в прямоугольной системе координат задано общее уравнение кривой второго порядка . Тогда существует такая прямоугольная система координат, в которой это уравнение принимает один из следующих девяти канонических видов:

1) (Эллипс);

2) (Мнимый эллипс);

3) (Пара мнимых пересекающихся прямых);

4) (Гипербола);

5) (Пара пересекающихся прямых);

6) (Парабола);

7) (Пара параллельных прямых);

8) (Пара мнимых параллельных прямых):

9) (Пара совпавших прямых).

п.1. Окружность

Окружность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра). Окружность (рис.1) с центром в точке и радиусом имеет уравнение в прямоугольных координатах:

(2)

Раскрывая скобки, придадим уравнению (2) вид:

(2′ )

или (2» )

где положено

Уравнение (2») является уравнением второй степени. Итак, окружность имеет уравнение второй степени относительно текущих координат. Но, очевидно не всякое уравнение второй степени определяет окружность. Действительно, из уравнения (2» ) усматриваем, что в уравнении окружности коэффициенты при квадратах координат равны, а член с произведением координат отсутствует. Обратно, если эти два условия (равенство коэффициентов при и и отсутствие члена ) осуществлены, то уравнение, вообще говоря, определяет окружность, так как оно приводится к виду (2») путем деления на коэффициент при . ()

Итак, по виду данного уравнения второй степени мы можем решить, является ли оно уравнением окружности или нет. Например, уравнение определяет окружность, так как в нем коэффициенты при квадратах координат равны между собой, а член с произведением отсутствует. Желая построить эту окружность, мы должны предварительно определить координаты ее центра и радиус. С этой целью данное уравнение мы приведем к виду (2). Такое представление есть не что иное, как представление уравнения (2» ) в виде (2). Возьмем в данном уравнении члены, содержащие , т. е. и представим этот двучлен в виде:

т. е. выделим из членов, содержащих , полный квадрат линейного двучлена . Далее возьмем члены, содержащие , т. е. И, преобразуя, этот двучлен таким же образом, получим:

После этого данное уравнение запишется так:

Перенося свободные члены вправо, будем иметь:

Сравнивая это уравнение с уравнением окружности (2), усматриваем, что , Таким образом, центром окружности является точка и радиус окружности равен . По этим данным можно построить окружность.

Параметрические уравнения окружности:

Уравнение окружности в полярных координатах:

Отметим, что движение по окружности часто встречается в физике и технике, по круговой траектории движутся люди при катании на колесе обозрения, карусели, по круговым орбитам могут двигаться искусственные спутники Земли. Хорошо известна планетарная модель атома водорода по Резерфорду. В центре атома находится ядро, а электрон вращается вокруг него. (Энц. словарь юного математика)

п.2. Эллипс

Название «Эллипс» ввёл Аполлоний Пергский, рассматривая эллипс как одно из конических сечений. Эллипс (греч. elleipsis — недостаток) — линия пересечения прямого кругового конуса плоскостью, не проходящей через вершину конуса и пересекающей все прямолинейные образующие одной полости этого конуса.

Определение: Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух фиксированных точек плоскости, называемых фокусами, есть постоянная величина; требуется, чтобы эта постоянная была больше расстояния между фокусами. Фокусы эллипса принято обозначать через F1 и F2. ()

Пусть М — произвольная точка эллипса (рис 2.) с фокусами F1 и F2. Отрезки F1М и F2М (так же как и длины этих отрезков) называются фокальными радиусами точки М. Постоянную сумму фокальных радиусов точки эллипса принято обозначать через 2а. Таким образом, для любой точки М эллипса имеем:

М + F2М = const=2а> F1 F2 (3)

Данное неравенство необходимо: оно означает, что сумма двух сторон F1 F2 М больше третьей. Если точки F1 и F2 сливаются, то условие (3) сводится к тому, что FM= const; точки с этим условием образуют окружность. Она считается частным (иногда вырожденным) случаем эллипса. ()

Середина 0 отрезка F1F2 (фокусного расстояния) называется центром эллипса. Расстояние F1 и F2 между фокусами обозначают через 2с.

Вывод канонического уравнения эллипса

Пусть дан какой-нибудь эллипс с фокусами F1, F2. (рис.3).

Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим, далее, через r1 и r2 расстояния от точки М до фокусов

(r1 = F1М, r2 = F2М).

Точка М будет находиться на данном эллипсе в том и только в том случае, когда

Чтобы получить искомое уравнение, нужно в равенстве заменить переменные r1 и r2 их выражениями через координаты х, у.

Заметим, что, так как F1 F2 = 2с и так как фокусы F1 и F2 расположены на оси Ох симметрично относительно начала координат, то они имеют соответственно координаты (-с; 0) и (+с; 0); учитывая это и применяя формулу расстояния между двумя точками, находим

(5)

Заменяя r1 и r2, получаем:

(6)

Это и есть уравнение рассматриваемого эллипса, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на этом эллипсе. Возведём обе части равенства в квадрат, получим:

(7)

Возводя в квадрат обе части последнего равенства, найдем:

(8)

Здесь мы введем в рассмотрение новую величину

; (9)

Так как по условию а>с, следовательно, и величина b-положительное число. Из равенства (8) имеем

тогда уравнение (8) можно переписать в виде

Разделив обе части этого равенства на a2b2, окончательно получим

. (10)

Это уравнение называется каноническим уравнением эллипса, где а и b — длины большой и малой полуосей эллипса. При a = b фокусы F1 и F2 совпадают, и указанное уравнение определяет окружность, которая рассматривается как частный случай эллипса. Уравнение , определяющее эллипс в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, эллипс есть линия второго порядка.

Эксцентриситет эллипса

Определение: Эксцентриситетом эллипса называется отношение расстояния между фокусами этого эллипса к длине его большой оси (Шипачев); обозначив эксцентриситет буквой е, получаем:

.

Заметим, что поэтому

;

и

Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, определяется эксцентриситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше 1- е2, тем меньше, следовательно, отношение ; значит, чем больше эксцентриситет, тем более эллипс вытянут вдоль большей оси.() В случае b=a, уравнение (10) принимает вид:

или .

Это уравнение является уравнением окружности с центром в начале координат и с радиусом равным а. Значит, окружность можно рассматривать как частный случай эллипса, когда полуоси его равны между собой и эксцентриситет равен нулю:

Эксцентриситет эллипса характеризует меру вытянутости эллипса.

Как известно, планеты и некоторые кометы движутся по эллиптическим орбитам. Оказывается, что эксцентриситеты планетных орбит весьма малы, а кометных — велики, т. е. близки к единице. Таким образом, планеты движутся почти по окружности, а кометы то приближаются к Солнцу (Солнце находится в одном из фокусов), то удаляются от него.

Определение: Две прямые, перпендикулярные к большой оси эллипса и расположенные симметрично относительно центра на расстоянии от него, называются директрисами эллипса. (а — большая полуось, е — эксцентриситет эллипса). ()

Уравнения директрис в выбранной системе координат имеют вид:

и .

Первую из них мы условимся называть левой, вторую — правой. Так как для эллипса a, следовательно, с2-а2>0 и величина b-положительное число. Из равенства (15) имеем

Поэтому уравнение (15) принимает вид:

,

. (17)

Уравнение ,определяющее гиперболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, гипербола есть линия второго порядка.

Эксцентриситет гиперболы

Гипербола состоит из двух ветвей (правой и левой) и имеет две асимптоты:

и

Оси симметрии называются осями гиперболы, а центр симметрии (точка пересечения осей) — центром гиперболы. Одна из осей пересекается с гиперболой в двух точках, которые называются ее вершинами (на рис.7 они обозначены буквами А и А′ ). Эта ось называется действительной осью гиперболы. Другая ось не имеет общих точек с гиперболой и называется мнимой осью гиперболы. Прямоугольник со сторонами 2а и 2b (см. рис.7) называется основным прямоугольником гиперболы. Величины а и b называются соответственно действительной и мнимой полуосями гиперболы.

(18)

переставляя буквы х и у, а и b, можно привести к виду (17). Отсюда ясно, что уравнение (18) определяет гиперболу, расположенную так, как показано на рис.7 справа; вершины ее лежат на оси Оу. Эта гипербола называется сопряженной по отношению к гиперболе (17) (). Обе гиперболы имеют одни и те же асимптоты.

Гипербола с равными полуосями (а = b) называется равносторонней, и ее каноническое уравнение имеет вид

(19)

Так как основной прямоугольник равносторонней гиперболы является квадратом, то асимптоты равносторонней гиперболы перпендикулярны друг другу.

Определение: Эксцентриситетом гиперболы называется отношение расстояния между фокусами этой гиперболы к расстоянию между ее вершинами (); обозначив эксцентриситет буквой е, получим:

.

Так как с > a, то е > 1, т. е. эксцентриситет гиперболы больше единицы.

Заметим, что ; находим:

,

и .

Из последнего равенства легко получить геометрическое истолкование эксцентриситета гиперболы. Эксцентриситет определяется отношением , а отношение в свою очередь определяется эксцентриситетом. Таким образом, эксцентриситет гиперболы характеризует форму ее основного прямоугольника, а значит, и форму самой гиперболы.

Чем меньше эксцентриситет, т. е. чем ближе он к единице, тем меньше тем меньше, следовательно, отношение ; значит, чем меньше эксцентриситет гиперболы, тем более вытянут ее основной прямоугольник (в направлении оси, соединяющей вершины). ()

В случае равносторонней гиперболы a = b и е = √2.

Директрисы гиперболы

Определение: Две прямые, перпендикулярные к той оси гиперболы, которая ее пересекает, и расположенные симметрично относительно центра на расстоянии от него, называются директрисами гиперболы.

Уравнения директрис в выбранной системе координат имеют вид

и .

Первую из них мы условимся называть левой, вторую — правой.

Так как для гиперболы е >1, то . Отсюда следует, что правая директриса расположена между центром и правой вершиной гиперболы; аналогично, левая директриса расположена между центром и левой вершиной (рис.8).

Установленное свойство эллипса и гиперболы можно положить в основу общего определения этих линий:

Множество точек, для которых отношение расстояний до фокуса и до соответствующей директрисы величина постоянная, равная е, это эллипс, если е 1. ()

Возникает вопрос, что представляет собой множество точек, определенное аналогичным образом при условии Оказывается, это новая линия второго порядка, называемая параболой.

п.4. Парабола

Парабола (греч. parabole) — кривая второго порядка.

Определение: Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, называемой директрисой (предполагается, что эта прямая не проходит через фокус). ()

Фокус параболы принято обозначать буквой F, расстояние от фокуса до директрисы — буквой p. Величину р называют параметром параболы.

Пусть дана какая-нибудь парабола (рис.11). Возьмем на плоскости произвольную точку М и обозначим ее координаты через х и у. Обозначим далее через r расстояние от точки М до фокуса F(r=), через d-расстояние от точки М до директрисы. Точка М будет находиться на (данной) параболе в том и только в том случае, когда

Вывод канонического уравнения параболы

Чтобы получить искомое уравнение, нужно заменить переменные r и d их выражениями через текущие координаты х, у.

Заметим, что фокус F имеет координаты ; приняв это во внимание, находим:

. (21)

Обозначим через N основание перпендикуляра, опущенного из точки М на директрису. Очевидно, точка N имеет координаты тогда с помощью формулы, выражающей расстояние между точками М и N, получаем:

(22)

число положительное; это следует из того, что М (х; у) должна находиться с той стороны от директрисы, где находится фокус, т. е. должно быть , откуда .

Заменяя в равенстве (20) r и d выражениями (21) и (22), найдем

(23)

Это и есть уравнение рассматриваемой параболы, так как ему удовлетворяют координаты точки М (х; у), когда точка М лежит на данной параболе. Приведем его к более удобному виду, для чего возведем обе части равенства (23) в квадрат. Получаем:

Проверим, что уравнение (24), полученное возведением в квадрат обеих частей равенства (23), не приобрело «лишних» корней. Для этого достаточно показать, что для любой точки, координаты х и у которой удовлетворяют уравнению (22), выполнено соотношение (20). Действительно, из уравнения (24) вытекает, что х ≥ 0, поэтому для точек с неотрицательными абсциссами имеем d = + x. Подставляя значение у2 из уравнения (24) в выражение (21) и учитывая, что х ≥ 0, получаем r = + x, т. е. величины r и d равны, что и требовалось доказать. Таким образом, уравнению (24) удовлетворяют координаты точек данной параболы, и только они, т. е. это уравнение является уравнением параболы.

Уравнение (24) называется каноническим уравнением параболы. Уравнение у2=2рх, определяющее параболу в некоторой системе декартовых прямоугольных координат, есть уравнение второй степени; таким образом, парабола есть линия второго порядка. ()

Исследование формы параболы

Исследуем теперь форму параболы по ее каноническому уравнению. Так как уравнение (24) содержит у только в четвертой степени, то парабола симметрична относительно оси Ох. Следовательно, достаточно рассмотреть только ее часть, лежащую в верхней полуплоскости. Для этой части у ≥ 0, поэтому, разрешая уравнение (24) относительно у, получаем:

у = (25)

Из равенства (25) вытекают следующие утверждения:

1. если х 0, расположена слева от оси ординат (Рис.10, б). Вершина этой параболы совпадает с началом координат, осью симметрии является ось Ох.

Эллипс и его каноническое уравнение.

Автор работы: Пользователь скрыл имя, 06 Февраля 2014 в 16:56, курсовая работа

Краткое описание

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Содержание

1. Введение
2. Эллипс и его уравнение
3. Связанные определения
4. Свойства эллипса
5. Эллипс как кривая второго порядка
6. Каноническое уравнение эллипса
7. Длина дуги эллипса
8. Приближённые формулы для периметра
9. Площадь эллипса и его сегмента
10. Построение эллипса
11. Литература, ссылки

Вложенные файлы: 1 файл

Министерство образования и науки Российской Федерации. docx

Министерство образования и науки Российской Федерации
ГАОУ СПО «Еланский аграрный колледж»

Эллипс и его каноническое уравнение.

1. Введение
2. Эллипс и его уравнение
3. Связанные определения
4. Свойства эллипса
5. Эллипс как кривая второго порядка
6. Каноническое уравнение эллипса
7. Длина дуги эллипса
8. Приближённые формулы для периметра
9. Площадь эллипса и его сегмента
10. Построение эллипса
11. Литература, ссылки

Впервые кривые второго порядка изучались одним из учеников Платона. Его работа заключалась в следующем: если взять две пересекающиеся прямые и вращать их вокруг биссектрисы угла, ими образованного, то получится конусная поверхность. Если же пересечь эту поверхность плоскостью, то в сечении получаются различные геометрические фигуры, а именно эллипс, окружность, парабола, гипербола и несколько вырожденных фигур.

Однако эти научные знания нашли применение лишь в XVII, когда стало известно, что планеты движутся по эллиптическим траекториям, а пушечный снаряд летит по параболической. Ещё позже стало известно, что если придать телу первую космическую скорость, то оно будет двигаться по окружности вокруг Земли, при увеличении этой скорости — по эллипсу, а по достижении второй космической скорости тело по параболе покинет поле притяжения Земли.

Эллипс и его уравнение

Определение 1. Эллипсом называется множество точек на плоскости, сумма расстояний от каждой из которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Фокусы эллипса обозначаются буквами и , расстояние между фокусами – через , а сумма расстояний от любой точки эллипса до фокусов – через . Причем 2a > 2c.

Каноническое уравнение эллипса имеет вид: , где связаны между собой равенством a 2 + b 2 = c 2 ( или b 2 – a 2 = c 2 ).

Величина называется большой осью, а – малой осью эллипса.

Определение 2. Эксцентриситетом эллипса называется отношение расстояния между фокусами к длине большой оси.

Так как по определению 2a>2c, то эксцентриситет всегда выражается правильной дробью, т.е. .

Если величина эксцентриситета приближается к единице, то эллипс сильно вытянут; если же ближе к нулю, то эллипс имеет более округлую форму. Если эксцентриситет равен нулю, то эллипс вырождается в окружность.

  • Проходящий через фокусы эллипса отрезок AB, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Расстояния и от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние называется фокальным расстоянием.
  • Величина называется эксцентриситетом.
  • Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
  • Радиус эллипса в данной точке (расстояние от его центра до данной точки) вычисляется по формуле , где — угол между радиус-вектором данной точки и осью абсцисс.
  • Фокальным параметром называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент сжатия и эксцентриситет эллипса связаны соотношением
  • Для каждого из фокусов существует прямая, называемая директрисой, такая, что отношение расстояния от произвольной точки эллипса до его фокуса к расстоянию от этой точки до данной прямой равно эксцентриситету эллипса. Весь эллипс лежит по ту же сторону от такой прямой, что и фокус. Уравнения директрис эллипса в каноническом виде записываются как для фокусов соответственно. Расстояние между фокусом и директрисой равно
  • Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.
  • Свет от источника, находящегося вне любого из фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.
  • Если и — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой равен углу между этой касательной и прямой .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида.
  • Точки пересечения эллипса с осями являются его вершинами.
  • Эксцентриситет эллипса равен отношению
    Эксцентриситет характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.

Эллипс также можно описать как:

  • фигуру, которую можно получить из окружности, применяя аффинное преобразование
  • ортогональную проекцию окружности на плоскость.
  • Пересечение плоскости и кругового цилиндра.

— фокальное расстояние (полурасстояние между фокусами);

— перифокусное расстояние (минимальное расстояние от фокуса до точки на эллипсе);

— апофокусное расстояние (максимальное расстояние от фокуса до точки на эллипсе);


источники:

http://pandia.ru/text/80/571/1199.php

http://www.myunivercity.ru/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81_%D0%B8_%D0%B5%D0%B3%D0%BE_%D0%BA%D0%B0%D0%BD%D0%BE%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5/277168_2722224_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B01.html

Название: Кривые второго порядка эллипс, окружность, парабола, гипербола
Раздел: Рефераты по математике
Тип: реферат Добавлен 18:40:40 24 сентября 2011 Похожие работы
Просмотров: 3021 Комментариев: 11 Оценило: 12 человек Средний балл: 4.3 Оценка: 4 Скачать