Если сумма крайних равна среднему то квадратное уравнение

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Если сумма крайних равна среднему то квадратное уравнение

    Введение

    Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решать три-четыре задачи. Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них короче и эффективнее. Так вырабатывается опыт.У.У. Сойер

    (английский математик XX века)

    Актуальность исследования:

    Я выбрала эту тему, потому что моя подруга попросила объяснить, как решаются квадратные уравнения и найти для неё самый лёгкий и рациональный способ решения. В процессе поиска легкого и рационального способа я обнаружила, что существует множество способов решения квадратного уравнения, больше, чем предусмотрено в школьной программе. Мне стало интересно: «Какие ещё способы решения квадратных уравнений существуют и почему мы их не рассматриваем на уроках алгебры?»

    Гипотеза: Я предположила, что в школьных учебниках дана неполная информация о квадратных уравнениях и способах их решения, потому что другие способы сложные и нерациональные.

    Цель исследования: изучить различные способы решения квадратных уравнений и научиться решать квадратные уравнения различными способами.

    Задачи:

    найти необходимую информацию по данной теме;

    разобрать все способы на 6 примерах;

    провести опрос среди одноклассников и продемонстрировать результаты моего исследования;

    выявить наиболее удобные способы решения квадратных уравнений.

    Объект исследования: квадратные уравнения.

    Предмет исследования: способы решения квадратных уравнений.

    Методы исследования:

    изучение литературы по теме исследования;

    анализ полученной информации;

    сравнение способов решения квадратных уравнений на удобство и рациональность.

    Ожидаемые результаты:

    Создать наглядные пособия по исследуемой теме в форме компьютерной презентации, которую можно использовать учителю на уроке и стенда в помощь школьникам.

    1. Теоретическая часть:

    1.1.Определение квадратного уравнения и его виды

    Определение: Квадратным уравнением называется уравнение вида

    ax 2 + bx + c = 0,

    гдех — переменная, а,b и с-некоторые числа, причем, а ≠ 0.

    Коэффициенты а, b, с, различают по названиям: а – первый или старший коэффициент; b – второй или коэффициент при х;с – свободный член или свободен от переменной х.

    Квадратное уравнение также называют уравнением второй степени, так как его левая часть это многочлен второй степени

    Если старший коэффициент равен 1, то квадратное уравнение вида х² + рх + q = 0 называют приведенным. Квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

    Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты bи с отличны от нуля.

    Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b и с равен нулю.

    Коэффициент а всегда присутствует в квадратном уравнении, а ≠ 0.

    1) ах 2 + с = 0, где с ≠ 0;

    2) ах 2 + bх = 0, где b ≠ 0;

    3) ах 2 = 0.

    Корнем квадратного уравненияax 2 + bx + c = 0, называют всякое значение переменной х, при котором квадратный трехчлен ax 2 + bx + cобращается в нуль; такое значение переменной х называют также корнем квадратного трехчлена.

    Решить квадратное уравнение – это значит найти все его корни или установить, что их нет.

    Я в своей работе буду разбирать способы решения только на полных неприведенных квадратных уравнениях и полных приведенных квадратных уравнениях. Неполные квадратные уравнения в своей работе я не рассматривала.

    1.2. Способы решения квадратных уравнений

    С помощью учителя математики я выяснила, какие способы решения квадратных уравнений существуют, это:

    Решение квадратных уравнений по формуле.

    Решение квадратных уравнений, используя теорему Виета.

    Решение квадратных уравнений, используя свойства коэффициентов.

    Решение квадратного уравнения графическим способом.

    Решение квадратных уравнений с помощью разложения левой части уравнения на множители способом группировки.

    Решение квадратных уравнений методом выделения полного квадрата.

    Решение квадратных уравнений способом «переброски» старшего коэффициента.

    Решение квадратных уравнений с помощью циркуля и линейки.

    Решение квадратных уравнений с помощью номограммы.

    Решение квадратных уравнений, используя теорему Безу.

    В этой части своей работы я подробно описала суть каждого способа. Начала с тех способов, которые есть в учебнике.

    I способ: Решение квадратных уравнений по формуле.

    1. Уравнение вида: ax 2 + bx + c = 0, можно решить по формулам на рисунке 1.

    Число действительных корней уравнения зависит от знака дискриминанта D = b 2 − 4ac.

    2.Если второй коэффициент b = 2k– четное число, то решить уравнение можно по формулам на рисунке 2:

    Рис. 1

    Рис. 2

    II способ: Решение квадратных уравнений, используя теорему Виета.

    Познакомили поэта с теоремою Виета.Оба корня он сложил, минус p он получил.А корней произведенье дает q из уравнения.

    Если приведенное квадратное уравнение х² + рх + q = 0 имеет действительные корниx1иx2, то их сумма равна p, а произведение равно q, то есть:

    x1 + x2 = –p,

    x1x2 = q.

    Теорема Виета: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равносвободному члену.

    В общем случае квадратного уравнения ax 2 + bx + c = 0 теорема Виета формулируется так: если x1 и x2– корни данного уравнения , то

    Франсуа Виет – французский математик (1540-1603) (Рис. 3), известен как разработчик элементарной алгебры. [1]

    Рис. 3

    III способ: Решение квадратных уравнений, используя свойства коэффициентов.

    Пусть дано квадратное уравнение ax 2 + bx + c = 0,, гдеа ≠ 0.

    1 0 Если а + b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1, х2 = с/а.

    2 0 Если а + с = b (т.е. сумма крайних коэффициентов равна среднему коэффициенту), то х1 = -1, х2 = — с/а.

    3 0 Если дано уравнение вида: ax 2 + (а 2 + 1)x + а = 0, то х1 = -а, х2 = — 1/а.

    IV способ:Решение квадратного уравнения графическим способом.

    Перенести в уравнении 2 + bx + c = 0 второй и третий члены в правую часть, получим 2 = — bx — c.

    Разделим обе части уравнения на коэффициент а ≠ 0.

    Получаем уравнение: х 2 = — px – q, где p=b/a и q=c/a.

    Построим в одной системе координат графики зависимости: у = х 2 и у = — px — q.

    График первой зависимости – парабола, проходящая через начало координат. График второй зависимости – прямая (Рис. 4).

    Возможны следующие случаи:

    прямая и парабола могут пересекаться в двух точках, абсциссы точек пересечения являются корнями квадратного уравнения;

    прямая и парабола могут касаться (только одна общая точка), т.е. уравнение имеет одно решение;

    прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.

    Рис. 4

    V способ: Решение квадратных уравнений с помощью разложения левой части уравнения на множители способом группировки.

    Необходимо привести квадратное уравнение общего вида к виду А(х) · В(х) = 0, где А(х)и В(х)– многочлены относительно х.

    Так как произведение равно нулю, тогда и только тогда, когда один из множителей равен нулю, а другой при этом не теряет смысла. Поэтому левая часть уравнения обращается в нуль при:А(х)=0или В(х)=0.

    VI способ:Решение квадратных уравнений методом выделения полного квадрата.

    Необходимо привести уравнение общего вида к неполному квадратному уравнению. В этом нам помогут формулы сокращенного умножения: (а + b) 2 = a 2 + 2ab + b 2 ; (a – b) 2 = a 2 – 2ab + b 2 .

    VII способ: Решение квадратных уравнений способом «переброски» старшего коэффициента.

    Рассмотрим квадратное уравнение ax 2 + bx + c = 0, гдеа ≠ 0.Умножая обе его части на а, получаем уравнение а 2 х 2 + аbх + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у 2 + by + ас = 0, равносильному данному. Найдем его корни у1и у2. Окончательно получаем х1 = у1и х1 = у2.

    При этом способе, коэффициент а, умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски».

    VIII способ:Решение квадратных уравнений с помощью циркуля и линейки.

    Построим точки S (центр окружности) и A(0; 1).

    Проведем окружность с радиусом SA;

    Абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения. (Рис. 5).

    Рис. 5

    Возможны следующие случаи:

    Рис. 6 Рис. 7 Рис. 8

    Если SА = SК, окружность касается оси ОХ в точке B(К)(х1; 0), где х1 – корень квадратного уравнения (Рис. 7).

    Если 2 + pz + q = 0.

    Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. (Рис. 9).

    Рис. 9

    X способ: Решение квадратных уравнений, используя теорему Безу.[4]

    Пусть P(x) = ax 2 + bx + c.

    Теорема Безу: Остаток при делении многочлена P(x) на многочлен х – а равен значению этого многочлена при х = а, то есть P(а).

    Разложение на множители с помощью угадывания корней:

    Из теоремы Безу следует, что многочлен P(x) делится без остатка на многочлен х – а тогда и только тогда, когда Р(а) = 0. Поэтому для разложения многочлена P(x) на множители достаточно угадать какой-нибудь кореньa уравнения P(x)=0 и разделить P(x) на x−a, тем самым разложив его на два множителя.

    Итак, что дает нам Теорема Безу?

    Теорема Безу дает возможность, найдя один корень многочлена и искать далее корни многочлена, степень которого на 1 меньше: если Р(а) = 0, то Р(х)= (x — а)Q(x), и остается решить уравнение Q(x) = 0.

    Для этого надо:

    Найти делители коэффициента с нашего трехчлена и делители коэффициента а.

    Найти делители трехчлена : ±с, ±с/а

    Подставитьих в левую часть уравнения и проверить будет лиP(x)=0, если да, то х = корень уравненияax 2 + bx + c = 0

    Разделим ax 2 + bx + cна (х — )

    Остается решить уравнение: Q(x) = 0.

    Этьен Безу (1730 — 1783)- французский математик. (Рис. 10).

    Преподавал математику в Училище гардемаринов (1763) и Королевском артиллерийском корпусе (1768). Основные его работы относятся к алгебре. Автор шеститомного «Курса математики» (1764—1769), неоднократно переиздававшегося.[5]

    Рис. 10

    В практической части исследования я для чистоты эксперимента рассмотрела все способы на примере решения 6 уравнений.Сначала я решила данные уравнения способами, которые есть в учебнике. Практическая часть находится в приложении.

    2. Результаты исследования

    В ходе исследовательской работы была проведена самостоятельная работа среди моих одноклассников, целью которой было выявить, какими способами решения квадратного уравнения они владеют. Им было предложено решить 6 данных квадратных уравнений.

    Результаты проверки показали, что большая часть тестируемых, находили корни уравнений с помощью общей формулы корней. Таких учащихся оказалось порядка 90%. Из них, формулу для четного коэффициента применили, только 40%.С помощью теоремы Виета корни приведенных уравнений нашли – 10% учащихся, а другими способами –0 % .

    На следующем этапе моей работы я продемонстрировала с помощью презентации результаты моей исследовательской работы.

    Проделанная мной работа заинтересовала учащихся. Я попросила дать характеристику способов решения квадратного уравнения по таким критериям, как:

    Далее попросила заполнить таблицу. Результаты внесены в таблицу №1.

    Квадратное уравнение. Дискриминант. Теорема Виета.

    теория по математике 📈 уравнения

    Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

    Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

    Дискриминант

    Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

    Нахождение корней квадратного уравнения

    Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

    D=b 2 –4ac

      Если D>0, то уравнение имеет два различных

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

    Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

    D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Теорема Виета

    Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

    Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

    Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

    Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

    Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

    Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

    Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

    Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

    Данное уравнение является квадратным. Но в его условии присутствует квадратный

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

    Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

    х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

    Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

    х 2 − 2 х − 24 = 0

    Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

    Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

    pазбирался: Даниил Романович | обсудить разбор | оценить


    источники:

    http://school-science.ru/3/7/31638

    http://spadilo.ru/kvadratnoe-uravnenie-i-diskriminant/