Если дискриминант равен 0 в дифференциальном уравнении

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами в математике

Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Рассмотрим метод решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами:

Линейной комбинацией функций и называется выражение вида

где — некоторые произвольные постоянные.

Функции и называются линейно независимыми, если если их линейная комбинация обращается в нуль тогда и только тогда, когда коэффициенты равны нулю.

Теорема 7.2. Если и — линейно независимые частные решения линейного однородного дифференциального уравнения второго порядка, то общее решение данного уравнения является линейной комбинацией этих частных решений.

Следовательно, чтобы найти общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами, надо знать два его частных линейно независимых решения: и .

Будем искать частное решение дифференциального уравнения в виде . Подставляя эту функцию в уравнение, выводим:

Очевидно, функция будет решением дифференциального уравнения, если число к является корнем квадратного уравнения

которое называется характеристическиль уравнением исходного дифференциального уравнения.

Как известно, для корней данного квадратного трехчлена возможны три случая.

  • Если дискриминант больше нуля , то корни характеристического уравнения действительные, простые:

  • Если дискриминант равен нулю ( = 0), то корни характеристического уравнения действительные, кратные:

  • Если дискриминант меньше нуля (

где — действительная, — мнимая часть комплексного числа; — мнимая единица.

Теорема 7.3. Общее решение линейного однородного дифференциального уравнения второго порядка строится в зависимости от дискриминанта и корней характеристического уравнения:

где — некоторые произвольные постоянные.

Пример:

Найти частные решения заданных линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами, удовлетворяющие начальным условиям:

► Составим характеристическое уравнение, заменяя в дифференциальном уравнении производные неизвестной функции у соответствующими степенями неизвестного заменим на — на а на 1. В результате получим квадратное уравнение:

Дискриминант уравнения больше нуля:

В таком случае, корни характеристического уравнения действительные, простые:

Следовательно, общее решение дифференциального уравнения имеет вид

Частное решение получим из общего, используя для определения произвольных постоянных заданные начальные условия:

Решая полученную систему, находим значения произвольных постоянных:

После подстановки найденных значений в общее решение, искомое частное решение принимает вид

► Составим характеристическое уравнение:

Дискриминант уравнения равен нулю:

В таком случае, корни характеристического уравнения действительные, кратные:

Следовательно, общее решение дифференциального уравнения имеет вид

Найдем производную общего решения и определим произвольные постоянные из начальных условий:

Находим значения произвольных постоянных:

и подставим их в общее решение. Искомое частное решение принимает вид

Составим характеристическое уравнение:

Дискриминант меньше нуля:

В таком случае, корни характеристического уравнения комплексно-сопряженные:

Следовательно, общее решение дифференциального уравнения имеет вид

Используем для определения произвольных постоянных заданные начальные условия:

После подстановки найденных значений в общее решение, получим:

Этот материал взят со страницы заказа помощи по математике, там можно заказать помощь и ознакомиться с краткой теорией по предмету математика:

Возможно эти страницы вам будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Однородные дифференциальные уравнения второго порядка с постоянными коэффициентами

Однородные линейные дифференциальные уравнения второго порядка с постоянными коэффициентами имеют вид

где p и q — действительные числа. Рассмотрим на примерах, как решаются однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Решение линейного однородного однородного дифференциального уравнения второго порядка зависит от корней характеристического уравнения. Характеристическое уравнение — это уравнение k²+pk+q=0.

1) Если корни характеристического уравнения — различные действительные числа:

то общее решение линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами имеет вид

2) Если корни характеристического уравнения — равные действительные числа

(например, при дискриминанте, равном нулю), то общее решение однородного дифференциального уравнения второго порядка есть

3) Если корни характеристического уравнения — комплексные числа

(например, при дискриминанте, равном отрицательному числу), то общее решение однородного дифференциального уравнения второго порядка записывается в виде

Примеры решения линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами

Найти общие решения однородных дифференциальных уравнений второго порядка:

Составляем характеристическое уравнение: k²-7k+12=0. Его дискриминант D=b²-4ac=1>0, поэтому корни — различные действительные числа.

Отсюда, общее решение этого однородного ДУ 2-го порядка есть

Составим и решим характеристическое уравнение:

Корни действительные и различные. Отсюда имеем общее решение данного однородного дифференциального уравнения:

В этом случае характеристическое уравнение

Корни различны и действительны. Поэтому общее решение однородного дифференциального уравнения 2-го порядка здесь

Поскольку корни действительны и равны, для этого дифференциального уравнения общее решение записываем как

Характеристическое уравнение здесь

Так как дискриминант — отрицательное число, корни характеристического уравнения — комплексные числа.

Общее решение этого однородного дифференциального уравнения второго порядка имеет вид

Отсюда находим общее решение данного диф. уравнения:

Примеры для самопроверки.

Найти общее решение однородных дифференциальных уравнений второго порядка с постоянными коэффициентами:

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами называется уравнение

Для того, чтобы решить это уравнение надо составить характеристическое уравнение, которое получается из данного уравнения , если в нем заменить y»=k 2 , y’=k, a y=k 0 =1.

— это квадратное уравнение.

Общее решение характеристического уравнения строиться в зависимости от характера его корней.

Возможны три случая:

— дискриминант квадратного уравнения больше нуля D > 0 , уравнение имеет два действительный различных корня, k1≠ k2, и общее решение характеристического уравнения имеет вид:

— дискриминант характеристического квадратного уравнения равен нулю D= 0, уравнение имеет два действительный кратных корня, k1= k2= k, и общее решение уравнения имеет вид:

— дискриминант квадратного уравнения меньше нуля D 2 +7k+6=0.

Решим его: D=49-24=25, k1= -1, k2 = -6. Так как корни действительные и разные, то, согласно формулы , получаем общее решение:

Пример 10.9. Найти общее решение дифференциального уравнения

Решение. Составим характеристическое уравнение

Решим это уравнение: D = 36 -36 = 0, k1 = k2 =3. Характеристическое уравнение имеет два действительных кратных корня, следовательно, общее решение находим по формуле :

Пример 10.10. Найти общее решение дифференциального уравнения

Решение. Составим характеристическое уравнение

Решим его. Дискриминант квадратного уравнения меньше нуля, D=-36, уравнение имеет пару комплексно сопряженных корней , k1,2=

(α=2, β=3) и общее решение уравнения имеет вид:

Пример 10.11. Найти частное решение дифференциального уравнения

y»-5y’+4y=0, удовлетворяющее начальным условиям у'(0)=8, у(0)=5.

Решение. Сначала найдем общее решение, для этого составим

Дискриминант этого уравнения D=1, следовательно, уравнение имеет два действительный корня, k1 = 2, k2 = 3 и общее решение уравнения имеет вид:

Чтобы найти частное решение, сначала найдем у’=2С1e 2 x +3C2e 3 x , а затем подставим в общее решение и в производную от функции-решения у начальные условия и получим систему для определения постоянных С1 и С2 .

.

Таким образом искомое частное решение имеет вид: y =7e 2 x – 2e 3 x .

Не нашли, что искали? Воспользуйтесь поиском:


источники:

http://www.matematika.uznateshe.ru/odnorodnye-differencialnye-uravneniya-vtorogo-poryadka-s-postoyannymi-koefficientami/

http://vikidalka.ru/2-80241.html