Энергия магнитного поля конденсатора уравнение

Энергия магнитного поля конденсатора уравнение

Электромагнитные колебания и волны

Для колебательного контура предыдущей задачи написать уравнение (с числовыми коэффициентами) изменения со временем t энергии электрического поля Wэл, энергии магнитного поля Wм и полной энергии поля W. Найти энергию электрического поля, энергию магнитного поля и полную энергию поля в моменты времени Т/8, Т/4 и Т/2. Построить графики этих зависимостей в пределах одного периода.

Дано:

q = 2,5 мкКл = 2,5·10 -6 Кл

Решение:

Энергия электрического поля на обкладках конденсатора

Энергия магнитного поля в катушке индуктивности

Полная энергия в контуре

Закон изменения напряжения на обкладках конденсатора

Период колебаний находим по формуле Томсона

Циклическая частота связана с периодом соотношением

Уравнение колебания напряжения запишется в виде

Аналогично можно записать уравнение изменения заряда на обкладках конденсатора

Ток в контуре – первая производная от заряда по времени

Энергия магнитного поля

Содержание:

Энергия электрического и магнитного полей:

Электрическое и магнитное поля обладают энергией, которая накапливается при образовании заряда в электрической системе или образовании тока в электромагнитной системе. В данной главе получены количественные выражения энергии электрического и магнитного полей, а также электрических и электромагнитных сил.

Энергия электрического поля

При зарядке конденсатора энергия запасается в виде энергии электрического поля и может быть возвращена источнику при преобразовании в другой вид энергии.

Выражение энергии через характеристики конденсатора

Заряд конденсатора образуется переносом заряженных частиц с одной обкладки на другую под действием внешнего источника энергии. Работа, совершенная при переносе единицы заряда, численно равна напряжению между обкладками.
Если бы напряжение в процессе зарядки не изменялось, то энергию можно было бы определить произведением напряжения и заряда [см. формулу (1.5)]. Однако в процессе накопления заряда растет и напряжение, поэтому при определении энергии, затраченной на образование заряда, нужно учесть зависимость между напряжением и зарядом (7.28). Если емкость конденсатора — величина постоянная, зависимость между напряжением и зарядом графически выражается прямой линией (рис. 11.1).

Рис. 11.1. К определению энергии электрического поля

Предположим, что заряд Q1 увеличился на dQ — величину столь малую, что в пределах изменения заряда напряжение можно считать неизменным:

Выражение энергии через характеристики электрического поля

Выражение (11.2) получено на основе закона сохранения энергии; однако из него непосредственно не следует, что энергия Wэ является энергией электрического поля. Можно показать, что эта энергия распределена в электрическом поле.
Для примера рассмотрим равномерное электрическое поле плоского конденсатора (см. рис. 1.6, а).

Поток вектора электрического смещения через любую поверхность, проведенную в диэлектрике параллельно пластинам, равен заряду Q конденсатора, что следует из формулы (7.33): DS = Q.
Напряженность равномерного электрического поля Е = U/l.
Следовательно,

где V — объем диэлектрика, в котором распределено поле, связанное с заряженными пластинами конденсатора.
Отношение энергии к объему диэлектрика дает объемную плотность энергии электрического поля:

Энергия, определенная формулой (11.2) через характеристики проводников, выражена также формулой (11.5) через характеристики электрического поля. Эквивалентность этих формул свидетельствует о том, что энергия системы заряженных тел является энергией электрического поля.

Задача 11.1.

Плоский воздушный конденсатор емкостью 600 пФ при расстоянии между электродами 2 см заряжен до напряжения U = 4 кВ и отключен от источника напряжения. Определить изменение энергии и напряженности электрического поля конденсатора при уменьшении расстояния между электродами вдвое.
Решение. До изменения расстояния между обкладками энергия электрического поля, по формуле (11.3),

Напряженность электрического поля [см. (1.5)]

При уменьшении расстояния между обкладками вдвое емкость конденсатора согласно формуле (7.29) увеличивается вдвое. При этом заряд конденсатора не изменяется (предполагается, что утечки заряда нет).
Вследствие увеличения емкости конденсатора напряжение между обкладками уменьшится во столько же раз [см. формулу (7.28)]:

Энергия электрического поля

Напряженность электрического поля

Механические силы в электрическом поле

Вопрос о механических силах в электрическом поле рассмотрим на примере плоского конденсатора, заряженного от внешнего источника энергии, имеющего напряжение U. Электрическое поле конденсатора будем полагать равномерным.

Энергетический баланс в электростатической системе

Силы Fэ, возникающие вследствие взаимодействия пластин с электрическим полем, приложены к пластинам и направлены так, что они притягиваются. Предположим, что одна из пластин конденсатора свободна, и возможное малое перемещение ее под действием силы Fэ обозначим через dх (рис. 11.2).

Рис. 11.2. Механические силы в электрическом поле

В дальнейших рассуждениях будем исходить из того, что при изменении заряда конденсатора не возникает потерь энергии в проводниках в связи с перемещением заряженных частиц и в диэлектрике вследствие изменения напряженности поля.

При таких условиях в соответствии с законом сохранения энергии при изменении заряда конденсатора на dQ за счет энергии внешнего источника изменяется энергия электрического поля на dWэ и совершается механическая работа Fэdx:

Обобщенное выражение электрической силы (первый случай)

Заряд конденсатора остается неизменным (Q = const), т. е. заряженный конденсатор отключен от внешнего источника энергии.
При dQ = 0 работа внешнего источника UdQ = 0. Поэтому
или
Последнее равенство показывает, что механическая работа, связанная с перемещением пластины, совершается за счет энергии электрического поля.
Действительно, механическая работа, совершаемая электрической силой, положительна (Fэdх > 0), следовательно, изменение энергии электрического поля отрицательно (dWэ 2 Rdt), на изменение энергии в магнитном поле (dWм) и механическую работу (Fмdх).

Рис. 11.4. Взаимодействие полюсов электромагнита

Согласно закону сохранения энергии, за малый отрезок времени энергетический баланс в системе выражается уравнением

Два последних слагаемых в правой части уравнения выражают изменение энергии в магнитной системе. Рассмотрим их более подробно. При этом учтем выводы о том, что изменение энергии магнитного поля и работа электромагнитных сил определяются изменением потокосцепления:

Обобщенное выражение электромагнитной силы (первый случай)

Потокосцепление в магнитной системе не изменяется (ψ = const, dψ = 0); это условие обычно соблюдается в электромагнитах переменного тока. Тогда

а

Последнее равенство показывает, что механическая работа, связанная с перемещением якоря электромагнита, совершается за счет энергии магнитного поля. Внешний источник расходует энергию только на выделение тепла.
Механическая работа электромагнитной силы положительна (Fмdx > 0); следовательно, изменение энергии магнитного поля отрицательно (dWм º

Сила Fм, согласно правилу левой руки, направлена перпендикулярно направлению линий магнитной индукции и направлению скорости.
Из механики известно, что при действии на тело постоянной по величине силы перпендикулярно направлению скорости тело движется по окружности радиуса

Подставляя в последнее выражение силу из формулы (11.25), получим

где m — масса заряженной частицы.
Если все величины правой части уравнения (11.26) постоянны, то заряженная частица движется по окружности радиуса ρ в плоскости, перпендикулярной направлению линий магнитной индукции. Угловая скорость движения

Задача 11.11.

В вершинах А, В, С равностороннего треугольника со стороной а = 10 см расположены три параллельных прямых провода (рис. 11.6). Токи в проводах В и С равны по величине: IB = IC = 6000 А и направлены в одну сторону, а ток в третьем проводе IA = 12 000 А направлен в противоположную сторону. Определить силу, действующую на 1 м длины каждого провода.

Рис. 11.6. К задаче 11.11

Решение. Рассматривая отдельно каждую пару проводов, определим направление сил взаимодействия между ними. При этом будем иметь в виду, что при одинаковом направлении токов провода притягиваются друг к другу, а при разном — отталкиваются. Направления сил показаны на рис. 11.6. Величину их определим по формуле (11.23):


Величину и направление силы FA, действующей на провод А, определяют векторным сложением составляющих: В данном случае складываются две равные силы с углом 60° между их направлениями.
Результирующая сила направлена посредине между составляющими и имеет величину

Рекомендую подробно изучить предметы:
  1. Электротехника
  2. Основы теории цепей
Ещё лекции с примерами решения и объяснением:
  • Синусоидальные Э.Д.С. и ток
  • Электрические цепи с взаимной индуктивностью
  • Резонанс в электрических цепях
  • Соединение звездой и треугольником в трехфазных цепях
  • Индуктивно связанные электрические цепи
  • Фильтры и топологические методы анализа линейных электрических цепей
  • Электрическое поле и его расчёт
  • Расчет неразветвленной однородной магнитной цепи

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Самоиндукция. Энергия магнитного поля

Самоиндукция – это значимый частный случай электромагнитной индукции, когда магнитный поток, изменяясь и вызывая ЭДС индукции, создается током в самом контуре.

В случае, когда ток рассматриваемого контура по каким-либо причинам изменен, то имеет место изменение и магнитного поля этого тока, а значит и собственного магнитного потока, проходящего через контур. В контуре создается ЭДС самоиндукции, создавая препятствие для изменений тока в контуре (по правилу Ленца).

Собственный магнитный поток Φ , который проходит через контур или катушку с током, является пропорциональным силе тока I : Φ = L I .

Коэффициент пропорциональности L в формуле Φ = L I есть коэффициент самоиндукции или индуктивность катушки. Единица индуктивности в С И носит название генри ( Г н ) . Индуктивность контура или катушки равна 1 Г н , когда при силе постоянного тока 1 А собственный поток составляет 1 В б : 1 Г н = 1 В б 1 А .

Расчет индуктивности

Для наглядности произведем расчет индуктивности длинного соленоида, который имеет N витков, площадь сечения S и длину l . Соленоид – это цилиндрическая катушка индуктивности, у которой длина много больше диаметра. Магнитное поле соленоида задается формулой:

где I является обозначением тока в соленоиде, n = N e указывает число витков на единицу длины соленоида.

Магнитный поток внутри катушки соленоида, проходящий через все N витков, составляет:

Φ = B · S · N = μ 0 n 2 S l

Таким образом, индуктивность соленоида будет выражена формулой:

L = μ 0 n 2 S · l = μ 0 n 2 V ,

где V = S l – объем соленоида, содержащий магнитное поле.

Результат, который мы получили, не берет в расчет краевых эффектов, а значит он является приближенно верным лишь для катушек достаточной длины. Когда соленоид заполнен веществом, имеющим магнитную проницаемость μ , при заданном токе I индукция магнитного поля будет возрастать по модулю в μ раз, а значит и индуктивность катушки с сердечником тоже получит увеличение в μ раз:

L μ = μ · L = μ 0 · μ · n 2 · V .

ЭДС самоиндукции, которая возникает в катушке при постоянном значении индуктивности, в соответствии с законом Фарадея записывается в виде формулы:

δ и н д = δ L = — ∆ Φ ∆ t = — L ∆ I ∆ t .

ЭДС самоиндукции является прямо пропорциональной индуктивности катушки и скорости изменения силы тока в ней.

Магнитное поле выступает носителем энергии. Так же, как заряженный конденсатор обладает запасом электрической энергии, катушка, по виткам которой проходит ток, обладает запасом магнитной энергии. Включив электрическую лампу параллельно катушке с большой индуктивностью в электрическую цепь постоянного тока, при размыкании ключа будем наблюдать короткую вспышку лампы (рис. 1 . 21 . 1 ). Ток в цепи появится под влиянием ЭДС самоиндукции. Источником энергии, которая будет выделяться в этом процессе электрической цепью, будет служить магнитное поле катушки.

Рисунок 1 . 21 . 1 . Магнитная энергия катушки. В момент размыкания ключа K лампа ярко вспыхнет.

Закон сохранения энергии позволяет говорить, что вся энергия, составляющая запас катушки, будет выделена в виде джоулева тепла. Обозначим как R полное сопротивление цепи, тогда за время Δ t будет выделено количество теплоты Δ Q = I 2 · R · Δ t .

Ток в цепи составляет:

I = δ L R = — L R ∆ I ∆ t

Выражение для Δ Q можем записать так:

∆ Q = — L · I · ∆ I = — Φ ( I ) ∆ I

В данной записи Δ I 0 ; значение тока в цепи постепенно снижается от изначального I 0 до нуля. Полное количество теплоты, которое выделится в цепи, возможно получить, осуществив действие интегрирования в пределах от I 0 до 0 . Тогда получим:

Графический вывод формулы

Существует возможность получить записанную формулу, используя графический метод. Для этого отобразим на графике зависимость магнитного потока Φ ( I ) от тока I (рис. 1 . 21 . 2 ). Полное количество выделившейся теплоты, которое равно изначальному запасу энергии магнитного поля, определится как площадь получившегося на рис. 1 . 21 . 2 треугольника:

Рисунок 1 . 21 . 2 . Вычисление энергии магнитного поля.

В итоге формула энергии W м магнитного поля катушки с индуктивностью L , создаваемого током I , будет записана в виде формулы:

W м = Φ I 2 = L I 2 2 = Φ 2 2 L

Используем выражение, которое мы получили, для энергии катушки к длинному соленоиду с магнитным сердечником. Применяя указанные выше формулы для коэффициента самоиндукции L μ соленоида и для магнитного поля B, создаваемого током I , получим запись:

W м = μ 0 · μ · n 2 · I 2 2 V = B 2 2 μ 0 · μ V

В этой формуле V является объемом соленоида. Полученное выражение демонстрирует нам, что магнитная энергия имеет локализацию не в витках катушки, по которым проходит ток, а распределена по всему объему, в котором возникло магнитное поле.

Объёмная плотность магнитной энергии – это физическая величина, которая равна энергии магнитного поля в единице объема: W м = B 2 2 μ · μ .

В свое время Максвелл продемонстрировал, что указанная формула (в нашем случае выведенная для длинного соленоида) верна для любых магнитных полей.


источники:

http://www.evkova.org/energiya-magnitnogo-polya

http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/samoinduktsija-energija-magnitnogo-polja/