Эндогенная переменная уравнения регрессии это переменная

Эндогенная переменная

Опубликовано 14.07.2021 · Обновлено 14.07.2021

Что такое Эндогенная переменная?

Эндогенная переменная – это переменная в статистической модели, которая изменяется или определяется своими отношениями с другими переменными в модели. Другими словами, эндогенная переменная является синонимом зависимой переменной, что означает, что она коррелирует с другими факторами в рамках изучаемой системы. Следовательно, его значения могут определяться другими переменными.

Эндогенные переменные противоположны экзогенным переменным, которые являются независимыми переменными или внешними силами. Однако экзогенные переменные могут влиять на эндогенные факторы.

Ключевые моменты

  • Эндогенные переменные – это переменные в статистической модели, которые изменяются или определяются их взаимосвязью с другими переменными.
  • Эндогенные переменные являются зависимыми переменными, то есть они коррелируют с другими факторами, хотя корреляция может быть положительной или отрицательной.
  • Эндогенные переменные важны в экономическом моделировании, потому что они показывают, вызывает ли переменная определенный эффект.

Понимание эндогенных переменных

Эндогенные переменные важны в эконометрике и экономическом моделировании, потому что они показывают, вызывает ли переменная определенный эффект. Экономисты используют причинное моделирование для объяснения результатов путем анализа зависимых переменных на основе множества факторов. Например, в модели, изучающей спрос и предложение , цена товара является эндогенным фактором, поскольку цена может быть изменена производителем (поставщиком) в ответ на потребительский спрос .

Экономисты также включают независимые переменные, чтобы помочь определить, в какой степени результат может быть связан с экзогенной или эндогенной причиной. Эндогенные переменные имеют значения, которые меняются как часть функциональной взаимосвязи между другими переменными в модели. Отношения также называются зависимыми и считаются предсказуемыми по своей природе.

Переменные обычно коррелируют таким образом, что изменение одной переменной должно приводить к перемещению другой переменной. Другими словами, переменные должны коррелировать друг с другом. Однако им не обязательно двигаться в одном направлении, а это означает, что повышение одного фактора может вызвать падение другого. Пока изменение переменных коррелирует , оно считается эндогенным, независимо от того, положительная это или отрицательная корреляция.

Краткая справка

Хотя эндогенные переменные являются зависимыми переменными, которые коррелируют друг с другом, важно знать, в какой степени экзогенные переменные влияют на модель.

Помимо экономики , в других областях используются модели с эндогенными переменными, включая метеорологию и сельское хозяйство. Иногда взаимосвязь в этих моделях носит эндогенный характер только в одном направлении. Например, хотя приятная погода может привести к более высокому уровню туризма, более высокие ставки туризма не влияют на погоду.

Эндогенные и экзогенные переменные

В отличие от эндогенных переменных, экзогенные переменные считаются независимыми. Другими словами, одна переменная в формуле не диктует и не коррелирует напрямую с изменением другой. Экзогенные переменные не имеют прямых или шаблонных отношений. Например, личный доход и предпочтения цвета, количество осадков и цены на газ , полученное образование и любимый цветок – все это будет считаться экзогенными факторами.

Примеры эндогенных переменных

Например, предположим, что модель исследует взаимосвязь между временем в пути сотрудников и расходом топлива. По мере увеличения времени в пути внутри модели увеличивается и расход топлива. Отношения имеют смысл, поскольку чем дольше человек добирается на работу, тем больше топлива требуется, чтобы добраться до места назначения. Например, поездка на 30 миль требует больше топлива, чем на поездку на 20 миль. Другие отношения, которые могут быть эндогенными, включают:

  • От личного дохода к личному потреблению, поскольку более высокий доход обычно приводит к увеличению потребительских расходов.
  • Количество осадков коррелирует с ростом растений и изучается экономистами, поскольку количество осадков важно для таких товарных культур, как кукуруза и пшеница.
  • Полученное образование соответствует будущему уровню дохода, потому что существует корреляция между образованием и более высокими зарплатами или заработной платой.

Системы эконометрических уравнений

7. Системы эконометрических уравнений

7.1. Виды систем регрессионных уравнений

Любая экономическая система – это сложная система с множеством входов, выходов и сложной структурой взаимосвязей показателей, характеризующих деятельность этой системы. Поэтому для описания механизма функционирования таких систем обычно изолированных уравнений регрессии недостаточно.

Практически изменение какого-либо показателя в экономической системе, как правило, вызывает изменение целого ряда других. Так изменение производительности труда влияет на затраты труда, а, следовательно на себестоимость, прибыль, рентабельность производства и пр.

Все это вызывает потребность использования при описании сложных экономических явлений и процессов систем взаимосвязанных регрессионных уравнений и тождеств. Особенно актуальна необходимость в применении таких систем при моделировании на макроуровне, так как макроэкономические показатели, являясь обобщающими показателями состояния экономики, чаще всего взаимозависимы. Например, при построении модели национальной экономики необходимо рассмотреть уравнения, описывающие потребление, инвестиции, прирост капиталовложений, воспроизводство трудовых ресурсов, производство продукта и пр.

Переменные, входящие в систему уравнений подразделяют на экзогенные, эндогенные и лаговые (эндогенные переменные, влияние которых характеризуется некоторым запаздыванием, временным лагом ).

Экзогенные и лаговые переменные называют предопределенными, т. е. определенными заранее.

Классификация переменных на эндогенные и экзогенные зависит от принятой теоретической концепции модели. Экономические показатели могут выступать в одних моделях как эндогенные, а в других как экзогенные переменные. Внеэкономические переменные (например, климатические условия, социальное положение, пол, возраст) входят в систему только как экзогенные переменные. В качестве экзогенных переменных могут рассматриваться значения эндогенных переменных за предшествующий период времени (лаговые переменные).

Рассмотрим типы систем эконометрических уравнений.

1. Система независимых регрессионных уравнений (внешне не связанных)

В данном случае каждая зависимая переменная рассматривается как функция некоторого е набора факторов.

. (7.1)

Набор факторов в уравнениях (1) может варьировать. Каждое уравнение системы независимых уравнений может рассматриваться самостоятельно, а его параметры могут быть найдены на основе традиционного метода наименьших квадратов (МНК).

2. Система рекурсивных уравнений

В таких системах в одном из уравнений содержится единственная зависимая переменная , которая в следующем уравнении присутствует в качестве факторной переменной. В третье уравнение эти эндогенные переменные из предыдущих уравнений могут быть включены как факторные и т. д.

(7.2)

В данной системе каждое последующее уравнение наряду с факторными переменными включает в качестве факторов все зависимые переменные предшествующих уравнений. Каждое уравнение этой системы может рассматриваться самостоятельно, и его параметры определяются методом наименьших квадратов (МНК).

3. Система взаимозависимых (одновременных) уравнений

Наибольшее распространение в эконометрических исследованиях получила система взаимозависимых уравнений. В ней одни и те же зависимые (эндогенные) переменные в одних уравнениях входят в левую часть (т. е. выступают в роли результативных признаков), а в других уравнениях – в правую часть системы (т. е. выступают в качестве факторных переменных). Система взаимозависимых уравнений получила название системы совместных, одновременных уравнений. Тем самым подчеркивается, что в системе одни и те же переменные одновременно рассматриваются как зависимые в одних уравнениях и как независимые в других. В эконометрике эта система уравнений также называется структурной формой модели (СФМ).

Система одновременных уравнений в структурной форме и при отсутствии лаговых переменных может быть записана:

(7.3)

Кроме регрессионных уравнений (они называются также поведенческими уравнениями) модель может содержать тождества, которые представляют собой алгебраические соотношения между эндогенными переменными. Тождества позволяют исключать некоторые эндогенные переменные и рассматривать систему регрессионных уравнений меньшей размерности Параметры модели в структурной форме называют ее структурными коэффициентами

Система одновременных уравнений в структурной форме позволяет увидеть влияние изменений любой экзогенной переменной на значения эндогенной переменной. Целесообразно в качестве экзогенных переменных выбирать такие переменные, которые могут быть объектом регулирования. Меняя их и управляя ими, можно заранее иметь целевые значения эндогенных переменных.

В отличие от предыдущих систем каждое уравнение системы одновременных уравнений не может рассматриваться самостоятельно, и для нахождения его параметров традиционный МНК неприменим, т. к. нарушаются предпосылки, лежащие в основе МНК (например, предпосылка о некоррелированности факторных переменных с остатками). Эндогенные переменные являются случайными величинами, зависящими от . В том случае, когда эндогенная переменная входит в некоторое уравнение как факторная происходит нарушение названной предпосылки МНК. Таким образом, для нахождения структурных коэффициентов традиционный МНК неприменим. С этой целью используются специальные приемы оценивания.

7.2. Приведенная форма модели

Для определения структурных коэффициентов на основе структурной модели формируют приведенную форму модели.

Приведенная форма модели представляет собой систему линейных функций эндогенных переменных от экзогенных:

(7.4)

где – коэффициенты приведенной формы модели, – случайные остатки для приведенной формы.

По своему виду приведенная форма модели ничем не отличается от системы независимых уравнений, параметры которой оцениваются традиционным МНК. Применяя МНК, можно оценить , а затем оценить значения эндогенных переменных через экзогенные.

Можно показать, что коэффициенты приведенной формы модели представляют собой нелинейные функции коэффициентов структурной формы модели. Рассмотрим структурную модель с двумя эндогенными переменными.

. (7.5)

Запишем соответствующую приведенную форму модели:

. (7.6)

Выразим коэффициенты приведенной формы модели через коэффициенты структурной модели.

Из первого уравнения (7.5) можно выразить (ради упрощения опускаем случайную величину): .

Подставим во второе уравнение (7.5):

(7.7)

Выразим из (7.7) : .

Поступая аналогично со вторым уравнением системы (7.5), получим

, т. е. система (7.5) принимает вид:

Таким образом, коэффициенты приведенной формы модели выражаются через коэффициенты структурной формы следующим образом:

Следует заметить, что приведенная форма модели хотя и позволяет получить значения эндогенных переменных через значения экзогенных, но аналитически она уступает структурной форме модели, так как в ней отсутствуют взаимосвязи между эндогенными переменными.

7.3. Проблема идентификации

При правильной спецификации модели задача идентификация системы уравнений сводится к корректной и однозначной оценке ее коэффициентов. Непосредственная оценка коэффициентов уравнения возможна лишь в системах внешне не связанных уравнений, для которых выполняются основные предпосылки построения регрессионной модели, в частности, условие некоррелированности факторных переменных с остатками.

В рекурсивных системах всегда возможно избавление от проблемы коррелированности остатков с факторными переменными путем подстановки в качестве значений факторных переменных не фактических, а модельных значений эндогенных переменных, выступающих в качестве факторных переменных. Процесс идентификации осуществляется следующим образом:

1. Идентифицируется уравнение, в котором в качестве факторных не содержатся эндогенные переменные. Находится расчетное значение эндогенной переменной этого уравнения.

2. Рассматривается следующее уравнение, в котором в качестве факторной включена эндогенная переменная, найденная на предыдущем шаге. Модельные (расчетные) значения этой эндогенной переменной обеспечивают возможность идентификации этого уравнения и т. д.

В системе уравнений в приведенной форме проблема коррелированности факторных переменных с отклонениями не возникает, так как в каждом уравнении в качестве факторных переменных используются лишь предопределенные переменные. Таким образом, при выполнении других предпосылок рекурсивная система всегда идентифицируема.

При рассмотрении системы одновременных уравнений возникает проблема идентификации.

Идентификация в данном случае означает определение возможности однозначного пересчета коэффициентов системы в приведенной форме в структурные коэффициенты.

Структурная модель (7.3) в полном виде содержит параметров, которые необходимо определить. Приведенная форма модели в полном виде содержит параметров. Следовательно, для определения неизвестных параметров структурной модели можно составить уравнений. Такие системы являются неопределенными и параметры структурной модели в общем случае не могут быть однозначно определены.

Чтобы получить единственно возможное решение необходимо предположить, что некоторые из структурных коэффициентов модели ввиду слабой их взаимосвязи с эндогенной переменной из левой части системы равны нулю. Тем самым уменьшится число структурных коэффициентов модели. Уменьшение числа структурных коэффициентов модели возможно и другими путями: например, путем приравнивания некоторых коэффициентов друг к другу, т. е. путем предположений, что их воздействие на формируемую эндогенную переменную одинаково и пр.

С позиции идентифицируемости структурные модели можно подразделить на три вида:

Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметров структурной модели равно числу параметров приведенной формы модели.

Модель неидентифицируема, если число коэффициентов приведенной модели меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.

Модель сверхидентифицируема, если число коэффициентов приведенной модели больше числа структурных коэффициентов. В этом случае на основе коэффициентов приведенной формы можно получить два или более значений одного структурного коэффициента. Сверхидентифицируемая модель в отличие от неидентифицируемой модели практически решаема, но требует для этого специальных методов нахождения параметров.

Чтобы определить тип структурной модели необходимо каждое ее уравнение проверить на идентифицируемость.

Модель считается идентифицируемой, если каждое уравнение системы идентифицируемо. Если хотя бы одно из уравнений системы неидентифицируемо, то и вся модель считается неидентифицируемой. Сверхидентифицируемая модель кроме идентифицируемых содержит хотя бы одно сверхидентифицируемое уравнение.

7.4. Условия идентифицируемости уравнений структурной модели

1. Необходимое условие идентифицируемости

Чтобы уравнение было идентифицируемо, необходимо, чтобы число предопределенных переменных, отсутствующих в данном уравнении, но присутствующих в системе, было равно числу эндогенных переменных в данном уравнении без одного.

Введем следующие обозначения:

М – число предопределенных переменных в модели;

m— число предопределенных переменных в данном уравнении;

— число эндогенных переменных в модели;

— число эндогенных переменных в данном уравнении;

Обозначим число экзогенных (предопределенных) переменных, которые содержатся в системе, но не входят в данное уравнение через , .

Тогда условие идентифицируемости каждого уравнения модели может быть записано в виде следующего счетного правила:

Для оценки параметров структурной модели система должна быть идентифицируема или сверхидентифицируема.

Рассмотренное счетное правило отражает необходимое, но недостаточное условие идентификации.

Достаточное условие идентификации

Уравнение идентифицируемо, если по отсутствующим в нем переменным (эндогенным и экзогенным) можно из коэффициентов при них в других уравнениях системы получить матрицу, определитель которой не равен нулю, а ранг матрицы не меньше, чем число эндогенных переменных в системе без одного.

Целесообразность проверки условия идентификации модели через определитель матрицы коэффициентов, отсутствующих в данном уравнении, но присутствующих в других, объясняется тем, что возможна ситуация, когда для каждого уравнения системы выполнено счетное правило, а определитель матрицы названных коэффициентов равен нулю. В этом случае соблюдается лишь необходимое, но не достаточное условие идентификации.

В эконометрических моделях часто наряду с уравнениями, параметры которых должны быть статистически оценены, используются балансовые тождества переменных, коэффициенты при которых равны . В этом случае, хотя само тождество и не требует проверки на идентификацию, ибо коэффициенты при переменных в тождестве известны, в проверке на идентификацию структурных уравнений системы тождества участвуют..

Изучается модель (одна из версий модели Кейнса):

(7.8)

где – потребление в период ; – ВВП в период ; — ВВП в период (); – валовые инвестиции в период ; – государственные расходы в период .

Первое уравнение – функция потребления, второе уравнение – функция инвестиций, третье уравнение –тождество ВВП. Модель представляет собой систему одновременных уравнений. Проверим каждое ее уравнение на идентификацию.

Модель включает три эндогенные переменные и две предопределенные переменные (одна экзогенная переменная – и одна лаговая переменная –).

Проверим необходимое условие идентификации для каждого из уравнений модели.

тождество, не подлежит проверке

Например, первое уравнение содержит две эндогенные переменные и и одну предопределенную переменную .

Таким образом, ; D=2-1=1. Условие условие выполняется, т. е. уравнение идентифицируемо.

Проверим для каждого уравнения достаточное условие идентификации. Для этого составим матрицу коэффициентов при переменных модели.

В соответствии с достаточным условием идентификации ранг матрицы коэффициентов при переменных, не входящих в исследуемое уравнение, должен быть равен числу эндогенных переменных модели без одного.

Первое уравнение: матрица коэффициентов при переменных, не входящих в уравнение, имеет вид:. Ее определитель не равен нулю, поэтому ранг матрицы равен 2, т. е равняется числу эндогенных переменных без одного. Достаточное условие идентификации выполняется.

Второе уравнение: матрица коэффициентов при переменных, не входящих в уравнение, имеет вид: . Ранг данной матрицы равен 2, так как существут определитель второго порядка не равный нулю:. Следовательно, достаточное условие идентификации для данного уравнения также выполняется Но в соответствии с необходимым условием считаем это уравнение сверхидентифицируемым.

Таким образом, эта система уравнений является сверхидентифицируемой.

7.5. Методы оценки параметров структурной формы модели

Коэффициенты структурной модели могут быть оценены разными способами в зависимости от вида системы одновременных уравнений. Наибольшее распространение в литературе получили следующие методы оценивания коэффициентов структурной модели:

1) косвенный метод наименьших квадратов;

2) двухшаговый метод наименьших квадратов;

3) трехшаговый метод наименьших квадратов;

4) метод максимального правдоподобия с полной информацией;

5) метод максимального правдоподобия при ограниченной информации.

Рассмотрим сущность некоторых из этих методов.

Косвенный метод наименьших квадратов (КМНК) применяется в случае точно идентифицируемой структурной модели. Процедура применения КМНК предполагает выполнение следующих этапов:

1. Для структурной модели строится приведенная форма модели.

2. Для каждого уравнения приведенной формы традиционным МНК оцениваются приведенные коэффициенты .

3. На основе коэффициентов приведенной формы находятся путем алгебраических преобразований параметры структурной модели.

Двухшаговый метод наименьших квадратов (ДМНК)

Если система сверхидентифицируема, то КМНК не используется, ибо он не дает однозначных оценок для параметров структурной модели. В этом случае могут использоваться разные методы оценивания, среди которых наиболее распространенным и простым является двухшаговый метод (ДМНК).

Основная идея ДМНК состоит в следующем:

· на основе приведенной формы модели получить для сверхидентифицируемого уравнения расчетные значения эндогенных переменных, содержащихся в правой части этого уравнения;

· подставляя найденные расчетные значения эндогенных переменных вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения.

Метод получил название двухшагового МНК, ибо дважды используется МНК:

· на первом шаге при определении параметров приведенной формы модели и нахождении на их основе оценок расчетных значений эндогенных переменных ; ;

· на втором шаге применительно к структурному сверхидентифицируемому уравнению, когда вместо фактических значений эндогенных переменных рассматриваются их расчетные значения, найденные на предыдущем шаге.

Сверхидентифицируемая структурная модель может быть двух типов:

· все уравнения системы сверхидентифицируемы;

· система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.

Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним можно найти на основе косвенного МНК. Двухшаговый метод, примененный к точно идентифицированным уравнениям дает такой же результат, что и косвенный МНК.

Продолжение примера 15.

Продолжим рассмотрение примера 15.

Система является сверхидентифицируемой: первое уравнение идентифицируемо, а второе уравнение сверхидентифицируемо. Поэтому для определения коэффициентов первого уравнения можно применить косвенный МНК, а для второго уравнении двухшаговый МНК.

Построим приведенную форму модели:

(7.9)

Исходные данные задачи (в млрд. руб.)

Предсказанное

Найдем параметры модели (7.9), применяя МНК к каждому уравнению,

используем « Пакет анализа» EXCEL):

(7.10)

Каждое уравнение статистически значимо (– статистики: =1302,55;

=281,956; =847,65). Коэффициенты детерминации свидетельствуют о хорошей связи между эндогенными и предопределенными переменными:=0,9977; =0,989; =0,996.

На основе уравнений модели (7.10) найдем структурные коэффициенты первого уравнения.

Выразим из третьего уравнения (7.10) переменную и подставим в первое уравнение. Получим первое структурное уравнение:

Так как второе уравнение сверхидентифицировано, то применим двухшаговый МНК. Найдем на основе третьего уравнения (7.10) расчетные значения переменной ( столбец «предсказанное » табл.23) и используем их для нахождения параметров второго структурного уравнения.

Получим: 4; .

В результате получим следующую систему структурных уравнений:

Трехшаговый метод наименьших квадратов (ТМНК)

Трехшаговый метод наименьших квадратов применяется для оценки параметров системы одновременных уравнений в целом. Сначала к каждому уравнению применяется двухшаговый метод с целью оценить коэффициенты и случайные остатки каждого уравнения. Затем строится ковариационная матрица остатков и проводится ее оценка. После этого для оценивания коэффициентов всей системы применяется обобщенный метод наименьших квадратов. ТМНК является достаточно эффективным, но требует существенно больших вычислительных затрат. Более подробное описание можно найти в работе[1][1]

7.6. Инструментальные переменные

Метод инструментальных переменных (МИП) применяется для оценивания уравнений, в которых регрессоры (факторы) коррелируют со свободными членами. Коррелированность между факторными переменными и случайными ошибками может быть вызвана разными причинами:

· пропущенными переменными, которые находятся в корреляционной связи с факторными переменными;

· ошибками измерений факторных переменных;

· включением лагированной зависимой переменной при наличии автокоррелированности ошибок. В этом случае лаговые переменные скорее всего будут коррелировать с ошибками;

· одновременные взаимосвязи между переменными (эндогенность переменных, включенных в правые части регрессионных уравнений).

Именно это явление оказывается характерным для систем одновременных уравнений;

Если между факторными переменными и случайными остатками имеется корреляционная зависимость (,), то нарушаются условия классической модели и оценки параметров, найденные по МНК будут смещенными и не состоятельными.

Идея МИП заключается в том, чтобы подобрать новые переменные , которые бы тесно коррелировали с и не коррелировали со случайными остатками . Такие переменные называют инструментальными или просто инструментами). Включение их в модель обеспечивает состоятельность оценок МНК.

Набор переменных может включать факторные переменные, которые не коррелируют с остатками, а также другие внешние величины, не входящие в состав факторных переменных модели. Важно, чтобы число инструментов было не меньше, чем число независимых переменных.

Рассмотрим случай парной регрессии: . Предположим, что между факторными переменными и остатками имеется корреляционная зависимость, т. е. . Рассмотрим систему нормальных уравнений для линейной парной регрессии:

, (7.11)

тогда . (7.12)

Можно показать, что . Так как , оценка параметра будет смещенной и не состоятельной.

Предположим, что можно найти такую переменную , которая была бы коррелированна с ( ), но не коррелированна с ( ). Выберем эту переменную в качестве иструментальной переменной.

Заменим второе уравнение системы (7.11) на следующее: и рассмотрим систему:

. (7.13)

Решение системы (7.13) будет, очевидно, отличается от решения предыдущей системы. Обозначим новые оценки соответственно.

В этом случае оценка . (7.14)

Покажем, что она является несмещенной и состоятельной при условии, что при увеличивающемся числе наблюдений стремится к конечному, отличному от нуля пределу, который мы обозначим, как .

, здесь , так как – постоянная величина.

Тогда . (7.15)

Так как , а , то в больших выборках стремится к истинному значению .

Сравним (формула (7.14) с оценкой МНК (формула 7.12). Очевидно, что оценку , можно получить путем подстановки инструментальной переменной вместо в числителе и вместо одного (но не обоих) в знаменателе в формуле (7.12) для оценки .

Чем теснее корреляция между и Z, тем меньше будет их дисперсия и, следовательно, тем меньше будет дисперсия . Следовательно, если мы стоим перед выбором между несколькими возможными инструментальными переменными, то следует выбрать наиболее тесно коррелированную с , потому что при прочих равных условиях она даст наиболее эффективные оценки. Вместе с тем не рекомендуется использовать инструментальную переменную, имеющую функциональную зависимость с , даже если бы ее удалось найти, потому что тогда она автоматически оказалась бы коррелированной с остатками и оценки по-прежнему были бы не состоятельны.

Нетрудно понять, что метод оценивания с помощью инструментальных переменных является обобщением обычного метода наименьших квадратов.

Пусть — матрица значений инструментальных переменных размерности (), а — матрица значений факторных переменных размерности (),. Здесь— матрица факторных переменных, которые включены в состав инструментов, — инструменты, которые не входят в число факторных переменных. В этом случае матрица оценок параметров находится следующим образом:

, где , (7.16)

здесь , а метод ИП называют обобщенным методом инструментальных переменны (ОМИП).

Если число инструментальных переменных равняется числу факторных переменных (), то матрица ) будет квадратной размерности (). Метод ИП в этом случае называется простым, а оценки вычисляются следующим образом:

=

=[2] . (7.17)

Самая трудная проблема метода ИП – это поиск подходящих инструментов. Требуется, чтобы инструменты были тесно связаны с факторными переменными, но сами не были бы эндогенными переменными.

Решение этой проблемы зависит от конкретной ситуации. Например, это могут быть: лаговые значения факторных переменных; показатели, близкие по экономическому смыслу и приближенно отражающие рассматриваемую факторную переменную и пр.

Метод инструментальных переменных используется при оценке СОУ при использовании двухшагового МНК. В качестве инструментов здесь рассматриваются расчетные значения эндогенных переменных, найденные на первом шаге с использованием обычного МНК для приведенной системы уравнений.

Рассмотрим упрощенную кейнсианскую модель формирования доходов в закрытой экономике без государственного вмешательства:

(7.18)

где — представляют совокупный выпуск, объем потребления и объем инвестиций соответственно, . Здесь мы имеем случай одновременных взаимосвязей между переменными: в качестве одной из составляющих содержит ошибку модели, а так как зависит от , то также корреллирует с ошибками модели.

Первое уравнение идентифицируемо ( и матрица коэффициентов при переменных, не входящих в уравнение состоит из одного элемента 1, т. е. ее ранг равен 1, что равняется числу эндогенных переменных без одного). Следовательно выполняютя необходимое и достаточное условие идентифицируемости. Второе уравнение тождество, не подлежит проверке на идентификацию.

Рассмотрим следующие статистические данные:

Ответы на тесты по эконометрике

Q=………..min соответствует методу наименьших квадратов

Автокорреляция — это корреляционная зависимость уровней ряда от предыдущих значений.

Автокорреляция имеется когда каждое следующее значение остатков

Аддитивная модель временного ряда имеет вид: Y=T+S+E

Атрибутивная переменная может употребляться, когда: независимая переменная качественна;

В каких пределах изменяется коэффициент детерминанта: от 0 до 1.

В каком случае модель считается адекватной Fрасч>Fтабл

В каком случае рекомендуется применять для моделирования показателей с увелич. ростом параболу если относительная величина…неограниченно

В результате автокорреляции имеем неэффективные оценки параметров

В хорошо подобранной модели остатки должны иметь нормальный закон

В эконометрическом анализе Xj рассматриваются как случайные величины

Величина доверительного интервала позволяет установить предположение о том, что: интервал содержит оценку параметра неизвестного.

Величина рассчитанная по формуле r=…является оценкой парного коэф. Корреляции

Внутренне нелинейная регрессия — это истинно нелинейная регрессия, которая не может быть приведена к линейной регрессии преобразованием переменных и введением новых переменных.

Временной ряд — это последовательность значений признака (результативного переменного), принимаемых в течение последовательных моментов времени или периодов.

Выберете авторегрессионную модель Уt=a+b0x1+Ɣyt-1+ƹt

Выберете модель с лагами Уt= a+b0x1…….(самая длинная формула)

Выборочное значение Rxy не > 1, |R|

Выборочный коэффициент корреляции r по абсолютной величине не превосходит единицы

Гетероскедастичность — нарушение постоянства дисперсии для всех наблюдений.

Гетероскедастичность присутствует когда: дисперсия случайных остатков не постоянна

Гетероскидастичность – это когда дисперсия остатков различна

Гипотеза об отсутствии автокорреляции остатков доказана, если Dтабл2…

Гомоскедастичность — постоянство дисперсии для всех наблюдений, или одинаковость дисперсии каждого отклонения (остатка) для всех значений факторных переменных.

Гомоскидастичность – это когда дисперсия остатков постоянна и одинакова для всех … наблюдений.

Дисперсия — показатель вариации.

Для определения параметров неиденцифицированной модели применяется.: не один из сущ. методов применить нельзя

Для определения параметров сверх иденцифицированной модели примен.: применяется. 2-х шаговый МНК

Для определения параметров структурную форму модели необходимо преобразовать в приведенную форму модели

Для определения параметров точно идентифицируемой модели: применяется косвенный МНК;

Для оценки … изменения y от x вводится: коэффициент эластичности:

Для парной регрессии ơ²b равно ….(xi-x¯)²)

Для проверки значимости отдельных параметров регрессии используется: t-тест.

Для регрессии y=a+bx из n наблюдений интервал доверия (1-а)% для коэф. b составит b±t…….·ơb

Для регрессии из n наблюдений и m независимых переменных существует такая связь между R² и F..=[(n-m-1)/m]( R²/(1- R²)]

Доверительная вероятность – это вероятность того, что истинное значение результативного показателя попадёт в расчётный прогнозный интервал.

Допустим что для описания одного экономического процесса пригодны 2 модели. Обе адекватны по f критерию фишера. какой предоставить преимущество, у той у кот.: большее значения F критерия

Допустим, что зависимость расходов от дохода описывается функцией y=a+bx среднее значение у=2…равняется 9

Если Rxy положителен, то с ростом x увеличивается y.

Если в уравнении регрессии имеется несущественная переменная, то она обнаруживает себя по низкому значению T статистки

Если качественный фактор имеет 3 градации, то необходимое число фиктивных переменных 2

Если коэффициент корреляции положителен, то в линейной модели с ростом х увеличивается у

Если мы заинтересованы в использовании атрибутивных переменных для отображения эффекта разных месяцев мы должны использовать 11 атрибутивных методов

Если регрессионная модель имеет показательную зависимость, то метод МНК применим после приведения к линейному виду.

Зависимость между коэффициентом множественной детерминации (D) и корреляции (R) описывается следующим методом R=√D

Значимость уравнения регрессии — действительное наличие исследуемой зависимости, а не просто случайное совпадение факторов, имитирующее зависимость, которая фактически не существует.

Значимость уравнения регрессии в целом оценивают: -F-критерий Фишера

Значимость частных и парных коэф. корреляции поверен. с помощью: -t-критерия Стьюдента

Интеркорреляция и связанная с ней мультиколлинеарность — это приближающаяся к полной линейной зависимости тесная связь между факторами.

Какая статистическая характеристика выражается формулой R²=…коэффициент детерминации

Какая статистическая хар-ка выражена формулой : rxy=Ca(x;y) разделить на корень Var(x)*Var(y): коэффициент. корреляции

Какая функция используется при моделировании моделей с постоянным ростом степенная

Какие точки исключаются из временного ряда процедурой сглаживания и в начале, и в конце.

Какое из уравнений регрессии является степенным y=a˳aͯ¹a

Классический метод к оцениванию параметров регрессии основан на: – метод наименьших квадратов (МНК)

Количество степеней свободы для t статистики при проверки значимости параметров регрессии из 35 наблюдений и 3 независимых переменных 31;

Количество степеней свободы знаменателя F-статистики в регрессии из 50 наблюдений и 4 независимых переменных: 45

Компоненты вектора Ei имеют нормальный закон

Корреляция — стохастическая зависимость, являющаяся обобщением строго детерминированной функциональной зависимости посредством включения вероятностной (случайной) компоненты.

Коэффициент автокорреляции: характеризует тесноту линейной связи текущего и предстоящего уровней ряда

Коэффициент детерминации — показатель тесноты стохастической связи в общем случае нелинейной регрессии

Коэффициент детерминации – это величина, которая характеризует связь между зависимыми и независимыми переменными.

Коэффициент детерминации – это квадрат множественного коэффициента корреляции

Коэффициент детерминации – это: величина, которая характеризует связь между независимой и зависимой (зависящей) переменными;

Коэффициент детерминации R показывает долю вариаций зависимой переменной y, объяснимую влиянием факторов, включаемых в модель.

Коэффициент детерминации изменяется в пределах: – от 0 до 1

Коэффициент доверия — это коэффициент, который связывает линейной зависимостью предельную и среднюю ошибки, выясняет смысл предельной ошибки, характеризующей точность оценки, и является аргументом распределения (чаще всего, интеграла вероятностей). Именно эта вероятность и есть степень надежности оценки.

Коэффициент доверия (нормированное отклонение) — результат деления отклонения от среднего на стандартное отклонение, содержательно характеризует степень надежности (уверенности) полученной оценки.

Коэффициент корелляции Rxy используется для определения полноты связи X и Y.

Коэффициент корелляции меняется в пределах : от -1 до 1

Коэффициент корелляции равный 0 означает, что: –отсутствует линейная связь.

Коэффициент корелляции равный 1 означает, что: -существует функциональная зависимость.

Коэффициент корреляции используется для: определения тесноты связи между случайными величинами X и Y;

Коэффициент корреляции рассчитывается для измерения степени линейной взаимосвязи между двумя случайными переменными.

Коэффициент линейной корреляции — показатель тесноты стохастической связи между фактором и результатом в случае линейной регрессии.

Коэффициент регрессии — коэффициент при факторной переменной в модели линейной регрессии.

Коэффициент регрессии b показывает: на сколько единиц увеличивается y, если x увеличивается на 1.

Коэффициент регрессии изменяется в пределах: применяется любое значение ; от 0 до 1; от -1 до 1;

Коэффициент эластичности измеряется в: неизмеримая величина.

Критерий Дарвина-Чотсона применяется для: – отбора факторов в модель; или – определения автокорреляции в остатках

Критерий Стьюдента — проверка значимости отдельных коэффициентов регрессии и значимости коэффициента корреляции.

Критерий Фишера показывает статистическую значимость модели в целом на основе совокупной достоверности всех ее коэффициентов;

Лаговые переменные : – это переменные, относящиеся к предыдущим моментам времени; или -это значения зависим. перемен. за предшествующий период времени.

Лаговые переменные это значение зависимых переменных за предшествующий период времени

Модель в целом статистически значима, если Fрасч > Fтабл.

Модель идентифицирована, если: – число параметров структурной модели равно числу параметров приведён. формы модели.

Модель неидентифицирована, если: – число приведён. коэф . больше числа структурных коэф.

Модель сверхидентифицирована, если: число приведён. коэф. меньше числа структурных коэф

Мультиколлениарность возникает, когда: ошибочное включение в уравнение 2х или более линейно зависимых переменных; 2. две или более объясняющие переменные, в нормальной ситуации слабо коррелированные, становятся в конкретных условиях выборки сильно коррелированными; . в модель включается переменная, сильно коррелирующая с зависимой переменной.

Мультипликативная модель временного ряда имеет вид: – Y=T*S*E

Мультипликативная модель временного ряда строится, если: амплитуда сезонных колебаний возрастает или уменьшается

На основе поквартальных данных…значения 7-1 квартал, 9-2квартал и 11-3квартал …-5

Неправильный выбор функциональной формы или объясняющих переменных называется ошибками спецификации

Несмещённость оценки параметра регрессии, полученной по МНК, означает: – что она характеризуется наименьшей дисперсией.

Одной из проблем которая может возникнуть в многофакторной регрессии и никогда не бывает в парной регрессии, является корреляция между независимыми переменными

От чего зависит количество точек, исключаемых из временного ряда в результате сглаживания: от применяемого метода сглаживания.

Отметьте основные виды ошибок спецификации: отбрасывание значимой переменной; добавление незначимой переменной;

Оценки коэффициентов парной регрессии является несмещённым, если: математические ожидания остатков =0.

Оценки параметров парной линейной регрессии находятся по формуле b= Cov(x;y)/Var(x);a=y¯ ­bx¯

Оценки параметров регрессии являются несмещенными, если Математическое ожидание остатков равно 0

Оценки параметров регрессии являются состоятельными, если: -увеличивается точность оценки при n, т. е. при увеличении n вероятность оценки от истинного значения параметра стремится к 0.

Оценки парной регрессии явл. эффективными, если: оценка обладают наименьшей дисперсией по сравнению с другими оценками

При наличии гетероскедастичности следует применять: – обобщённый МНК

При проверке значимости одновременно всех параметров используется: -F-тест.

При проверке значимости одновременно всех параметров регрессии используется: F-тест.

Применим ли метод наименьших квадратов для расчетов параметров показательной зависимости применим после ее приведения

Применим ли метод наименьших квадратов(МНК) для расчёта параметров нелинейных моделей? применим после её специального приведения к линейному виду

С помощью какого критерия оценивается значимость коэффициента регрессии T стьюдента

С увеличением числа объясняющих переменных скоррестированный коэффициент детерминации: – увеличивается.

Связь между индексом множественной детерминации R² и скорректированным индексом множественной детерминации Ȓ² есть

Скорректиров. коэф. детерминации: – больше обычного коэф. детерминации

Стандартизованный коэффициент уравнения регрессии Ƀk показывает на сколько % изменится результирующий показатель у при изменении хi на 1%при неизмененном среднем уровне других факторов

Стандартный коэффициент уравнения регрессии: показывает на сколько 1 изменится y при изменении фактора xk на 1 при сохранении др.

Суть коэф. детерминации r 2 xy состоит в следующем: – характеризует долю дисперсии результативного признака y объясняем. регресс., в общей дисперсии результативного признака.

Табличное значение критерия Стьюдента зависит от уровня доверительной вероятности и от числа включённых факторов и от длины исходного ряда.(от принятого уровня значимости и от числа степеней свободы ( n – m -1))

Табличные значения Фишера (F) зависят от доверительной вероятности и от числа включённых факторов и от длины исходного ряда (от доверительной вероятности p и числа степеней свободы дисперсий f1 и f2)..

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, идентифицируемо если D+1=H

Уравнение в котором H число эндогенных переменных, D число отсутствующих экзогенных переменных, НЕидентифицируемо если D+1 H

Уравнение идентифицировано, если: – D+1=H

Уравнение неидентифицировано, если: – D+1 H

Фиктивные переменные – это: атрибутивные признаки (например, как профессия, пол, образование), которым придали цифровые метки;

Формула t= rxy….используется для проверки существенности коэффициента корреляции

Частный F-критерий: – оценивает значимость уравнения регрессии в целом

Число степеней свободы для факторной суммы квадратов в линейной модели множественной регрессии равно: m;

Что показывает коэффициент наклона – на сколько единиц изменится у, если х изменился на единицу,

Что показывает коэффициент. абсолютного роста на сколько единиц изменится у, если х изменился на единицу

Экзогенная переменная – это независимая переменная или фактор-Х.

Экзогенные переменные — это переменные, которые определяются вне системы и являются независимыми

Экзогенные переменные – это предопределенные переменные, влияющие на зависимые переменные (Эндогенные переменные), но не зависящие от них, обозначаются через х

Эластичность измеряется единица измерения фактора…показателя

Эластичность показывает на сколько % изменится редуктивный показатель y при изменении на 1% фактора xk .

Эндогенные переменные – это: зависимые переменные, число которых равно числу уравнений в системе и которые обозначаются через у

Определения

T-отношение (t-критерий) — отношение оценки коэффициента, полученной с помощью МНК, к величине стандартной ошибки оцениваемой величины.

Аддитивная модель временного ряда – это модель, в которой временной ряд представлен как сумма перечисленных компонент.

Критерий Фишера — способ статистической проверки значимости уравнения регрессии, при котором расчетное (фактическое) значение F-отношения сравнивается с его критическим (теоретическим) значением.

Линейная регрессия — это связь (регрессия), которая представлена уравнением прямой линии и выражает простейшую линейную зависимость.

Метод инструментальных переменных — это разновидность МНК. Используется для оценки параметров моделей, описываемых несколькими уравнениями. Главное свойство — частичная замена непригодной объясняющей переменной на такую переменную, которая некоррелированна со случайным членом. Эта замещающая переменная называется инструментальной и приводит к получению состоятельных оценок параметров.

Метод наименьших квадратов (МНК) — способ приближенного нахождения (оценивания) неизвестных коэффициентов (параметров) регрессии. Этот метод основан на требовании минимизации суммы квадратов отклонений значений результата, рассчитанных по уравнению регрессии, и истинных (наблюденных) значений результата.

Множественная линейная регрессия — это множественная регрессия, представляющая линейную связь по каждому фактору.

Множественная регрессия — регрессия с двумя и более факторными переменными.

Модель идентифицируемая — модель, в которой все структурные коэффициенты однозначно определяются по коэффициентам приведенной формы модели.

Модель рекурсивных уравнений — модель, которая содержит зависимые переменные (результативные) одних уравнений в роли фактора, оказываясь в правой части других уравнений.

Мультипликативная модель – модель, в которой временной ряд представлен как произведение перечисленных компонент.

Несмещенная оценка — оценка, среднее которой равно самой оцениваемой величине.

Нулевая гипотеза — предположение о том, что результат не зависит от фактора (коэффициент регрессии равен нулю).

Обобщенный метод наименьших квадратов (ОМНК) — метод, который не требует постоянства дисперсии (гомоскедастичности) остатков, но предполагает пропорциональность остатков общему множителю (дисперсии). Таким образом, это взвешенный МНК.

Объясненная дисперсия — показатель вариации результата, обусловленной регрессией.

Объясняемая (результативная) переменная — переменная, которая статистически зависит от факторной переменной, или объясняющей (регрессора).

Остаточная дисперсия — необъясненная дисперсия, которая показывает вариацию результата под влиянием всех прочих факторов, неучтенных регрессией.

Предопределенные переменные — это экзогенные переменные системы и лаговые эндогенные переменные системы.

Приведенная форма системы — форма, которая, в отличие от структурной, уже содержит одни только линейно зависящие от экзогенных переменных эндогенные переменные. Внешне ничем не отличается от системы независимых уравнений.

Расчетное значение F-отношения — значение, которое получают делением объясненной дисперсии на 1 степень свободы на остаточную дисперсию на 1 степень свободы.

Регрессия (зависимость) — это усредненная (сглаженная), т.е. свободная от случайных мелкомасштабных колебаний (флуктуаций), квазидетерминированная связь между объясняемой переменной (переменными) и объясняющей переменной (переменными). Эта связь выражается формулами, которые характеризуют функциональную зависимость и не содержат явно стохастических (случайных) переменных, которые свое влияние теперь оказывают как результирующее воздействие, принимающее вид чисто функциональной зависимости.

Регрессор (объясняющая переменная, факторная переменная) — это независимая переменная, статистически связанная с результирующей переменной. Характер этой связи и влияние изменения (вариации) регрессора на результат исследуются в эконометрике.

Система взаимосвязанных уравнений — это система одновременных или взаимозависимых уравнений. В ней одни и те же переменные выступают одновременно как зависимые в одних уравнениях и в то же время независимые в других. Это структурная форма системы уравнений. К ней неприменим МНК.

Система внешне не связанных между собой уравнений — система, которая характеризуется наличием одних только корреляций между остатками (ошибками) в разных уравнениях системы.

Случайный остаток (отклонение) — это чисто случайный процесс в виде мелкомасштабных колебаний, не содержащий уже детерминированной компоненты, которая имеется в регрессии.

Состоятельные оценки — оценки, которые позволяют эффективно применять доверительные интервалы, когда вероятность получения оценки на заданном расстоянии от истинного значения параметра становится близка к 1, а точность самих оценок увеличивается с ростом объема выборки.

Спецификация модели — определение существенных факторов и выявление мультиколлинеарности.

Стандартная ошибка — среднеквадратичное (стандартное) отклонение. Оно связано со средней ошибкой и коэффициентом доверия.

Степени свободы — это величины, характеризующие число независимых параметров и необходимые для нахождения по таблицам распределений их критических значений.

Тренд — основная тенденция развития, плавная устойчивая закономерность изменения уровней ряда.

Уровень значимости — величина, показывающая, какова вероятность ошибочного вывода при проверке статистической гипотезы по статистическому критерию.

Фиктивные переменные — это переменные, которые отражают сезонные компоненты ряда для какого-либо одного периода.

Эконометрическая модель — это уравнение или система уравнений, особым образом представляющие зависимость (зависимости) между результатом и факторами. В основе эконометрической модели лежит разбиение сложной и малопонятной зависимости между результатом и факторами на сумму двух следующих компонентов: регрессию (регрессионная компонента) и случайный (флуктуационный) остаток. Другой класс эконометрических моделей образует временные ряды.

Эффективность оценки — это свойство оценки обладать наименьшей дисперсией из всех возможных.


источники:

http://pandia.ru/text/77/213/97434.php

http://damirock.com/exam/math/otvetyi-na-testyi-po-ekonometrike/