Если дифференциальное уравнение движения груза имеет вид

Если дифференциальное уравнение движения груза имеет вид

Глава 13. Динамика точки.

13.5. Свободные затухающие колебания.

13.5.1. Решение дифференциального уравнения затухающих колебаний материальной точки имеет вид x = е -0,2t (С1 cos3t + C2 sin3t). Опре­делить постоянную интегрирования С1, если в момент времени to = 0 координата точки х0 = 0,2 м. (Ответ 0,2)

13.5.2. Решение дифференциального уравнения затухающих колебаний материальной точки имеет вид х = е -0,5t (С1 cos 3t + С2 sin 3t). Опре­делить постоянную интегрирования С2, если постоянная интегрирова­ния C1 = 1,5 и в момент времени t0 = 0 скорость точки v0 = 0. (Ответ 0,25)

13.5.3. Дифференциальное уравнение движения материальной точки имеет вид mх + 4х + 2х = 0. Найти максимальное значение массы точ­ки, при котором движение будет апериодическим. (Ответ 2)

13.5.4. Груз подвешен к пружине с коэффициентом жесткости с = 200 Н/м и движется по прямой согласно уравнению y = Ae -0,9t sin(5t + а). Определить массу груза. (Ответ 7,75)

13.5.5. На материальную точку массой m = 6 кг, которая находится в колебательном движении, действует сила сопротивления R = —μv. Определить коэффициент если закон движения точки имеет вид х = Ae -0,1t sin(7t + а) (Ответ 1,2)

13.5.6. Груз массой m = 2 кг прикреплен к пружине, коэффициент жест­кости которой с = 30 Н/м, и выведен из состояния равновесия. Опре­делить, находится ли точка в колебательном движении, если сила сопротивления движению R = — 0,1v. (Ответ Да)

13.5.7. Дифференциальное уравнение движения материальной точки имеет вид 2х + 2х + 50х = 0. Найти минимальное значение коэффици­ента μ сопротивления среды, при котором движение будет апериодическим. (Ответ 20)

13.5.8. Определить, находится ли материальная точка в колебательном движении, если дифференциальное уравнение движения имеет вид х +2x + 2х = 0. (Ответ Да)

13.5.9. Дифференциальное уравнение движения материальной точки имеет вид 3х + 12х + сх = 0. Найти максимальное значение коэф­фициента жесткости с, при котором движение будет апериодичес­ким. (12)

13.5.10. Определить, находится ли материальная точка в колебательном движении, если дифференциальное уравнение движения имеет вид х + 5х + 5х = 0. (Ответ Нет)

13.5.11. На материальную точку массой m = 10 кг, которая находится в колебательном движении, действует сила сопротивления R = —μv. Определить коэффициент μ, если период затухающих колебаний T1 = 2 с, а отношение последующего максимального отклонения точки к предыдущему в ту же сторону равно 0,85. (Ответ 1,63)

13.5.12. Дифференциальное уравнение движения материальной точки име­ет вид 3х + μx + 48х = 0. Найти наименьшее значение коэффициента μ сопротивления среды, при котором движение системы будет апериодическим. (Ответ 24)

13.5.13. Решение дифференциального уравнения затухающих колебаний тела имеет вид х = Ае -0,8t sin(4t + а). Определить коэффициент жест­кости пружины, к которой прикреплено тело, если его масса m = 10 кг. (Ответ 166)

13.5.14. Дифференциальное уравнение движения материальной точки имеет вид 5х + 20х + сх = 0. Найти наибольшее значение коэф­фициента жесткости с, при котором движение точки будет апериодическим. (Ответ 20)

13.5.15. Затухающие колебания материальной точки описываются уравне­нием х = Аe -0,2t sin(0,5t + а). Определить угловую частоту свободных колебаний этой точки в случае, если силы сопротивления отсутствуют (Ответ 0,539)

13.5.16. Дифференциальное уравнение колебательного движения мате­риальной точки имеет вид х + 8х + 25х = 0. Найти угловую частоту затухающих колебаний. (Ответ 3)

13.5.17. Груз массой m = 2 кг подвешен к пружине с коэффициентом жесткости с = 30 Н/м и находится в колебательном движении. Опре­делить угловую частоту затухающих колебаний, если сила сопротивления движению груза R = 4v. (Ответ 3,74)

13.5.18. Уравнение движения материальной точки имеет вид х = е -0.05t (0,3 cos4t + 0,5 sin4t). Для того чтобы выразить уравнение движе­ния в виде х = А е -nt sin (k1t + а), определить величину А. (Ответ 0,583)

13.5.19. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 6х + 50х = 0. Определить период затуха­ющих колебаний. (Ответ 0,981)

13.5.20. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 8х + 25х = 0. Найти период затухающих колебаний. (Ответ 2,09)

13.5.21. Колебательное движение материальной точки задано уравнением x = 0,7e -0,4t sin(1,5t +0,6). Определить период свободных колебаний точки в том случае, когда силы сопротивления отсутствуют.
(Ответ 4,05)

13.5.22. Колебательное движение материальной точки описывается урав­нением у = 6e -0,3t sin(8t + 0,3) Определить период затухающих колебаний точки. (Ответ 0,785)

13.5.23. Дифференциальное уравнение затухающих колебаний имеет вид х + 0,6x + 16х = 0. Определить отношение последующего максималь­ного отклонения точки к предыдущему в ту же сторону. (Ответ 0,624)

13.5.24. Затухающие колебания материальной точки описываются урав­нением х = 0,12е -0,1t sin(18t + 0,2). Определить отношение последу­ющего максимального отклонения точки к предыдущему в ту же сторону. (Ответ 0,966)

13.5.25. Дифференциальное уравнение колебательного движения матери­альной точки имеет вид х + 4х + 20х = 0. Найти логарифмический декремент колебаний, рассматривая максимальные отклонения после полупериода колебаний. (Ответ 1,57)

Сборник коротких задач по теоретической механике.
Кепе О.Э.

Книга состоит из 1757 заданий которые предназначены для бысторого
контроля знаний на занятиях и зачетах а также для допуска к экзамену.
Задачи имеют ответы.

Издательство «Высшая школа» 1989 Москва

Также решение задач Кепе можно скачать здесь:
Мобильное приложение для Андроид:

Динамика материальной точки. Все законы и теоремы

Законы динамики

Первый закон Ньютона (закон инерции Галилея)
Существуют такие системы отсчета, относительно которых любая материальная точка, не взаимодействующая с другими телами и точками, движется прямолинейно и равномерно. В частности, если точка покоилось в определенный момент времени, то она будет покоиться и в последующие моменты.

Не во всех системах отсчета выполняется закон инерции. Например, если мы выберем систему отсчета, связанную с ускоряющейся ракетой, то относительно этой системы, не взаимодействующие материальные точки, не будут двигаться прямолинейно и равномерно.

Инерциальная система отсчета – это система отсчета, в которой справедлив закон инерции.
Движение по инерции – это движение точки, совершаемое при отсутствии действующих на нее сил.

Второй закон Ньютона (основной закон динамики)
Взаимодействие на выбранную материальную точку со стороны других тел описывается вектором, который называется силой. При этом, в инерциальных системах отсчета, действие силы приводит к ускорению точки , которое пропорционально приложенной силе, имеет одинаковое с ней направление, и обратно пропорционально массе точки:
(1) .

Если есть радиус-вектор, проведенный из начала координат к точке, то ускорение есть вторая производная радиус-вектора по времени:
.
Производную по времени, в теоретической механике, обозначают точкой над переменной, а не штрихом, как в математическом анализе.

Если на точку действует не одна, а n сил, то в правой части производится суммирование по всем силам, действующих на точку. Тогда уравнение (1) примет вид:
(2) .

Третий закон динамики (закон равенства действия и противодействия)
Если две материальные точки действуют друг на друга, то сила, с которой первая точка действует на вторую, равна по абсолютной величине и противоположна по направлению силе, с которой вторая точка действует на первую. При этом силы направлены вдоль прямой, соединяющей точки.

Закон независимости сил
Несколько одновременно действующих на материальную точку сил сообщают точке такое ускорение, какое сообщила бы ей одна сила, равная их геометрической сумме.

То есть уравнение (2) можно записать в виде:
, где .

Задачи динамики

Первая задача динамики
Зная закон движения точки, определить действующую на нее силу.

Вторая (основная) задача динамики
Зная действующие на точку силы, определить ее закон движения.

Основные виды сил

Единицей измерения силы в СИ является 1 ньютон (1 Н = кг·м/с 2 ). Это сила, которую нужно приложить к точке массой 1 кг, чтобы она получила ускорение 1 м/с 2 .

Сила тяжести.
Сила тяжести действует на любую материальную точку, находящуюся на поверхности Земли. Она пропорциональна массе точки и равна
,
где – ускорение свободного падения, направленное вниз. Его величина зависит от широты и высоты над уровнем моря. Стандартное значение, принятое при построении систем единиц, составляет м/с 2 .

Сила тяготения.
.
Здесь – массы точек, r – расстояние между ними, Н·м 2 /кг 2 – гравитационная постоянная.

Для точки массы m на поверхности Земли имеем: . Отсюда . Тогда силу тяготения Земли можно вычислять по формуле:
,
где R = 6371 км – радиус Земли; r – расстояние от точки до центра Земли.

Сила электростатического взаимодействия.
,
где – величины зарядов; r – расстояние между ними; Н·м 2 /Кл 2 – коэффициент. Одноименные заряды отталкиваются, разноименные – притягиваются.

Сила трения скольжения
возникает при скольжении одного тела по поверхности другого. Она направлена в сторону, противоположную скорости движения. Ее величина определяется по формуле:
F = fN ,
где N – сила давления, перпендикулярная поверхности, с которой скользящее тело прижимается к поверхности; f – коэффициент трения, который зависит от материалов соприкасаемых тел.

Сила упругости.
Эта сила возникает при деформации упругих тел. Это могут быть растяжения, сжатия и изгибы. Она определяется по формуле
F = cλ ,
где λ – величина деформации; c – коэффициент, который зависит от материала упругого тела. Для пружины λ – это удлинение или сжатие пружины; c – коэффициент жесткости.

Сила вязкого трения.
При движении тела в вязкой среде с небольшими скоростями, на него действует сила трения, пропорциональная скорости движения:
F = μv ,
где v – скорость тела; μ – коэффициент сопротивления.
При больших скоростях, сила трения пропорциональна квадрату скорости.

Дифференциальные уравнения движения точки

Спроектируем уравнение (2) на оси прямоугольной системы координат. Пусть радиус вектор точки имеет в этой системе компоненты (проекции) . Тогда из векторного уравнения (2) получаем систему уравнений:
.
Это есть дифференциальные уравнения движения точки в прямоугольной системе координат.

Спроектируем уравнение (2) на оси естественного трехгранника:
.
Здесь – единичный вектор, направленный по касательной к траектории; – единичный вектор, перпендикулярный и лежащий в касательной плоскости траектории; – единичный вектор, перпендикулярный и . Поскольку , то .
Вводим пройденный путь s , измеренный вдоль дуги траектории точки. Пусть ρ – радиус кривизны траектории в рассматриваемой точке. Тогда, для естественного способа задания движения точки, уравнения движения примут вид:
.

Уравнения движения в полярных координатах для плоского движения:
.

Прямолинейное движение точки

Пусть ось x направлена вдоль линии движения точки. Тогда уравнение движения имеет вид:
(3) .
Его общее решение:
,
где – произвольные постоянные. Их находят из начальных условий:
.

Если сила Fx зависит только от времени, то из уравнения (3) сначала определяют скорость vx , а затем координату x , последовательно интегрируя уравнения:
.
Если сила зависит только от координаты x , то выполняют преобразование:
;
;
.

Колебательное движение материальной точки

Свободные колебания

Рассмотрим движение груза на пружинке. Считаем, что груз является материальной точкой; массой пружины можно пренебречь; и отсутствует сила тяжести. Пусть движение происходит вдоль оси x . За начало отсчета выберем такое положение груза, при котором пружина не деформирована. Тогда на точку действует только восстанавливающая сила упругости пружины, которая определяется по закону Гука:
(К1) ,
где x – деформация пружины; c – коэффициент жесткости. Он равен силе, которая возникает при деформации, равной единице (один метр) и имеет размерность [Н/м]. Из (К1) видно, что сила является восстанавливающей, то есть направлена так, чтобы вернуть точку в начало координат к недеформированному состоянию. Сила такого вида возникает не только при деформации пружины, но и во многих других случаях при небольшом отклонении точки от равновесного положения.

Составим уравнение движения точки и выполняем преобразования:
.
Введем обозначение . В результате получаем.

(К2) .
Уравнение (К2) называется дифференциальным уравнением свободных колебаний. Его также называют дифференциальным уравнением гармонических колебаний. Оно является линейным однородным дифференциальным уравнением второго порядка.

Ищем его решение в виде . Получаем характеристическое уравнение:
.
Оно имеет два мнимых корня: . Тогда общее решение уравнения (К2) имеет вид:
,
где и – произвольные постоянные. Они определяются из начальных условий. Пусть – координата и скорость точки в начальный момент времени , тогда
;
.


График гармонического движения точки.

Часто бывает удобно вместо постоянных интегрирования и перейти к новым постоянным A и β по формулам: . Тогда
(К3) .
Это есть уравнение гармонического колебательного движения точки. Здесь – амплитуда колебаний;
фаза колебаний;
β – начальная фаза, ;
циклическая частота колебаний, которую также называют угловой или собственной.
Период колебаний: .
Частота колебаний: – это число циклов колебаний, совершенных в единицу времени. Она широко применяется в технике, однако для математического описания более удобна угловая частота, которую мы будем использовать в дальнейшем и называть просто частотой.

Частота k и период T не зависят от начальных условий, а амплитуда и фаза – зависят. Кроме этого, k и T не зависят от амплитуды. Колебания, у которых частота и период не зависят от амплитуды, называют изохорными колебаниями. Если рассмотреть колебания с большой амплитудой, при которой закон Гука (К1) не выполняется, то уравнение (К2) не будет линейным и колебания не будут изохорными.

Влияние постоянной силы

Пусть теперь, наряду с восстанавливающей силой (К1), на точку действует постоянная сила P , например сила тяжести. Тогда уравнение движения примет вид:
.
Это приводит к смещению центра колебаний в сторону действия силы P на величину
δ ст = P/c .
Это смещение называют статическим отклонением. Если P – сила тяжести, то
.

Колебания при вязком трении

Пусть на точку, кроме силы упругости пружины, действует сила сопротивления среды. При малых скоростях она пропорциональна скорости точки:
. Это так называемое вязкое трение. Составим уравнение движения:
. Обозначив μ/m= 2 b , получаем:
(К4) . Составляем характеристическое уравнение:
(К5) . Оно имеет два корня:
.

Затухающие колебания

При b , корни характеристического уравнения (К5) комплексные:
. Тогда общее решение уравнения (К4) имеет вид:
,
где . Обозначим , . Тогда
(К6) .
, ;
– амплитуда (переменная величина);
b – коэффициент затухания;
частота затухающих колебаний;
период затухающих колебаний. Он больше периода свободных колебаний. При небольшом коэффициенте затухания (при b/k ≪ 1 ) T 1 ≈ T .
Колебания, происходящие по закону (К6) называются затухающими. График затухающих колебаний заключен между двумя кривыми x = ±Ae –bt , симметричными относительно оси t .

Затухающие колебания можно рассматривать как гармонические колебания с переменной амплитудой . Относительное изменение переменной амплитуды за период колебания называется декрементом колебаний. Он равен
. Модуль логарифма декремента называется логарифмическим декрементом. Он равен .

Апериодическое движение точки

При (или ) корни характеристического уравнения (К5) действительные. Поэтому движение точки является апериодическим.
При (или ) характеристическое уравнение (К5) имеет два различных действительных корня:
. Тогда общее решение уравнения (К4) имеет вид:
(К7) .
Сюда не входят тригонометрические функции. Поэтому это апериодическое движение. Точка может пройти через положение равновесия x = 0 не более одного раза.

Закон движения (К7) можно выразить через гиперболические функции, если положить: . Тогда
.
Перейдем к новым постоянным интегрирования A и β , выполнив подстановку:
. Тогда
.

При b = k характеристическое уравнение (К5) имеет два кратных вещественных корня . Общее решение уравнения (К4) имеет вид:
.
Движение также апериодическое. Точка может пройти через положение равновесия x = 0 не более одного раза.

Вынужденные колебания

Рассмотрим случай, когда кроме восстанавливающей силы , на точку действует возмущающая сила, меняющаяся по гармоническому закону:
(К8) . Составим уравнение движения:
.
Введем обозначение h=H/m . Разделив на m , получаем дифференциальное уравнение вынужденных колебаний:
(К9) .

Это линейное неоднородное дифференциальное уравнение с постоянными коэффициентами со специальной неоднородной частью. Его общее решение равно сумме общего решения однородного уравнения и частного (то есть любого, отличного от нулевого) решения данного уравнения:
;
;
.
Общее решение однородного уравнения: .
Ищем частное решение в виде . В результате получаем:
;
.

Коэффициент динамичности. Действие постоянной возмущающей силы величины H приводит к статическому отклонению . Периодическая возмущающая сила (К8) с амплитудой H приводит к периодическим колебаниям с амплитудой . В связи с этим вводят коэффициент динамичности: .
Он показывает, во сколько раз амплитуда колебаний превосходит статическое отклонение.

Явление резонанса и биения

Когда частота возмущающей силы равна частоте собственных колебаний p = k , коэффициент динамичности стремится к бесконечности, амплитуда колебаний неограниченно возрастает. Это явление называется резонансом. Уравнение движения точки при p = k имеет вид:
(К10) .
Оно имеет частное решение
.
Общее решение уравнения (К10):
.
Это уравнение показывает, что амплитуда вынужденных колебаний возрастает пропорционально времени. Фаза вынужденных колебаний отстает от фазы возмущающей силы на π/ 2 .


Биения.

Когда частота p возмущающей силы близка к собственной частоте k колебания точки, p/k ≈ 1 , возникает явление, называемое биениями. В этом случае частное решение уравнения (К9) имеет вид:
,
где .
Происходит наложение колебаний. Их можно рассматривать как вынужденные колебания частоты с переменной амплитудой, которая является периодической функцией с частотой .

Вынужденные колебания при наличии вязкого трения

Составим уравнение движения вынужденных колебаний при наличии вязкого трения:
.
Получаем дифференциальное уравнение:
.
Его общее решение имеет вид.
1) при b :
;
2) при b > k :
;
3) при b = k :
.
Здесь ;
ε определяется из уравнений:
.
Величины A и β являются постоянными интегрирования. Они определяются из начальных условий.

Общие теоремы динамики точки

Теорема об изменении количества движения материальной точки

Теорема об изменении количества движения материальной точки в дифференциальной форме
Изменение количества движения материальной точки за бесконечно малый промежуток времени dt равно элементарному импульсу равнодействующей сил, приложенных к этой точке:
.
Эту теорему можно сформулировать так:
Производная по времени от количества движения материальной точки равна равнодействующей сил, приложенных к этой точке:
(Т1) .

Проектируя это векторное уравнение на оси координат, получаем три скалярных уравнения:
.

Если проинтегрировать уравнение (Т1) по времени от начального момента времени t = 0 до конечного момента t = t1 , то получим теорему в интегральной форме.

Теорема об изменении количества движения материальной точки в интегральной форме
изменение количества движения материальной точки за конечный промежуток времени [0,t1] равно импульсу силы, приложенной к этой точке, за тот же промежуток времени:
.
Здесь – скорость точки в моменты времени t = 0 и t = t 1 , соответственно.

Теорема об изменении момента количества движения материальной точки

Теорема об изменении момента количества движения материальной точки
Производная по времени от момента количества движения материальной точки, относительно произвольного центра O , равна моменту равнодействующей силы, приложенной к точке, относительно того же центра:
.

Проектируя это векторное уравнение на оси координат, получаем три скалярных уравнения:
.

Если на точку действует несколько сил , то равнодействующая сила равна их геометрической сумме:
.
Тогда можно записать эту теорему так:
.

Далее будем считать, что точка O выбрана в начале координат. Тогда .

Центральная сила. Второй закон Кеплера

Пусть на точку действует центральная сила с центром в начале координат O . Тогда ее момент относительно O равен нулю. По теореме об изменении момента количества движения материальной точки имеем:
.
Если ввести секторную скорость , то она оказывается постоянной
.
Получаем второй закон Кеплера (закон площадей).

Второй закон Кеплера (закон площадей)
Под действием центральной силы точка движется по плоской кривой с постоянной секторной скоростью. То есть радиус-вектор точки заметает равные площади в любые равные промежутки времени.

Работа силы. Мощность

Основные понятия

Единицей измерения работы в СИ является 1 джоуль (1 Дж = 1 Н·м = кг·м 2 /с 2 ).

Работа силы при движении материальной точки от точки M 1 до точки M 2 равна сумме (интегралу) элементарных работ:
.
Если ввести скорость точки , то
.

Теорема о работе силы
Работа A равнодействующей силы на некотором перемещении равна алгебраической сумме работ Ak составляющих сил на том же перемещении:
.

Мощность – это величина работы, произведенная за единицу времени.
.

Единицей измерения мощности в СИ является 1 ватт (1 Вт = 1 Дж/с). Другие единицы мощности: 1 кВт (киловатт) = 1000 Вт; 1л.с.(лошадиная сила) = 736 Вт = 75 кгс·м/с.

Работа основных видов сил

Работа силы тяжести:
,
где P – сила тяжести, действующая на точку. Если начальная точка выше конечной, то работа положительна; если начальная точка ниже конечной, то отрицательна.

Работа силы упругости:
.
Здесь – деформация пружины в начальном положении; – в конечном.

Работа силы трения. Если сила трения постоянна, то
,
где s – длина пройденного точкой пути; – сила трения, которая всегда направлена в сторону, противоположную перемещению; f – коэффициент трения; N – нормальная реакция поверхности. Работа силы трения всегда отрицательна.

Работа силы тяготения.
На точку, находящуюся вблизи планеты Земля, на расстоянии r ≥ R от ее центра, действует сила притяжения
,
где R = 6371 км – радиус Земли. Тогда при перемещении точки из положения M1 в положение M2, сила тяготения совершит работу
.
Она не зависит от траектории движения тела.

Теорема об изменении кинетической энергии точки

Теорема об изменении кинетической энергии точки в дифференциальной форме
Дифференциал кинетической энергии точки равен сумма элементарных работ всех действующих на точку сил:
.

Проинтегрировав обе части этого уравнения вдоль траектории движения точки от положения M1 до M2, получим теорему в интегральной форме.

Теорема об изменении кинетической энергии точки
Изменение кинетической энергии материальной точки, при переходе ее из начального положения M1 в конечное положение M2, равно сумме работ всех сил, приложенных к точке на этом перемещении:
.

Силовые поля и потенциальная энергия

1. Работа сил стационарного поля при перемещении точки из положения M1 в положение M2 зависит только от начального положения M1, конечного положения M2, и формы траектории, но не зависит от закона движения точки.

2. Работа, совершенная полем при перемещении точки из положения M1 в M2 равна по модулю и обратна по величине работе, совершенной полем при перемещении точки из M2 в M1 при перемещении по той же траектории:
.

Для нестационарных полей эти свойства на выполняются.
Примеры стационарных полей: поле силы тяжести на поверхности Земли; электростатическое поле от неподвижно закрепленного заряда; поле силы упругости пружины, один конец которой закреплен.

Потенциальное силовое поле – это стационарное силовое поле, работа сил которого зависит только от начального M1 и конечного M2 положений точки, и не зависит от формы ее траектории. Потенциальное силовое поле также называют консервативным.

В потенциальном поле существует такая функция, через которую можно выразить вектор силы , действующей на точку.

Силовая функция – это функция, зависящая от координат точки ( x, y, z ) , через которую выражаются проекции силы потенциального поля на оси координат:
.

Отсюда следует, что сила не изменится, если к силовой функции прибавить постоянную. Таким образом, силовая функция определена с точностью до произвольной постоянной.

В потенциальном поле элементарная работа является дифференциалом от силовой функции:
.
Работа при конечном перемещении из точки в точку равна разности силовой функции в этих точках:
.
Таким образом, в потенциальном поле, работа сил поля не зависит от формы траектории. На замкнутом перемещении работа равна 0. Для более наглядной физической интерпретации, вводят понятие потенциальной энергии. Она равна, с точностью до произвольной постоянной, силовой функции, взятой с обратным знаком.

Потенциальная энергия П – это работа, которую нужно совершить при перемещении точки в потенциальном поле из данного положения в произвольным образом выбранное нулевое положение.

Так, для поля деформации, в качестве нулевого положения обычно принимают не деформированное положение; для гравитационного и электростатических полей за нулевое выбирают положение, бесконечно удаленное от тела или заряда. Для силы тяжести в поле Земли принимают любое, удобное для расчета положение. Таким образом, потенциальная энергия равна силовой функции, взятой с обратным знаком плюс постоянная, зависящая от выбора нулевого положения:
.

Пусть – нулевое положение. Тогда
;
.

Работа сил поля при перемещении системы из 1-го положения во 2-ое равна разности потенциальных энергий: .

Эквипотенциальные поверхности – это поверхности равного потенциала:
.

Сила направлена перпендикулярно эквипотенциальной поверхности.

Закон сохранения механической энергии
Если точка находится в потенциальном поле, то сумма ее кинетической и потенциальной энергий является постоянной:
.
Если на точку действуют несколько сил от разных потенциальных полей, то в качестве потенциальной энергии нужно взять сумму потенциальных энергий от каждого силового поля:
.

Основные виды потенциальных полей

В поле силы тяжести, потенциальная энергия зависит от высоты. Направив ось z вертикально вверх, получим: .

Поле силы упругости пружины. В этом поле, потенциальная энергия зависит от деформации λ пружины:
.
В качестве нулевого положения выбирают положение без деформации: λ = 0 .

Сила гравитационного притяжения и космические скорости

Между любыми двумя точками массами m 1 и m 2 , действует сила всемирного тяготения. Так, на точку 2 действует сила притяжения со стороны точки 1:
,
направленная вдоль прямой, проходящей через точку 1. Здесь r – расстояние между точками; Н·м 2 /кг 2 – гравитационная постоянная.

В результате притяжения, обе точки получают ускорения и движутся друг относительно друга. Мы рассмотрим более простой, но важный случай, когда масса M = m 1 одного из тел намного больше массы m = m 2 второго тела. Тогда точка с меньшей массой практически не оказывает влияния на движение более массивной точки. Выберем начало инерциальной системы координат в точке 1. Тогда силу гравитационного притяжения можно рассматривать как центральную силу и представить ее в векторном виде:
(П1) .
Потенциальная энергия точки 2:
(П2) .
Здесь нулевое положение выбрано на бесконечности: .

Формулы (П1) и (П2) справедливы, если объект 1 является шаром с плотностью, зависящей только от расстояния r до его центра. Пусть R – радиус такого шара. Тогда в формулах (П1) и (П2) r – это расстояние от центра шара 1 до точки 2. Они справедливы при .

Эти формулы можно использовать при расчете движения спутников вокруг Земли. Поскольку Земля вращается вокруг своей оси, то ее форма является эллипсоидом. Но в первом приближении Землю можно считать шаром радиуса R = 6371 км. Из таких допущений можно оценить космические скорости, необходимые для выведения летательных аппаратов на космические орбиты.

Первая космическая скорость – это скорость, которую необходимо сообщить телу на поверхности Земли, чтобы оно вышло на круговую орбиту. Она равна км/с. Если у тела первая космическая скорость, то оно может вращаться по круговой орбите, не падая на Землю, то есть стать ее спутником.
Вторая космическая скорость – это скорость, которую необходимо сообщить телу на поверхности Земли, чтобы оно вышло на параболическую орбиту. Она равна км/с. Если у тела скорость больше второй космической, то ее траекторией является гипербола, и, при отсутствии помех, оно будет удаляться от Земли и никогда не вернется назад.

Однако Солнце является той преградой, которая не даст спутнику со второй космической скоростью удалиться на бесконечное расстояние. Чтобы тело могло покинуть пределы солнечной системы, ему необходимо сообщить третью космическую скорость км/с.

Использованная литература:
А. А. Яблонский, Курс теоретической механики, часть II, динамика. Москва, «Высшая школа», 1966.
С. М. Тарг, Краткий курс теоретической механики, «Высшая школа», 2010.

Автор: Олег Одинцов . Опубликовано: 11-12-2019

Дифференциальные уравнения движения точки

С помощью дифференциальных уравнений движения решается вторая задача динамики. Правила составления таких уравнений зависят от того, каким способом хотим определить движение точки.

1) Определение движения точки координатным способом.

Рассмотрим свободную материальную точку, движущуюся под действием сил . Проведем неподвижные координатные оси Oxyz (рис.20). Про­ектируя обе части равенства на эти оси и учитывая, что и т.д., получим дифферен­циальные уравнения криволинейного дви­жения точки в проекциях на оси прямо­угольной декартовой системы координат:

Рис.20

Так как действующие на точку силы мо­гут зависеть от времени, от положения точки и от ее скорости, то правые части уравнений могут содержать время t, координаты точки х, у, z и проекции ее скорости . При этом в правую часть каждого из уравнений могут входить все эти переменные.

Чтобы с помощью этих уравнений решить основную задачу динамики, надо, кроме действующих сил, знать еще начальные условия, т.е. положение и скорость точки в начальный момент. В координатных осях Oxyz начальные условия задаются в виде: при t=0

Зная действующие силы, после интегрирования уравнений найдем координаты х, y, z движущейся точки, как функции времени t, т.е. найдем закон движения точки.

Пример 17. Найти закон движения материальной точки массы m, движущейся вдоль оси х под действием постоянной по модулю силы F (рис. 20.1) при начальных условиях: при t=0.

Рис.20.1

Решение. Составим дифференциальное уравнение движения точки в проекции на ось х: . Интегрируя это уравнение, находим: . Постоянная C1 определяется из начального условия для скорости и равна . Окончательно

Далее, учитывая, что v = dx/dt, приходим к дифференциальному уравнению: , интегрируя которое получаем

Постоянную C2 определяем из начального условия для координаты точки. Она равна . Следовательно, закон движения точки имеет вид

Пример 18. Груз веса Р (рис.20.2) начинает двигаться из состояния покоя вдоль гладкой горизонтальной плоскости под действием силы F = kt. Найти закон движения груза.

Рис.20.2

Решение. Выберем начало отсчета системы координат О в начальном положении груза и направим ось х в сторону движения (рис. 20.2). Тогда начальные условия имеют вид: x(t = 0) = 0, v(t = 0) = 0. На груз действуют силы F, P и сила реакции плоскости N. Проекции этих сил на ось х имеют значения Fx = F = kt, Рx = 0, Nx = 0, поэтому соответствующее уравнение движения можно записать так: . Разделяя переменные в этом дифференциальном уравнении и затем интегрируя, получим: v = gkt 2 /2P + C1. Подставляя начальные данные (v(0) = 0), находим, что C1 = 0, и получаем закон изменения скорости .

Последнее выражение, в свою очередь, является дифференциальным уравнением, интегрируя которое найдем закон движения материальной точки: . Входящую сюда постоянную определяем из второго начального условия х(0) = 0. Легко убедиться, что C2=0. Окончательно

Пример 19. На груз, находящийся в покое на горизонтальной гладкой плоскости (см. рис. 20.2) на расстоянии a от начала координат, начинает действовать в положительном направлении оси x сила F = k 2 (P/g)x, где Р – вес груза. Найти закон движения груза.

Решение. Уравнение движения рассматриваемого груза (материальной точки) в проекции на ось х

Начальные условия уравнения (1) имеют вид: x(t = 0) = a, v(t = 0) = 0.

Входящую в уравнение (1) производную по времени от скорости представим так

Подставляя это выражение в уравнение (1) и сокращая на (P/g), получим

Разделяя переменные в последнем уравнении, находим, что . Интегрируя последнее, имеем: . Используя начальные условия , получаем , и, следовательно,

Поскольку сила действует на груз в положительном направлении оси х, то ясно, что в том же направлении он должен и двигаться. Поэтому в решении (2) следует выбрать знак «плюс». Заменяя дальше во втором выражении (2) v на dx/dt, получаем дифференциальное уравнение для определения закона движения груза. Откуда, разделяя переменные, имеем

Интегрируя последнее, находим: arch x/a=kt+C2. После нахождения постоянной C2 окончательно получаем

arch x/a=kt или .

Пример 20. Шар M массы m (рис.20.3) падает без начальной скорости под действием силы тяжести. При падении шар испытывает сопротивление , где – постоянный коэффициент сопротивления. Найти закон движения шара.

Рис.20.3

Решение. Введем систему координат с началом в точке местоположения шара при t = 0, направив ось у вертикально вниз (рис. 20.3). Дифференциальное уравнение движения шара в проекции на ось у имеет тогда вид

. (1)

Начальные условия для шара записываются так: y(t = 0) = 0, v(t = 0) = 0.

Разделяя переменные в уравнении (1)

и интегрируя, находим: , где . Или после нахождения постоянной

Отсюда следует, что предельная скорость, т.е. скорость при , равна .

Чтобы найти закон движения, заменим в уравнении (2) v на dy/dt. Тогда, интегрируя полученное уравнение с учетом начального условия, окончательно находим

Пример 21. Изучим движение тела, брошенного с начальной скоростью v0 под углом к горизонту, рассматривая его как материальную точку массы т (рис.21). При этом сопротивлением воздуха пренебрежём, а поле тяжести будем считать однородным (Р=const), полагая, что дальность полёта и высота траектории малы по сравнению с радиусом Земли.

Рис.21

Поместим начало координат О в начальном положении точки. Направим ось Oy вертикально вверх; горизонтальную ось Ox расположим в плоскости, проходящей через Оy и вектор v0, а ось Oz проведём перпендикулярно первым двум осям (рис.21). Тогда угол между вектором v0 и осью Ox будет равен .

Изобразим движущуюся точку М где-нибудь на траектории. На точку действует одна только сила тяжести , проекции которой на оси координат равны: Px=0, Py=-P=-mg, Pz=0.

Подставляя эти величины в дифференциальные уравнения и замечая, что /dt = и т.д. мы после сокращения на m получим:

Умножая обе части этих уравнений на dt и интегрируя, находим:

Начальные условия в нашей задаче имеют вид:

Удовлетворяя начальным условиям, будем иметь:

Подставляя эти значения С1, С2 и С3 в найденное выше решение и заменяя vx, vy, vz на придём к уравнениям:

Интегрируя эти уравнения, получим:

Подстановка начальных данных даёт С4=С5=С6=0, и мы окончательно находим уравнения движения точки М в виде:

Из последнего уравнения следует, что движение происходит в плоскости Оxy.

Имея уравнение движения точки, можно методами кинематики определить все характеристики данного движения.

1. Траектория точки. Исключая из первых двух уравнений (1) время t, получим уравнение траектории точки:

Это — уравнение параболы с осью, параллельной оси Оy. Таким образом, брошенная под углом к горизонту тяжёлая точка движется в безвоздушном пространстве по параболе (Галилей).

2. Горизонтальная дальность. Определим горизонтальную дальность, т.е. измеренное вдоль оси Оx расстояние ОС=Х. Полагая в равенстве (2) y=0, найдём точки пересечения траектории с осью Ох. Из уравнения:

получаем

Первое решение дает точку О, второе точку С. Следовательно, Х=Х2 и окончательно

Из формулы (3) видно, что такая же горизонтальная дальность X будет получена при угле , для которого , т.е. если угол . Следовательно, при данной начальной скорости в одну и ту же точку С можно попасть двумя траекториями: на­стильной ( ) и навесной ( ).

При заданной начальной скорости V0 наибольшая горизонтальная дальность в безвоздушном пространстве получается, когда , т.е. при угле .

3. Высота траектории. Если положить в уравнении (2)

, то найдется высота траектории Н:

. (4)

4. Время полета. Из первого уравнения системы (1) следует, что полное время полета Т определяется равенством . Заменяя здесь Х его значением, получим

При угле наибольшей дальности все найденные вели­чины равны:

Полученные результаты практически вполне приложимы для ориен­тировочного определения характеристик полета снарядов (ракет), имеющих дальности порядка 200…600 км, так как при этих дальностях (и при ) снаряд основную часть своего пути проходит в стратосфере, где сопротивлением воздуха можно пренебречь. При меньших дальностях на результат будет сильно влиять сопротивле­ние воздуха, а при дальностях свыше 600 км силу тяжести уже нельзя считать постоянной.

Пример 22. Из пушки, установленной на высоте h, произвели выстрел под углом к горизонту (рис. 22). Ядро вылетело из ствола орудия со скоростью u. Определим уравнения движения ядра.

Рис.22

Чтобы правильно составить дифференциальные уравнения движения, надо решать подобные задачи по определённой схеме.

а) Назначить систему координат (количество осей, их направление и начало координат). Удачно выбранные оси упрощают решение.

б) Показать точку в промежуточном положении. При этом надо проследить за тем, чтобы координаты такого положения обязательно были положительными (рис.22).

в) Показать силы, действующие на точку в этом промежуточном положении (силы инерции не показывать!).

В этом примере – это только сила , вес ядра. Сопротивление воздуха учитывать не будем.

г) Составить дифференциальные уравнения по формулам: . Отсюда получим два уравнения: и .

д) Решить дифференциальные уравнения.

Полученные здесь уравнения – линейные уравнения второго порядка, в правой части – постоянные. Решение этих уравнений элементарно.

Осталось найти постоянные интегрирования. Подставляем начальные условия (при t = 0 x = 0, y = h, ) в эти четыре уравнения: .

Подставляем в уравнения значения постоянных и записываем уравнения движения точки в окончательном виде

Имея эти уравнения, как известно из раздела кинематики, можно определить и траекторию движения ядра, и скорость, и ускорение, и положение ядра в любой момент времени.

Как видно из этого примера, схема решения задач довольно проста. Сложности могут возникнуть только при решении дифференциальных уравнений, которые могут оказаться непростыми.


источники:

http://1cov-edu.ru/mehanika/dinamika-tochki/

http://mydocx.ru/4-84478.html