Если одно уравнение системы не имеет смысла

Системы линейных уравнений с примерами решений

Содержание:

Системы уравнений, как и отдельные уравнения, используют для решения сложных и необходимых задач. Системы уравнений бывают с двумя, тремя и более переменными. В этой главе вы ознакомитесь с простейшими системами двух уравнений с двумя переменными. Основные темы лекции:

  • уравнения с двумя переменными;
  • график линейного уравнения;
  • системы уравнений;
  • способ подстановки;
  • способ сложения;
  • решение задач составлением системы уравнений.

Уравнения с двумя переменными

До сих пор мы рассматривали уравнение с одной переменной. Однако существуют задачи, решение которых приводит к уравнениям с двумя переменными.

Пример:

На 22 руб. купили несколько книжек по 5 руб. и географических карт — по 3 руб. Сколько купили книжек и карт?

Решение:

Пусть купили х книжки у карт. За книжки заплатили 5х руб., а за карты — 3у руб. Всего заплатили 22 руб., то есть, 5х + Зу = 22.

Это уравнение с двумя переменными. Приведём и другие примеры таких уравнений с двумя переменными:

Уравнение вида ах + by = с, где а, b, с — данные числа, называется линейным уравнением с двумя переменными х и у. Если

Примеры линейных уравнений:

два первых из них — уравнение первой степени с двумя переменными.

Паре чисел х = -1 и у = 9 удовлетворяет уравнение 5х + Зу -= 22, так как А пара чисел х = 1 и у = 2 этому уравнению не удовлетворяет, поскольку

Каждая пара чисел, удовлетворяющая уравнение с двумя переменными, т. е. обращающая это уравнение в верное равенство, называется решением этого уравнения.

Обратите внимание: одно решение состоит из двух чисел, на первом месте записывают значение х, на втором — у. Корнями их не называют.

Чтобы найти решение уравнения с двумя переменными, следует подставить в уравнение произвольное значение первой неременной и, решив полученное уравнение, найти соответствующее значение второй переменной.

Для примера найдем несколько решений уравнения

Если х = 1, то отсюда у = -2. Пара чисел х = 1 и у = -2 — решение данного уравнения. Его записывают ещё и так: (1; -2). Придавая переменной х значения 2, 3, 4, . , так же можно найти сколько угодно решений уравнения: (2; 1), (3; 4), (4; 7), (5; 10), . Каждое уравнение первой степени с двумя переменными имеет бесконечно много решений.

Уравнение также имеет бесконечно много решений, но сформулированную выше задачу удовлетворяет только одно из них: (2; 4).

Два уравнения с двумя переменными называют равносильными, если каждое из них имеет те же решения, что и другое. Уравнения, не имеющие решений, также считаются равносильными.

Для уравнения с двумя переменными остаются справедливыми свойства, сформулированные для уравнений с одной переменной.

Обе части уравнения с двумя переменными можно умножить или разделить на одно и то же число, отличное от нуля. Любой член такого уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный. В результате получается уравнение, равносильное данному.

Например, уравнение можно преобразовать так: . Каждое из этих уравнений равносильно друг другу.

Иногда возникает потребность решить уравнение с двумя переменными во множестве целых чисел, то есть определить решения, являющиеся парами целых чисел. Способы решения таких уравнений определил древнегреческий математик Диофант (III в.), поэтому их называют диофантовыми уравнениями. Например, задача о книжках и картах сводится к уравнению где х и у могут быть только целыми (иногда натуральными) числами.

Переменную у из этого уравнения выразим через х:

Будем подставлять в равенство вместо х первые натуральные числа до тех пор, пока не получим целое значение переменной у. Это можно делать устно. Если х = 2, то у = 4. Других натуральных решений уравнение не имеет. Поэтому задача имеет единственное решение: 2 книги и 4 карты.

Пример:

Решение:

а) При любых значениях х и у значения выражения не может быть отрицательным числом. Поэтому уравнение не имеет решений.

б) Значение выражения равно нулю только при условии, когда x -3 = 0 и y = 0. Значит, уравнение имеет только одно решение: х = 3, у = 0.

Пример:

Составьте уравнение с двумя переменными, решением которого будет пара чисел (1; -5).

Решение:

Пишем любой двучлен с переменными х и у, например Если х = 1, а у = -5, то значение даного двучлена равно 28. Следовательно, уравнение удовлетворяет условие задачи.

Есть много других линейных уравнений с двумя переменными, имеющих такое же решение (1; -5).

График линейного уравнения с двумя переменными

Рассмотрим уравнение Давая переменной х значения -2, -1,0,1,2, 3. найдём соответствующие значения переменной у. Будем иметь решение данного уравнения: (-2; -б), (-1; -4,5), (0; -3),

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Системы алгебраических уравнений в математике с примерами решения и образцами выполнения

Целые рациональные функции от нескольких переменных: В этой главе мы изучим системы уравнений от нескольких переменных. В основном мы будем рассматривать системы алгебраичес­ких уравнений, то есть уравнений, обе части которых являются целыми рациональными функциями от неизвестных. Понятие це­лой рациональной функции от нескольких переменных определя­ется точно так же, как и в случае одного переменного; исходным, как и тогда, будет служить понятие целого рационального выраже­ния.

Алгебраическое выражение, получающееся из чисел и букв x, у, … , z с помощью операций сложения и умножения, называется целым рациональным выражением от х, у, …, z. Примерами целых рациональных выражений являются:

Как и в случае выражений от одного переменного, каждое целое рациональное выражение от нескольких переменных можно привести к каноническому виду. Речь идет о суммах одночленов, то есть о выражениях вида где буквы х, у,……., z стоят в определенном порядке. Такие суммы мы будем называть многочленами от х, у , …, z. Например, многочленами являются

Правила действия над многочленами вытекают из основных законов алгебры.

Системы уравнений

Рассмотрим некоторые общие вопросы теории систем уравнений. Для простоты ограничимся системами уравнений с двумя неизвестными, хотя основные результаты при­менимы и к системам уравнений с большим числом неизвестных.

Рассмотрим систему уравнений

Она выражает следующую задачу: найти все пары чисел (а, b) такие, что

Пары чисел (а, b), обладающие этим свойством, называют решениями системы (1). Если множество решений системы пусто, то сис­тема называется несовместной.

Тот факт, что пара (а, Ь) является решением системы уравнений с неизвестными х и у, записывается обычно в виде:

Например, пара чисел является решением системы уравнений

Помимо решения эта система имеет еще решения

Позже мы увидим, что иных решений она не имеет.

Геометрический смысл решений уравнений и систем уравнений с двумя неизвестными

Возьмем любое уравнение относительно х и у:

и рассмотрим все точки М (х, у) некоторой плоскости, координаты которых удовлетворяют этому уравнению. Эти точки образуют не­ которое множество Г, и мы будем говорить, что уравнение (1) задает (или выражает) это множество. Обычно множество Г является некоторой линией. В этом случае уравнение (1) называют уравнением линии Г.

Чтобы найти точки линии имеющие абсцис­су а, надо подставить в уравнение вместо х значение а. Мы получим уравнение с одним неизвестным:

Может случиться, что это уравнение не имеет ни одного действительного корня. Тогда на линии нет точек с абсциссой х = а. Если же уравнение (2) имеет один или несколько корней, то каждому корню соответствует точка линии, имеющая абсциссу а.

Для некоторых уравнений на плоскости нет ни одной точки, координаты которых удовлетворяли бы этим уравнениям. Примером может служить

Ведь если х и у — действительные числа, то а потому Другим уравнениям соответствует лишь одна точка на плоскости. Например, возьмем уравнение

Так как то это уравнение может удовлетворяться лишь в случае, когда х = 3 и у = 4. Иными сло­вами, уравнение (3) задает на плоскости одну точку М (3, 4).

Однако такие случаи являются в некотором смысле исключи­ тельными, и мы ограничимся рассмотрением случаев, когда уравнение задает некоторую линию.

Перейдем теперь к выяснению геометрического смысла решений систем уравнений с двумя неизвестными. Возьмем такую систему:

Каждому из этих уравнений соответствует линия, координаты всех точек которой (и только этих точек!) удовлетворяют этому уравнению. Мы же ищем точки М (.х, у), координаты которых удовлетво­ряют обоим уравнениям. Ясно, что эти точки принадлежат обеим линиям, то есть являются точками их пересечения.

Итак, задача о решении системы уравнений равносильна зада­ че об отыскании точек пересечения соответствующих линий. Каж­дой точке пересечения линий соответствует решение системы.

Совокупность уравнений

образуют совокупность, если требуется найти все пары чисел х = а, у = b, удовлетворяющие хотя бы одному из уравнений (1). Все такие пары чисел (а, Ь) будем называть решениями совокупности (1). Геометрически решения совокупности (1) изобра­жаются фигурой, образованной объединением всех кривых

Например, возьмем уравнения Первое из них является уравнением прямой, а второе — уравнением ок­ружности (см. рис. 11). Если рассматривать эти два уравнения как систему

то решения будут изображаться точками пересечения прямой и ок­ружности (то есть точками Л и В на рис. 11). Если же рассматривать эти уравнения как совокупность уравнений

то решение этой совокупности изображаются геометрической фигурой, получаемой объединением прямой и окружности.

Чтобы различать системы уравнений и совокупности уравне­ний, мы и стали обозначать систему уравнений так:

а совокупность уравнений так:

Можно говорить и о таком более сложном понятии, как совокупность систем уравнений. Например, возьмем такую запись:

Она означает, что надо найти решения системы уравнений

и найти решения системы уравнений

и объединить найденные решения.

Геометрически это изображается так: надо найти точки пересечения ли­ний и точки пересечения линий и и объединить найденные точки в одно множество. Иными сло­вами, если — множество точек плоскости, координаты которых удовлет­воряют уравнению — множество точек плоскости, удовлетворяющих уравнению то решения совокупности систем (2) образуют множество

Равносильные систе­мы уравнений

Две системы уравнений

называются равносильными, если всякое решение пер­вой системы является ре­шением второй, а всякое решение второй системы является решением первой.

В частности, любые две несовместные системы ура­внений равносильны.

Геометрически это оз­начает следующее: линии и пересекаются в тех же самых точках, что и кривые (см. рис. 12).

Процесс решения системы уравнений заключается в том, что ее последовательно заменяют равносильными ей системами уравнений (или совокупностями систем уравнений) до тех пор, пока не придут к совокупности вида:

Эта совокупность и дает решения заданной системы уравнений.

При решении систем уравнений чаще всего используются следующие теоремы о равносильности.

Теорема:

заменить любое из уравнений равносильным ему уравнением, то по­лучим систему, равносильную первоначальной.

Доказательство:

Пусть равносильно уравнению Обозначим через А множество решений уравнения через А* — множество решений уравнения а через В — множество решений уравнения Тогда множеством решений системы (4) является пересече­ние а множеством решений системы

является пересечение Поскольку уравнения и равносильны, то

а значит, и то есть системы (4) и (4′) равносильны. Теорема доказана.

Из этой теоремы вытекает такое

Следствие:

Каждая система уравнений

равносильна некоторой системе уравнений вида

В самом деле, уравнение равносильно уравне­нию а уравнение уравнению

Теорема:

Если функции определены на некотором множестве М, то на этом множестве уравнение

равносильно совокупности уравнений

Доказательство:

Если — решение уравнения (5), то имеет место равенство

Но произведение нескольких чисел может равняться нулю тогда и только тогда, когда равен нулю хотя бы один из сомножителей. Поэтому для некоторого имеем: и, значит одно из решений совокупности (6).

Обратно, если — одно из решений совокупности (6), то по крайней мере для одного k имеем а тогда выполняется равенство (5′), и поэтому — одно из решений уравнения (5).

Из теоремы 2 вытекает.

Следствие:

равносильна совокупности систем уравнений

Например, система уравнений

равносильна совокупности систем

Это следствие позволяет сводить системы к совокупностям более простых систем

Метод подстановки

Теоремы п. 5 относятся по сути дела к отдельным уравнениям, а не к системе в целом. При решении систем уравнений применяются также преобразования уравнений, затра­гивающие не одно уравнение, а несколько. Например, для реше­ния системы

мы находим из первого уравнения выражение у через и подставляем это выражение во второе уравнение. Решая полученное уравнение находим корни Так как то оба соответствующих значения неизвестно­го у равны 6. Значит, решение системы можно записать в виде:

Метод, которым была решена эта система, называется методом подстановки. Он позволяет сводить решение системы уравнений с двумя неизвестными к более простой задаче — решению одного уравнения с одним неизвестным. Выясним теперь, на чем же основан метод подстановки. Для этого докажем следующую теорему.

Теорема:

равносильна системе уравнений

Доказательство:

Пусть — решение системы уравнений (1). Тогда b = f (а) и Ф (а, b)=0. Поэтому Ф (а, f(а)) = 0. Равенства b= f(а) и показывают, что является решением системы уравнений (2).

Обратно, пусть — решение системы уравнений (2). Тогда имеют место равенства Из них вытекает, что А это и означает, что является решением системы уравнений (1).

Тем самым равносильность систем уравнений (1) и (2) доказана.

Из теорем 2 и 3 вытекает

Следствие:

Если уравнение F (х, у)=0 равносильно уравнению , то система уравнений

равносильна системе уравнений

Мы уже говорили, что теорема 3 лежит в основе метода решения систем уравнений с двумя неизвестными, называемого методом исклю­чения неизвестных. Он состоит в следующем.

Пусть задана система уравнений

Выразим из первого уравнения системы у через х, то есть заменим уравнение F(х, у)= 0 равносильным ему уравнением у = f(х). Полученное выражение для у подставим во второе уравнение, то есть заменим систему уравнений (1) равносильной ей системой

Уравнение Ф (х,f(x)) является уже уравнением с одним неизвестным. Решая его, получим корни . Им соответствуют значения неизвестного у. В соответст­вии с этим получаем решения

Часто приходится заменять уравнение F(х,у)= 0 не одним уравнением вида у = f(х), а совокупностью

таких уравнений. Тогда и система (1) заменяется совокупностью систем

Из каждой системы этой совокупности получаем описанным вы­ше методом решения заданной системы, после чего объединяем их.

Примеры:

  1. Решить систему уравнений:

Из первого уравнения системы находим . Подставляя это значение во второе уравнение, получаем:

или, после упрощения,

Корнями этого биквадратного уравнения являются числа:

Им соответствуют значения:

Значит, решения заданной системы уравнений имеют вид:

2. Решить систему уравнений:

Из первого уравнения системы получаем:

Значит, нам надо решить совокупность двух систем уравнений:

Делая в первой системе подстановку, получаем:

или Решая (возведением в квадрат) это иррациональное уравнение, находим корни Им соответствуют значения Итак, первая система име­ет решения

Точно так же доказывается, что вторая система имеет решения:

Следовательно, заданная система имеет решения:

Метод алгебраического сложения уравнений

Кроме метода подстановки, при решении систем алгебраических уравнений применяется метод алгебраического сложения. Он основан на следующей теореме.

Теорема:

Если к одному из уравнений системы

прибавить другое уравнение, умноженное на любой множитель f(x, y), определенный при всех допустимых значениях неизвестных, а второе уравнение оставим неизменным, то получится система уравнений, равносильная исходной.

Таким образом, система (1) равносильна системе

где множитель f(х,у) определен при всех допустимых значениях неизвестных.

Доказательство:

Пусть х = а, у = b — решение сис­темы (1), то есть F(а, b)=0 и Ф(а, b)= 0.

Умножим обе части равенства Ф(а, b)=0 на число f(а, b) и прибавим к равенству F (а, b)= 0. Мы получим, что F(а, b)+(а, b) Ф(а,b)= 0, а потому х =а, у = b удовлетворяет и системе (2).

Точно так же доказывается, что любое решение системы уравнений (2) удовлетворяет системе уравнений (1). Значит, системы уравнений (1) и (2) равносильны.

Из теоремы 4 вытекает такое

Следствие:

Если к одному из уравнений системы (1) прибавить другое уравнение системы, умноженное на любое число, а второе уравнение оставить неизменным, то получим систему, равносильную первоначальной.

Покажем, как применяются эти утверждения для решения сис­тем уравнений. Пусть дана система уравнений:

Здесь нецелесообразно выражать х через у или у через х, так как мы получили бы довольно сложное иррациональное уравнение. Поэтому поступим иначе. Прибавим к первому уравнению системы второе уравнение, умноженное на 3. В силу формулы для куба суммы получим систему уравнений:

равносильную заданной. Эта система равносильна системе:

(поскольку уравнение равносильно х + у = 3).

А теперь выразим из первого уравнения у через х и подставим во второе уравнение. Мы получим:

Из второго уравнения находим: Соответствующие значения у равны Значит, решениями задан­ной системы уравнений являются:

Задача:

Массы трех планет равны соответственно М, 2М, ЗM. Через планеты проведена плоскость и на ней выбрана

система координат. Координаты планет равны соответственно A(0,0), В (а, 0), С (2а, b). При каком значении b на плоскости существу­ет точка, в которой притяжение ко всем трем планетам одинаково?

Решение:

По закону всемирного тяготения сила притяже­ния между телами с массами равна , где у — гравитационная постоянная, а r — расстояние между этими телами. Если D(х, у) — некоторая точка плоскости, то ее расстояние до точки А равно до точки В (2а, 0) равно

а до точки С (b, с) равно

Поэтому силы, с которыми тело массы m, находящееся в точке D, притягивается к планетам, равны

По условию задачи должны выполняться условия или, иначе,

После сокращения обоих уравнений на и освобождения от знаменателей получаем равносильную систему уравнений

Вычтем первое уравнение из второго. Мы получим, что

Подставляя это значение у в первое уравнение, получаем для х квадратное уравнение

Из него находим:

Отсюда получаем, что х принимает действительные значения лишь в случае, когда то есть при Если то искомой точкой является а если то

Метод введения новых неизвестных

Для решения многих систем оказывается удобно ввести вместо х и у новые неизвестные. Рассмотрим следующий пример:

Если положить то получим для определения t и s систему уравнений:

Решая эту систему, получаем, что

Так как то для отыскания х и у получаем две системы уравнений:

Решениями первой системы являются:

Вторая же система не имеет действительных решений.

Общего правила для выбора новых неизвестных не существует. Однако в некоторых случаях можно указать полезные правила.

Системы однородных уравнений

Назовем f (х, у) однородным многочленом относительно х и у степени n, если при за­мене х на ах и у на ау F (х, у) умножается на

Например, — однородный многочлен второй степени, а — однородный мно­гочлен четвертой степени.

Пусть одно из уравнений системы имеет вид: F (х,у) = 0, где F (х, у)— однородный многочлен. Тогда решение системы сводится к решению двух уравнений, каждое из которых содержит лишь одно неизвестное. Покажем на примере, как это делается.

Пусть дана система уравнений:

Посмотрим сначала, есть ли у этого уравнения решения, для которых х =0. Подставляя х = 0 в оба уравнения системы, получаем систему уравнений:

Эта система несовместна, так как из первого уравнения получаем у = 0, а из второго —

Итак, система не имеет решений, для которых х = 0. Поэтому первое уравнение системы можно разделить на (в общем случае— на где n — степень многочлена F (х, у)). Мы получим уравнение:

Положим у — tх. Мы придем к системе уравнений:

Корнями первого уравнения являются Подставляя во второе уравнение получаем Подставляя же получаем х = ± 1. Так как у=tх, то мы имеем следующие решения системы (1):

В следующем примере система имеет решения, для которых х = 0:

При х = 0 первое уравнение обращается в равенство 0=0, а второе принимает вид Из него находим Мы на­шли уже два решения системы:

Другие решения получаются так же, как и в первом случае. Мы делим первое уравнение системы на (случай, когда х = 0 и де­ление невозможно, уже рассмотрен) и заменяем у на tх. Получаем систему уравнений:

Из первого уравнения находим Подставляя эти ре­шения во второе уравнение и находя х, приходим к следующим ре­шениям системы:

Задача:

От пристани А одновременно отправились вниз по течению катер и плот. Катер спустился вниз по течению на 96 км, затем повернул обратно и вернулся в А через 14 часов. Найти ско­рость катера в стоячей воде, если известно, что катер встретил плот на обратном пути на расстоянии 24 км от А.

Решение:

Сначала составим систему уравнений. В качестве неизвестных выберем скорость u катера в стоячей воде и скорость течения v. Тогда скорость катера при движении по течению равна u+v, а при движении против течения u-v. Значит, чтобы пройти вниз по течению 96 км, ему надо часов, а вверх по течению часов. Всего он затратит часов. Но по условию задачи он вернулся назад через 14 часов. Значит,

Чтобы получить второе уравнение, найдем, какое время затра­тил катер до встречи с плотом. Он прошел 96 км вниз по течению и 72 км против течения. На это он затратил часов. Плот же проплыл 24 км со скоростью v и затратил часов. Так как плот и катер одновременно отправились из А , то имеем уравнение

Мы получим систему уравнений:

При замене u на ut и v на vt обе части второго уравнения умножаются на . Поэтому оно является однородным уравнением сте­пени однородности — 1. Так как v = 0 не удовлетворяет уравнению, мы можем положить u = uz. Тогда второе уравнение примет вид:

Освобождаясь от знаменателей, получим:

Так как Следовательно, u =7v. Подставляя u =7v в первое уравнение системы, находим:

откуда v = 2 (км/ч). Поэтому u = 14 км/ч.

Геометрическая интерпретация решения систем двух уравнений с двумя неизвестными

Мы уже знаем, что решение сис­темы двух уравнений с двумя неизвестными

геометрически истолковывается как отыскание точек пересечения двух линий. Этим можно воспользоваться для приближенного решения системы уравнений. Именно, если изобразить линии F(х, у) = 0 и Ф(х, у) = 0, мы сможем найти координаты точек пересечения этих линий и тем самым значения неизвестных. Поскольку линии чертятся лишь приближенно, мы получаем не точ­ные, а приближенные значения решений системы. Тем не менее, решая графически систему, мы можем узнать, сколько она име­ет решений, и, хотя бы грубо, найти приближенные значения этих решений.

При графическом решении систем уравнений мы сталкиваемся с различными кривыми. В курсе геометрии были выведены уравнения прямой, окружности, параболы, гиперболы и эллипса. В дальнейшем мы будем пользоваться этими кривыми.

Рассмотрим некоторые примеры систем уравнений.

Пусть дана система

Выразив из уравнения (2) у через х и подставив в первое уравнение, получаем квадратное уравнение:

Подставив их во второе уравнение, получаем:

Итак, система имеет два решения:

Построим теперь линии, выражаемые уравнениями (1) и (2). Уравнение (1) — это уравнение параболы которая получается из параболы у = сдвигом на 2 единицы влево вдоль оси абсциссы. Уравнение же (2) выражает прямую линию у=-2х- 4. Рис. 13 дает геометри­ческое изображение нашей системы. Мы видим из ри­сунка, что парабола и прямая пересекаются в двух точках А (—4, 4) и в соответствии с полученным аналитическим путем решением.

Парабола может иметь с прямой линией не две, а одну точку пересечения и даже не иметь ни одной точки пересечения.

Возьмем систему урав­нений:

Ее единственное решение:

Из рис. 14 мы видим, что прямая у = 2х касается параболы

тоже имеет одно решение:

Но в этом случае прямая не касается параболы, а пересекает ее (см. рис. 15).

не имеет ни одного решения — здесь прямая и парабола не пересекаются (см. рис. 16).

Теперь рассмотрим систему, геометрический смысл которой заключается в отыскании точек пересечения прямой и гиперболы. Пусть система имеет вид:

Решая ее способом подстановки, находим решения:

Эти же решения получаются графическим способом (см. рис. 17). Однако следует иметь в ви­ду, что графический способ да­ет лишь приближенные значения корней и, решая систему (6) гра­фически, мы не можем быть уверены, что решение имеет вид х = —4, у = —3, а не, напри­мер, х = —4,01, у = —2,99.

Как и в случае параболы, может случиться, что прямая имеет не две, а меньше общих точек с гиперболой.

Перейдем к системам, в которых оба уравнения имеют вторую степень. Можно доказать, что такие системы уравнений имеют не более четырех решений.

Вообще можно доказать, что система двух уравнений с двумя неизвестными такая, что первое уравнение имеет степень m, а вто­рое — степень n, имеет не более mn решений.

Рассмотрим, например, систему:

Первое из этих уравнений представляет параболу с осью, параллельной оси ординат, а второе — параболу с осью, параллельной оси абсцисс (см. рис. 18). Из рисунка видно, что эти параболы пе­ресекаются в четырех точках. Чтобы найти координаты точек пересечения,

решим эту систему методом алгебраического сложения. Именно, вычтем из уравнения (8) уравнение (7). Мы получим равносильную систему уравнений:

Эта система равносильна совокупности систем:

Обе системы этой совокуп­ности решаются методом подстановки. Мы получаем при этом следующие реше­ния заданной системы:

тоже имеет четыре реше­ния. Она выражает задачу об отыскании точек пере­сечения окружности и ги­перболы (см. рис. 19). Что­ бы решить эту систему, надо прибавить к первому уравнению удвоенное второе уравнение.

В некоторых случаях получается меньше чем четыре решения системы. Например, система

имеет два решения. Она выражает задачу об отыскании точек пересечения параболы и окружности (рис. 20).

Столько же решений имеет система

(пересечение двух окружностей) (рис. 21).

Решение других типов систем алгебраических систем уравнений

Пример:

Решить систему уравнений

Решение:

Из данной системы можно исключить , сложив уравнение (1), умноженное на , с уравнением (2), умноженным на . В результате получим квадратное относительно уравнение

откуда и

Система (1), (2), равносильная системе (1), (3), распадается на две системы:

Из первой системы находим

Из второй системы получаем

Ответ.

Пример:

Решить систему уравнений

Решение:

Если то из данной системы получаем, что т.е. — решение системы.

Пусть тогда разделив уравнения почленно, находим

где Уравнение

имеет корни

Заметим, что при уравнение (6) вместе с уравнением (4) образует систему, равносильную исходной. 2 2

Если т. е. то из уравнения (4) с учетом условия получаем и поэтому

Если то

Ответ.

Пример:

Решить систему уравнений

Решение:

Допустимые значения и определяются условием а произведение правых частей уравнения равно Перемножив уравнения (7) и (8), получим или

Так как обе части уравнений (7) и (8) отличны от нуля, то система (9), (7) равносильна системе (7), (8). Исключая у из системы (9), (7), получаем

Из (10) следует, что а из (9) — что

Ответ.

Пример:

Решить систему уравнений

Решение:

Запишем первое уравнение в виде

Решив это уравнение как квадратное относительно , получим

Таким образом, исходная система распадается на следующие две системы:

Пример:

Решить систему уравнений

Решение:

Исключив из системы, получим уравнение

нахождение корней которого — совсем не простая задача. Более эффективный способ основан на разложении левой части уравнения (12) на множители:

Отсюда вытекает, что система (11), (12) распадается на следующие две системы:

Первая из этих систем не имеет действительных решений, а вторая имеет два решения.

Ответ.

Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:

Возможно вам будут полезны эти страницы:

Решение системы алгебраических уравнений по правилу Крамера и методом обратной матрицы

Пусть дана система линейных уравнений, состоящая из n
линейных уравнений с n неизвестными:

Здесь — n неизвестных,
циенты при неизвестных, — свободные члены.

Определитель, состоящий из коэффициентов при неизвестных,
называется определителем системы.

Для рассматриваемого случая определитель системы имеет вид

Предположим, что этот определитель отличен от нуля. Пусть i —
любое число от 1 до n . Умножим обе части первого равенства
системы уравнений (2.1) на алгебраическое дополнение
получающееся вычеркиванием первой строки и i-го столбца в определителе системы. Обе части второго равенства этой системы умножим на алгебраическое дополнение получающееся вычеркиванием второй строки и i-го столбца в определителе системы, и т.д. В результате получим систему:

Сложим левые и правые части получившейся системы
уравнений, скомпоновав их следующим образом:

Коэффициентом при в этом равенстве является определитель
системы D. При всех остальных х коэффициенты будут равны нулю,
так как они являются суммой произведений всех элементов столбцов
определителя на алгебраические дополнения соответствующих
элементов другого столбца (п. 5 свойств определителей, § 1.9). Правая
часть равенства является определителем, полученным из
определителя системы D после замены в нем i-го столбца столбцом из
свободных членов системы уравнений. Обозначим этот определитель Таким образом, полученное равенство можно записать в виде

Так как то

Этот метод решения системы линейных уравнений называется
правилом Крамера.

Правило Крамера. Пусть D — определитель системы п линейных
уравнений, состоящий из коэффициентов при неизвестных, a — определитель, полученный путем замены в определителе системы i-го столбца столбцом из свободных членов системы уравнений. Тогда, если то система имеет единственное решение, определяемое по формуле

Пример:

Решить систему линейных уравнений:

Решение:

Определитель этой системы отличен от нуля:

После замены в этом определителе соответствующих столбцов
столбцом свободных членов получим

Решение системы уравнений:

Решить систему линейных уравнений можно, используя матричный метод. Для этих целей коэффициенты данной системы, неизвестные и свободные члены представим в виде матриц:

Тогда система линейньк уравнений в матричной форме имеет вид

Умножим слева эту матрицу на

Преобразуем левую часть равенства:

Таким образом, решение в матричной форме можно записать в виде

Пример:

Решить систему линейных уравнений:

Решение:

Определитель данной системы

Обратную матрицу находим по схеме, приведенной в § 1.11:

Находим матрицу решений:

Таким образом, система имеет следующее решение:

Общий вид системы линейных алгебраических уравнений

Систему из m линейных уравнений с n неизвестными, или систему m х n, можно записать в общем виде следующим образом:

Если так же, как и в предыдущем разделе, ввести обозначения

то система линейных уравнений в матричной форме и ее решение
примут вид

Решение системы линейных алгебраических уравнений методом Гаусса

Метод Гаусса состоит в последовательном исключении переменных. При этом на первом шаге из второго уравнения исключается
, на втором шаге из третьего уравнения исключается и т. д.

Шаг 1. Предположим, что коэффициент при в первом
уравнении системы (2.4) . Если это не так, то перестановкой
уравнений местами добьемся того, что . Перепишем систему (2.4), изменив все уравнения, кроме первого, по следующему алгоритму. Умножим первое уравнение на сложим со вторым уравнением системы (2.4) и результат запишем в виде второго уравнения системы (2.5):

Умножим первое уравнение на сложим с третьим уравнением системы (2.4) и результат запишем в виде третьего уравнения системы (2.5). Аналогично поступаем с остальными уравнениями системы. Буквами с верхним индексом (1) обозначены новые коэффициенты, полученные после первого шага.

Для удобства записи обычно используют расширенную матрицу системы, отделяя в ней вертикальной чертой столбец свободных членов. После первого шага данная матрица принимает вид:

Шаг 2. Предположим, что коэффициент при во втором
уравнении системы (2.5) Если это не так, то перестановкой
уравнений местами добьемся того, что . Первое и второе уравнения системы (2.5) перепишем в систему (2.7). Умножим второе уравнение системы (2.5) или матрицы (2.6) на сложим с
третьим уравнением системы (2.5) или матрицы (2.6) и результат
запишем в виде третьего уравнения системы (2.7) или матрицы
(2.8). Аналогично поступаем с остальными уравнениями системы:

Продолжая процесс последовательного исключения переменных, после (r-1)-го шага получим систему уравнений и расширенную матрицу:

Последние m-r уравнений в системе (2.9) для совместной
системы (2.4) являются тождествами: Если хотя бы одно из
чисел не равно нулю, то соответствующее равенство противоречиво, и система (2.4) несовместна. В совместной системе при ее решении последние m-r уравнений (2.9) и (2.10) можно не принимать во внимание. Тогда система уравнений (2.9) и
расширенная матрица (2.10) принимают вид

После отбрасывания уравнений, являющихся тождествами,
число оставшихся уравнений может быть либо равно числу
переменных r=n, либо меньше числа переменных. В первом случае
матрица имеет треугольный вид, а во втором — ступенчатый. Переход от системы уравнений (2.4) к равносильной ей системе (2.11)
называется прямым ходом метода Гаусса, а нахождение переменных из системы (2.11) — обратным ходом.

Пример:

Методом Гаусса решить систему уравнений

Решение:

Расширенная матрица этой системы имеет вид

Шаг 1. Расширенную матрицу первого шага получаем за счет
умножения первой строки на —2 и сложения результата со второй
строкой, а также за счет умножения первой строки на -1 и сложения
результата с третьей строкой:

Ш а г 2. Расширенную матрицу первого шага получаем за счет
умножения второй строки на -3 и сложения результата с третьей строкой:

Эта матрица имеет треугольную форму и соответствует системе
линейных уравнений

Отсюда последовательно находим

Пример:

Методом Гаусса решить систему уравнений

Решение:

Расширенная матрица этой системы имеет вид

Ш а г 1. Расширенную матрицу первого шага получаем за счет
умножения первой строки на —2 и сложения результата со второй
строкой, а также за счет умножения первой строки на -4 и сложения результата с третьей строкой:

Ш а г 2. Расширенную матрицу первого шага получаем за счет
умножения второй строки на —1 и сложения результата с третьей строкой:

Уравнение,соответствующее третьей строке последней матрицы, противоречиво. Оно имеет вид 0 = -1. Следовательно, данная система несовместна. ►

Пример:

Методом Гаусса решить систему уравнений

Решение:

Расширенная матрица этой системы имеет вид

Ш а г 1. Первую строку последовательно умножаем на числа -2; —2;
-3 и складываем результат с соответствующими строками исходной
расширенной матрицы:

Ш а г 2. Умножаем вторую строку на и на :

Шаг 3. Умножаем третью строку на -1.

После удаления последнего уравнения приведенная система
уравнений принимает вид

Из этой системы обратным ходом метода Гаусса находим

Так как может принимать любые значения, то исследуемая
система имеет бесконечное множество решений. ►

Вычисление обратной матрицы методом Гаусса

Этот наиболее простой метод вычисления обратной матрицы
состоит в следующем. Пусть А — невырожденная матрица.
Припишем к ней справа единичную матрицу Е. Далее с помощью
элементарных преобразований над строками расширенной матрицы приводим А к единичной матрице Е. В результате получим расширенную матрицу т.е. на месте первоначально приписанной матрицы Е окажется матрица

Пример:

Найти матрицу, обратную исходной:

Решение:

Составим расширенную матрицу:

Приведем левую половину этой матрицы к единичной матрице:

Последний столбец левой половины матрицы принял вид
последнего столбца единичной матрицы:

Последний и предпоследний столбцы левой половины матрицы
приняли вид последнего и предпоследнего столбцов единичной матрицы:

Правая половина этой расширенной матрицы является искомой
обратной матрицей, т.е.

Пример:

Найти матрицу, обратную исходной:

Решение:

Составим расширенную матрицу:

Приведем левую половину этой матрицы к единичной матрице:

Правая половина этой расширенной матрицы является искомой
обратной матрицей, т.е.

Система линейных однородных уравнений

Система m линейных уравнений с n переменными называется системой линейных однородных уравнений, если все ее свободные члены равны нулю.

Такая система имеет вид

Система линейных однородных уравнений всегда совместна, так
как она имеет, по крайней мере, нулевое (тривиальное) решение

Если система (2.13) имеет n линейных уравнений, а ее определитель отличен от нуля, то такая система имеет только нулевое решение. Это следует из правила Крамера. Ненулевое решение возможно для систем линейных однородных уравнений, у которых определитель равен нулю или m Собственные значения и собственные векторы матриц

Пусть матрица имеет порядок n или, что то же самое, размер n х n.

Вектор называется собственным вектором матрицы А, если найдено такое число , что

Число называется собственным значением матрицы А,
соответствующим вектору .

Перенеся правую часть (2.15) в левую и принимая во внимание
соотношение перепишем (2.15) в виде

Уравнение (2.16) эквивалентно системе линейных однородных
уравнений

Для существования ненулевого решения системы линейных
однородных уравнений (2.17) необходимо и достаточно, чтобы
определитель коэффициентов этой системы равнялся нулю, т.е.

Этот определитель является многочленом n-й степени относительно
и называется характеристическим многочленом матрицы А, а
уравнение (2.18) — характеристическим уравнением матрицы А. Корни характеристического уравнения соответствуют собственным числам матрицы А. Определив набор этих чисел, для каждого из них можно найти собственный вектор.

Пример:

Найти собственные числа и собственные векторы
матрицы

Решение:

Характеристическое уравнение этой матрицы имеет вид

Корни характеристического уравнения

Для двух переменных система уравнений (2.17), эквивалентная
уравнению (2.15) собственного вектора, представляется в виде

Подставив сюда значения корней получим две
системы уравнений:

Каждая система является одним уравнением, что и следовало
ожидать. Это связано с тем, что определитель системы равен нулю.
Из первой системы для и из второй для следует, что
координаты собственных векторов связаны соотношениями

Поскольку — произвольное число, то любому собственному
значению матрицы соответствует бесконечное множество собственных векторов различной длины. Положим где — любое число. Тогда собственные векторы можно записать в виде

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Равносильные системы уравнений, равносильные преобразования

В этой статье мы поговорим про равносильные системы уравнений. Здесь мы дадим соответствующее определение, а также разберем, какие существуют преобразования, позволяющие переходить от исходной системы уравнений к равносильной ей системе.

Навигация по странице.

Определение равносильных систем уравнений

В учебниках [1, с. 199; 2, с. 74] дается определение равносильных систем уравнений с двумя переменными:

Две системы уравнений с двумя переменными называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

В старших классах оно обобщается на системы с любым числом уравнений и переменных [3, с. 265] :

Две системы уравнений называются равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Примеры равносильных и неравносильных систем приведем в следующем пункте.

Равносильны ли данные системы уравнений?

Чтобы сделать вывод о равносильности или неравносильности данных систем уравнений на основе определения, надо наперед знать решения этих систем. Приведем пример. Пусть нам известно, что системы уравнений и не имеют решений (это достаточно очевидно: первая содержит не имеющее решений уравнение 0·x=4 , а вторая – уравнение |x|=−1 ). А по определению системы уравнений, которые не имеют решений, равносильны.

Чтобы доказать неравносильность систем уравнений, достаточно привести одно частное решение, являющееся решением одной системы, но не являющееся решением другой. Например, легко обосновать, что системы уравнений и неравносильны. Действительно, пара (0, 0) является решением первой системы, при этих значениях переменных оба уравнения системы обращаются в верные числовые равенства 0=0 и 0=−0 , но не является решением второй, так как ее второе уравнение при подстановке этих значений дает неверное равенство 0−0=2 . А по определению решения равносильных систем должны быть одинаковыми.

А как доказать равносильность систем уравнений, если их решения неизвестны? Конечно, можно найти решения, после чего сделать вывод касательно равносильности на основе определения. Но иногда для этого решать системы необязательно, это касается тех случаев, когда видно, что одна система получена из другой при помощи некоторых так называемых равносильных преобразований. Их мы подробно изучим в следующем пункте, а пока приведем пример.

Рассмотрим две системы уравнений и . При внимательном взгляде на их записи можно заметить следующие вещи: уравнение второй системы есть результат почленного сложения соответствующих частей уравнений первой системы, а второе уравнение второй системы получено из второго уравнения первой системы посредством переноса слагаемого в другую часть. Описанные преобразования являются равносильными, и в результате их проведения получается система, равносильная исходной. Итак, указанные системы равносильны. А мы переходим к разбору основных равносильных преобразований.

Равносильные преобразования систем уравнений

Существует ряд преобразований, позволяющих преобразовать данную систему уравнений в равносильную ей систему. Они получили название равносильных преобразований, и нашли основное применение при решении систем уравнений. Эти преобразования можно считать свойствами систем уравнений. Рассмотрим и обоснуем основные из них.

Перестановка местами уравнений системы дает равносильную систему уравнений.

Доказательство этого утверждения очевидно. В силу определения решения системы уравнений любое отдельно взятое решение системы уравнений является решением каждого уравнения этой системы. Понятно, что оно является и решением каждого уравнения системы с этими же уравнениями, но переставленными местами, значит, является решением и системы с переставленными местами уравнениями.

К примеру, и — равносильные системы.

Если любое уравнение в системе заменить равносильным уравнением, то полученная система будет равносильна исходной.

Доказательство этого факта тоже лежит на поверхности. Любое решение системы уравнений является решением каждого уравнения системы. Мы также знаем, что равносильные уравнения имеют одинаковые решения. Поэтому, любое решение исходной системы уравнений будет решением всех уравнений системы, в которой какое-то уравнение заменено равносильным ему уравнением, а значит, и решением этой системы.

Важность доказанного свойства огромна: оно дает нам право на работу с отдельными уравнениями системы. С ними мы можем проводить всевозможные уже знакомые нам равносильные преобразования, например, перестановку местами слагаемых, перенос слагаемых из одной части в другую с противоположным знаком, умножение или деление обеих частей уравнения на отличное от нуля число и т.д.

Приведем пример. Пусть дана система . В ее первом уравнении можно выполнить умножение чисел, то есть, заменить его равносильным уравнением 12·x−y=1 . А во втором уравнении можно собрать все слагаемые в левой части, раскрыть скобки, после чего привести подобные слагаемые. В результате получится равносильная система более простого вида .

Если к левой и правой части одного из уравнений системы прибавить соответственно левую и правую часть другого уравнения системы, то полученная система будет равносильна исходной.

Для доказательства покажем, что любое решение изначальной системы уравнений является решением полученной, и обратно, что любое решение полученной системы является решением исходной. Это будет означать равносильность систем.

Любое решение начальной системы является решением каждого ее уравнения, оно обращает все уравнения в верные числовые равенства. Нам известно свойство числовых равенств, которое утверждает, что при почленном сложении верных числовых равенств получается верное равенство. Отсюда следует, что взятое нами решение начальной системы является решением уравнения, полученного в результате почленного прибавления к нему другого уравнения. Поэтому, это решение является решением и полученной системы уравнений, так как является решением каждого ее уравнения.

Теперь обратно. Возьмем любое решение полученной системы, оно является решением каждого ее уравнения, то есть, оно обращает их в верные числовые равенства. Существует свойство, позволяющее выполнять почленное вычитание верных числовых равенств. Вычтем из равенства, соответствующего уравнению, полученному в результате почленного сложения, равенство, соотетствующее прибавленному ранее уравнению. Это даст верное числовое равенство, отвечающее начальному уравнению системы до прибавления к нему другого уравнения. Отсюда следует, что взятое решение будет решением каждого уравнения исходной системы, а значит, и ее решением.

Приведем пример выполнения этого равносильного преобразования. Возьмем систему двух уравнений с двумя переменными . Прибавив к левой и правой части первого уравнения соответственно левую и правую часть второго, получим уравнение с одной переменной 3·y=3 , а система примет вид . Полученная система уравнений имеет более простой вид, но при этом равносильна исходной.

Понятно, что если система содержит три или большее число уравнений, то можно не ограничиваться почленным прибавлением к левой и правой части выбранного уравнения левой и правой части одного уравнения, а прибавлять левые и правые части двух, трех, да хоть всех остальных уравнений системы. В результате этих действий все равно получится равносильная система уравнений.

На доказанном равносильном преобразовании базируется один из методов решения систем уравнений – метод алгебраического сложения.

Если одно из уравнений системы представляет собой переменную, выраженную через другие переменные, то в любое другое уравнение системы можно подставить вместо этой переменной ее выражение, система, полученная в результате такого преобразования, равносильна исходной.

Приведем пример для пояснения. Возьмем систему . В ее первом уравнении переменная x выражена через y . Оставим первое уравнение системы без изменений, а во второе подставим вместо x ее выражение через y , то есть, 2·y−1 . В результате приходим к системе , которая равносильна исходной. Обоснуем это.

Пусть пара (x0, y0) – решение исходной системы, тогда x0=2·y0−1 и x0+3·y0−1=0 – верные числовые равенства. Докажем, что при этом равенство (2·y0−1)+3·y0−1=0 тоже верное, что будет доказывать, что (x0, y0) является решением системы, полученной после преобразования, а это будет означать, что полученная система имеет те же решения, что и исходная.

Легко показать, что при условии x0=2·y0−1 значения выражений x0+3·y0−1 и (2·y0−1)+3·y0−1 равны. Для этого составим их разность и покажем, что она равна нулю: x0+3·y0−1−((2·y0−1)+3·y0−1)= (x0−(2·y0−1))+(3·y0−1−(3·y0−1))= x0−(2·y0−1) , а полученное выражение равно нулю в силу равенства x0=2·y0−1 . Итак, справедливо равенство x0+3·y0−1=(2·y0−1)+3·y0−1 , но справедливо и равенство x0+3·y0−1=0 , а из них по свойству транзитивности вытекает справедливость равенства (2·y0−1)+3·y0−1=0 .

Аналогично доказывается, что любое решение системы уравнений является решением исходной системы. В итоге можно сделать вывод, что системы равносильны.

Суть доказательства рассматриваемого утверждения в общем виде та же. То есть, показывается, что любое решение исходной системы является решением системы, полученной после преобразования, и обратно.

Это равносильное преобразование дает разрешение на решение систем уравнений методом подстановки.

В заключение скажем, что обычно при решении систем уравнений разобранные равносильные преобразования используются сообща и иногда по нескольку раз. Дальше на практике Вы увидите это.


источники:

http://lfirmal.com/reshenie-drugih-tipov-sistem-algebraicheskih-sistem-uravnenij/

http://www.cleverstudents.ru/systems/equivalent_systems_of_equations.html