Если детерминант равен 0 то система линейных уравнений

Если детерминант равен 0 то система линейных уравнений

СИСТЕМА ОДНОРОДНЫХ ЛИНЕЙНЫХ УРАВНЕНИЙ

Системой однородных линейных уравнений называется система вида

Ясно, что в этой случае , т.к. все элементы одного из столбцов в этих определителях равны нулю.

Так как неизвестные находятся по формулам , то в случае, когда Δ ≠ 0, система имеет единственное нулевое решение x = y = z = 0. Однако, во многих задачах интересен вопрос о том, имеет ли однородная система решения отличные от нулевого.

Теорема. Для того, чтобы система линейных однородных уравнений имела ненулевое решение, необходимо и достаточно, чтобы Δ ≠ 0.

Итак, если определитель Δ ≠ 0, то система имеет единственное решение. Если же Δ ≠ 0, то система линейных однородных уравнений имеет бесконечное множество решений.

, а значит x=y=z=0.

  • СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ МАТРИЦЫ

    Пусть задана квадратная матрица , X – некоторая матрица–столбец, высота которой совпадает с порядком матрицы A. .

    Во многих задачах приходится рассматривать уравнение относительно X

    ,

    где λ – некоторое число. Понятно, что при любом λ это уравнение имеет нулевое решение .

    Число λ, при котором это уравнение имеет ненулевые решения, называется собственным значением матрицы A, а X при таком λ называется собственным вектором матрицы A.

    Найдём собственный вектор матрицы A. Поскольку EX = X, то матричное уравнение можно переписать в виде или . В развёрнутом виде это уравнение можно переписать в виде системы линейных уравнений. Действительно .

    И, следовательно,

    Итак, получили систему однородных линейных уравнений для определения координат x1, x2, x3 вектора X. Чтобы система имела ненулевые решения необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.

    Это уравнение 3-ей степени относительно λ. Оно называется характеристическим уравнением матрицы A и служит для определения собственных значений λ.

    Каждому собственному значению λ соответствует собственный вектор X, координаты которого определяются из системы при соответствующем значении λ.

      Найти собственные векторы и соответствующие им собственные значения матрицы .

    Составим характеристическое уравнение и найдём собственные значения

      При λ1 = –1 получаем систему уравнений

    Если x1 = t, то, где t Î R.
    Если λ2 = 5

    ВЕКТОРНАЯ АЛГЕБРА. ПОНЯТИЕ ВЕКТРОРА

    При изучении различных разделов физики встречаются величины, которые полностью определяются заданием их численных значений, например, длина, площадь, масса, температура и т.д. Такие величины называются скалярными. Однако, кроме них встречаются и величины, для определения которых, кроме численного значения, необходимо знать также их направление в пространстве, например, сила, действующая на тело, скорость и ускорение тела при его движении в пространстве, напряжённость магнитного поля в данной точке пространства и т.д. Такие величины называются векторными.

    Введём строгое определение.

    Направленным отрезком назовём отрезок, относительно концов которого известно, какой из них первый, а какой второй.

    Вектором называется направленный отрезок, имеющий определённую длину, т.е. это отрезок определённой длины, у которого одна из ограничивающих его точек принимается за начало, а вторая – за конец. Если A – начало вектора, B – его конец, то вектор обозначается символом, кроме того, вектор часто обозначается одной буквой . На рисунке вектор обозначается отрезком, а его направление стрелкой.

    Модулем или длиной вектора называют длину определяющего его направленного отрезка. Обозначается || или ||.

    К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают. Он обозначается . Нулевой вектор не имеет определенного направления и модуль его равен нулю ||=0.

    Векторы и называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. При этом если векторы и одинаково направлены, будем писать , противоположно .

    Векторы, расположенные на прямых, параллельных одной и той же плоскости, называются компланарными.

    Два вектора и называются равными, если они коллинеарны, одинаково направлены и равны по длине. В этом случае пишут .

    Из определения равенства векторов следует, что вектор можно переносить параллельно самому себе, помещая его начало в любую точку пространства.

    1. Если дан вектор , то, выбрав любую точку , можем построить вектор , равный данному, и притом только один, или, как говорят, перенести вектор в точку .
    2. Если рассмотреть квадрат ABCD, то на основанииопределения равенства векторов, мы можем написать и , но , , хотя все они имеют одинаковую длину.

    ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

      Умножение вектора на число.

    Произведением вектора на число λ называется новый вектор такой, что:

    1. ;
    2. вектор коллинеарен вектору ;
    3. векторы и направлены одинаково, если λ>0 и противоположно, если λ

    Метод Крамера решения систем линейных уравнений

    Формулы Крамера

    Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

    Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

    Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

    Определители

    получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

    ;

    .

    Формулы Крамера для нахождения неизвестных:

    .

    Найти значения и возможно только при условии, если

    .

    Этот вывод следует из следующей теоремы.

    Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

    Пример 1. Решить систему линейных уравнений:

    . (2)

    Согласно теореме Крамера имеем:

    Итак, решение системы (2):

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

    Три случая при решении систем линейных уравнений

    Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

    Первый случай: система линейных уравнений имеет единственное решение

    (система совместна и определённа)

    *

    Второй случай: система линейных уравнений имеет бесчисленное множество решений

    (система совместна и неопределённа)

    * ,

    ** ,

    т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

    Третий случай: система линейных уравнений решений не имеет

    *

    ** .

    Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

    Примеры решения систем линейных уравнений методом Крамера

    Пусть дана система

    .

    На основании теоремы Крамера


    ………….
    ,

    где

    определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

    Пример 2. Решить систему линейных уравнений методом Крамера:

    .

    Решение. Находим определитель системы:

    Следовательно, система является определённой. Для нахождения её решения вычисляем определители

    По формулам Крамера находим:

    Итак, (1; 0; -1) – единственное решение системы.

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

    Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

    Пример 3. Решить систему линейных уравнений методом Крамера:

    .

    Решение. Находим определитель системы:

    Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

    По формулам Крамера находим:

    Итак, решение системы — (2; -1; 1).

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

    Применить метод Крамера самостоятельно, а затем посмотреть решения

    Пример 4. Решить систему линейных уравнений:

    .

    Пример 5. Решить систему линейных уравнений методом Крамера:

    .

    К началу страницы

    Пройти тест по теме Системы линейных уравнений

    Продолжаем решать системы методом Крамера вместе

    Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

    Пример 6. Решить систему линейных уравнений методом Крамера:

    Решение. Находим определитель системы:

    Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

    Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

    В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

    Пример 7. Решить систему линейных уравнений методом Крамера:

    Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

    Находим определители при неизвестных

    По формулам Крамера находим:

    ,

    .

    Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

    Пример 8. Решить систему линейных уравнений методом Крамера:

    Решение. Находим определитель системы:

    Находим определители при неизвестных

    По формулам Крамера находим:

    ,

    ,

    .

    И, наконец, система четырёх уравнений с четырьмя неизвестными.

    Пример 9. Решить систему линейных уравнений методом Крамера:

    .

    Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

    Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

    Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

    По формулам Крамера находим:

    ,

    ,

    ,

    .

    Итак, решение системы — (1; 1; -1; -1).

    Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

    Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

    Метод Крамера

    Метод Крамера (теорема Крамера) — способ решения квадратных СЛАУ с ненулевым определителем основной матрицы. Назван по имени Габриэля Крамера, автора метод.

    Теорема Крамера

    Теорема Крамера. Если определитель матрицы квадратной системы не равен нулю, то система совместна и имеет единственное решение, которое находится по формулам Крамера:

    где $\Delta$ — определитель матрицы системы, $\Delta_$ — определитель матрицы системы, где вместо $i$ -го столбца стоит столбец правых частей.

    Если определитель системы равен нулю, то система может быть как совместной, так и несовместной.

    Данный метод удобно применять для маленьких систем с громоздкими вычислениями, а так же если нужно найти одну из неизвестных. Трудность заключается в том, что необходимо считать много определителей.

    Примеры решения систем уравнений

    Задание. Найти решение СЛАУ $\left\<\begin 5 x_<1>+2 x_<2>=7 \\ 2 x_<1>+x_<2>=9 \end\right.$ при помощи метода Крамера.

    $$\Delta=\left|\begin 5 & 2 \\ 2 & 1 \end\right|=5 \cdot 1-2 \cdot 2=1 \neq 0$$

    Так как $\Delta \neq 0$ , то по теореме Крамера система совместна и имеет единственное решение. Вычислим вспомогательные определители. Определитель $\Delta_<1>$ получим из определителя $\Delta$ заменой его первого столбца столбцом свободных коэффициентов. Будем иметь:

    $$\Delta_<1>=\left|\begin 7 & 2 \\ 9 & 1 \end\right|=7-18=-11$$

    Аналогично, определитель $\Delta_<2>$ получается из определителя матрицы системы $\Delta$ заменой второго столбца столбцом свободных коэффициентов:

    $$\Delta_<2>=\left|\begin 5 & 7 \\ 2 & 9 \end\right|=45-14=31$$

    Тогда получаем, что

    Ответ. $x_<1>=-11, x_<2>=31$

    Задание. При помощи формул Крамера найти решение системы $\left\<\begin 2 x_<1>+x_<2>+x_<3>=2 \\ x_<1>-x_<2>=-2 \\ 3 x_<1>-x_<2>+2 x_<3>=2 \end\right.$

    Решение. Вычисляем определитель матрицы системы:

    $$\Delta=\left|\begin 2 & 1 & 1 \\ 1 & -1 & 0 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 1+1 \cdot 0 \cdot 3-$$ $$-3 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-1 \cdot 1 \cdot 2=-4 \neq 0$$

    Так как определитель матрицы системы неравен нулю, то по теореме Крамера система совместна и имеет единственное решение. Для его нахождения вычислим следующие определители:

    $$\Delta_<1>=\left|\begin 2 & 1 & 1 \\ -2 & -1 & 0 \\ 2 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+(-2) \cdot(-1) \cdot 1+$$ $$+1 \cdot 0 \cdot 2-2 \cdot(-1) \cdot 1-(-1) \cdot 0 \cdot 2-(-2) \cdot 1 \cdot 2=4$$ $$\Delta_<2>=\left|\begin 2 & 2 & 1 \\ 1 & -2 & 0 \\ 3 & 2 & 2 \end\right|=2 \cdot(-2) \cdot 2+1 \cdot 2 \cdot 1+2 \cdot 0 \cdot 3-$$ $$-3 \cdot(-2) \cdot 1-2 \cdot 0 \cdot 2-1 \cdot 2 \cdot 2=-4$$ $$\Delta_<3>=\left|\begin 2 & 1 & 2 \\ 1 & -1 & -2 \\ 3 & -1 & 2 \end\right|=2 \cdot(-1) \cdot 2+1 \cdot(-1) \cdot 2+$$ $$+1 \cdot(-2) \cdot 3-3 \cdot(-1) \cdot 2-(-1) \cdot(-2) \cdot 2-1 \cdot 1 \cdot 2=-12$$


    источники:

    http://function-x.ru/systems_kramer.html

    http://www.webmath.ru/poleznoe/formules_5_4.php