Эти уравнения в классической электродинамике соответствуют

Уравнения Максвелла для электромагнитного поля — основные законы электродинамики

Система уравнений Максвелла обязана своим названием и появлением Джеймсу Клерку Максвеллу, сформулировавшему и записавшему данные уравнения в конце 19 века.

Максвелл Джемс Кларк (1831 — 1879) был известным британским физиком и математиком, профессором Кембриджского университета в Англии.

Он практически объединил в своих уравнениях все накопленные к тому времени экспериментально полученные результаты касательно электричества и магнетизма и придал законам электромагнетизма четкую математическую форму. Основные законы электродинамики (уравнения Максвелла) были сформулированы в 1873 году.

Максвелл развил учение Фарадея об электромагнитном поле в стройную математическую теорию, из которой вытекала возможность волнового распространения электромагнитных процессов. При этом оказалось, что скорость распространения электромагнитных процессов равна скорости света (величина которой была уже известна из опытов).

Это совпадение послужило для Максвелла основанием к тому, чтобы высказать идею об общей природе электромагнитных и световых явлений, т.е. об электромагнитной природе света.

Созданная Джеймсом Максвеллом теория электромагнитных явлений нашла первое подтверждение в опытах Герца, впервые получившего электромагнитные волны.

В итоге эти уравнения сыграли главную роль в формировании точных представлений классической электродинамики. Уравнения Максвелла могут быть записаны в дифференциальной или интегральной форме. Практически они описывают сухим языком математики электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и в сплошных средах. К данным уравнениям можно добавить выражение для силы Лоренца, в этом случае мы получим полную систему уравнений классической электродинамики.

Чтобы понимать некоторые математические символы, использующиеся в дифференциальных формах уравнений Максвелла, для начала определим такую занятную вещь, как оператор набла.

Оператор набла (или оператор Гамильтона) — это векторный дифференциальный оператор, компоненты которого являются частными производными по координатам. Для нашего реального пространства, которое является трехмерным, адекватна прямоугольная система координат, для которой оператор набла определяется следующим образом:

где i, j и k – единичные координатные векторы

Оператор набла, будучи применен к полю тем или иным математическим образом, дает три возможные комбинации. Данные комбинации именуются:

Градиент — вектор, своим направлением указывающий направление наибольшего возрастания некоторой величины, значение которой меняется от одной точки пространства к другой (скалярного поля), а по величине (модулю) равный скорости роста этой величины в этом направлении.

Дивергенция (расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки.

Ротор (вихрь, ротация) — векторный дифференциальный оператор над векторным полем.

Теперь рассмотрим непосредственно уравнения Максвелла в интегральной (слева) и дифференциальной (справа) формах, содержащие в себе основные законы электрического и магнитного полей, включая электромагнитную индукцию.

Интегральная форма: циркуляция вектора напряженности электрического поля по произвольному замкнутому контуру прямо пропорциональна скорости изменения магнитного потока через площадь, ограниченную этим контуром.

Дифференциальная форма: при всяком изменении магнитного поля возникает вихревое электрическое поле, пропорциональное скорости изменения индукции магнитного поля.

Физический смысл: всякое изменение магнитного поля во времени вызывает появление вихревого электрического поля.

Интегральная форма: поток индукции магнитного поля через произвольную замкнутую поверхность равен нулю. Это означает, что в природе нет магнитных зарядов.

Дифференциальная форма: поток силовых линий индукции магнитного поля из бесконечного элементарного объёма равен нулю, так как поле вихревое.

Физический смысл: источники магнитного поля в виде магнитных зарядов в природе отсутствуют.

Интегральная форма: циркуляция вектора напряженности магнитного поля по произвольному замкнутому контуру прямо пропорциональна суммарному току, пересекающему поверхность, охватываемую этим контуром.

Дифференциальная форма: вокруг любого проводника с током и вокруг любого переменного электрического поля существует вихревое магнитное поле.

Физический смысл: протекание тока проводимости по проводникам и изменения электрического поля во времени приводят к появлению вихревого магнитного поля.

Интегральная форма: поток вектора электростатической индукции через произвольную замкнутую поверхность, охватывающую заряды, прямо пропорционален суммарному заряду, расположенному внутри этой поверхности.

Дифференциальная форма: поток вектора индукции электростатического поля из бесконечного элементарного объема прямо пропорционален суммарному заряду, находящемуся в этом объёме.

Физический смысл: источником электрического поля является электрический заряд.

Система данных уравнений может быть дополнена системой так называемых материальных уравнений, которые характеризуют свойства заполняющей пространство материальной среды:

Эти уравнения в классической электродинамике соответствуют

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры [1, 2].

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд [1, 2]:

,(1)

где e – заряд электрона, E – вектор напряженности электрического поля, r – радиальный вектор, соединяющий ось источника магнитной индукции B с электрически заряженной частицей и лежащий в плоскости, ортогональной оси симметрии магнитного поля.

Рассмотрим случай, когда магнитная часть силы FЕМ равна и направлена противоположно ее электрической части:

.(2)

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

.(3)

Пусть, например, ось z совпадает с направлением аксиального вектора B, тогда радиус-вектор будет иметь вид: r=xi+yj, где i и j – единичные векторы в направлениях осей координат x и y, соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z, поэтому второе слагаемое в (3) равно –2(∂B/∂t). Первое же слагаемое в уравнении (3) равно ∂B/∂t. В результате, после преобразования правой части последнего равенства, получаем:

.(4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения [3]:

,

где а – вектор, i, j, k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x, y и z, соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a), осуществляемая оператором «ротор», показана на Рис. 1.

Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b, имеют производные по пространственным переменным x, y, z (в виде rotaи rotb)и производные по времени, ¶ а/ ¶ t и ¶ b/ ¶ t, причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b, и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа, то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot», (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

;

,

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

,

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

.

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b:

.((*))

, откуда следует:

.((**))

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

.((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x, y, z и t при преобразовании. Обозначим размерность координат – метр (L), а времени – секунда (T).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ;(6)

и . (6*)

Обозначая размерное отношение L/T, как константу v, имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ;(7)
и .(7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v» не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, c » 2.99792458 Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики — уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае — это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

.

, откуда следует:

.

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а, будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b.

Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.

Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме),c » 2.99792458 Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения — поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

,

и факт отсутствия в природе магнитных зарядов:

.

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.

Уравнений классической электродинамики (уравнения Максвелла)

Всякое решение уравнений поля должно описывать поле, ко­торое может существовать в Природе, Согласно принципу супер­позиции, сумма любых таких полей также должна представлять реально возможное поле. Линейные дифференциальные уравне­ния обладают таким свойством, что сумма любых решений урав­нения также является его решением. Следовательно, уравнения электромагнитного поля должны быть линейными дифферен­циальными уравнениями.

Система уравнений, описывающих электромагнитное поле, называется уравнениями Максвелла. Они являются основными уравнениями классической электродинамики Уравнения Макс­велла связывают в любой точке пространства и в любой момент времени силовые характеристики, определяющие электромагнит­ное поле ( , ) с характеристиками источников поля — вектором плотности электрического тока и объемной плотностью элект­рического заряда ρ. Уравнения Максвелла в интегральной форме оперируют понятиями потока и циркуляции вектора (М 5.3).

Первое уравнение определяет, что электрическое поле порожда­ется электрическими зарядами; это уравнение устанавливает связь между объемной плотностью заря­да ρ и вектором .

Пусть в пространстве выделена некоторая область объемом V, ограниченная замкнутой поверх­ностью S, а в этом объеме произвольным образом распределен заряд q, так, что объемная плотность заряда ρ (рис. 2.2). Это оз­начает, что . Первое уравнение, носящее название теоремы Гаусса, определяет, что поток вектора напряженности электрического поля, создаваемого в вакууме зарядом q, через поверхность S пропорционален заряду, находящемуся в объеме V:

. (2.5)

Здесь ε0— постоянный коэффициент, называемый электрической постоянной.

Силовые линии электрического поля, созданного зарядами, разомкнуты, они начинаются и оканчиваются на зарядах или уходят в бесконечность.

Второе уравнение определяет еще один источник электричес­кого поля — изменяющееся во времени магнитное поле. Это уравнение является обобщением закона электромагнитной индук­ции Фарадея.

Пусть в пространстве выделен некоторый замкнутый контур L, ограничивающий поверхность S. Пусть существует магнитное поле индукцией , поток которого через поверхность S равен и изменяется во времени. Второе уравнение определяет, что при этом возникает электрическое поле, циркуляция вектора напряженности которого по контуру L пропорциональна ско­рости изменения магнитного потока через поверхность S:

. (2.6)

Чем быстрее изменяется магнитное поле, тем сильнее возни­кающее при этом (индуцированное) электрическое поле. Индуци­рованное поле носит вихревой характер. Знак “минус” перед пра­вой частью уравнения (2.6) отвечает правилу Ленца.

Третье уравнение определяет факт отсутствия в Природе маг­нитных зарядов (подобных электрическим) как источников маг­нитного поля; поток вектора магнитной индукции через произ­вольную замкнутую поверхность S равен нулю:

. (2.7)

Магнитное поле всегда носит вихревой характер; магнитные силовые линии всегда замкнуты.

Четвертое уравнение определяет, что источником магнитного поля являются движущиеся электрические заряды (т. е. электри­ческий ток) и изменяющееся во времени электрическое поле:

. (2.8)

Циркуляция вектора по произвольному замкнутому контуру L, мысленно проведенному в электромагнитном поле, равна сумме двух слагаемых: первое из них пропорционально плотности электрического тока, протекающего сквозь контур, второе — про­порционально скорости изменения потока электрического поля через поверхность S, ограниченную контуром L.

Из (2.6) и (2.8) следует, что электрическое и магнитное поля нельзя в общем случае рассматривать независимо. Они составля­ют неразрывную совокупность — электромагнитное поле. К этому вопросу мы вернемся при изучении теории относительности

Рассмотренные уравнения (2.5) — (2.8) называются интегральны­ми. Их можно записать с использованием дифференциальных характеристик (МП 5.2) в виде системы дифференциальных уравнений:

; (2.5′)

; (2.6′)

; (2.7′)

. (2.8′)

Переход к дифференциальной форме осуществляется с по­мощью теорем Гаусса и Стокса (МП 5.4). Покажем для примера связь между уравнениями (2.5) и (2.5′). На основании теоремы Гаусса левая часть уравнения (2.5) преобразуется к интегралу по объему Заменяя левую часть уравнения (2.5) этим интегралом, получим:

С использованием дифференциальных характеристик удобно сформулировать закон сохранения электрического заряда. Так как заряд электрически изолированной системы сохраняется, то уменьшение заряда в некотором объеме в единицу времени равно силе тока через поверхность, ограничивающую этот объем, т. е.

Применим к правой части интегральную теорему Гаусса:

где интегрирование ведется по одному и тому же объему, следо­вательно,

Полученное уравнение называется уравнением непрерывности.

Четыре рассмотренных уравнения поля в интегральной и диф­ференциальной формах представляют собой единую систему уравнений Максвелла для электромагнитного поля в вакууме. Она полностью определяет электромагнитное поле, если известны расположение и движение электрических зарядов. Уравнение Максвелла вместе с выражением для силы Лоренца (2.3) пред­ставляют наиболее общие законы электромагнетизма. Все осталь­ное содержание электродинамики составляют выводы и след­ствия, полученные с помощью математических преобразований уравнений Максвелла-Лоренца для конкретных систем полей, зарядов и токов.

Например, из уравнений (2.5′) и (2.8′) следует закон сохране­ния электрического заряда в форме (2.9). Продифференцировав обе части уравнения (2.5′) по времени, получим:

Обе части уравнения (2.8′) умножим на и возьмем дивергенцию от каждой части:

Дивергенция от ротора любого вектора по определению равна нулю. В правой части (2.10) поменяем местами операции диффе­ренцирования и дивергенции:

Заменяя второй член этого уравнения на окончательно получим

Прямо вытекает из второго уравнения Максвелла (2.6) закон электромагнитной индукции Фарадея. Интеграл в правой части уравнения по определению есть магнитный поток , а циркуляция вектора по произвольному замкнутому контуру L (левая часть уравнения) называется электродвижущей силой (э.д.с.). Если заменить контур проводником, то получим, что э.д.с., наводимая при изменениях магнитного поля во времени, равна взятой со знаком “минус” скорости изменения магнитного потока через поверхность, натянутую на проводник:

Стационарные электрические и магнитные доля существуют, если расположение зарядов неизменно во времени и электричес­кие токи постоянны. В этом случае , и система уравнений Максвелла распадается на две пары независимых урав­нений:

Первая пара уравнений описывает электростатическое поле (поле неподвижных зарядов), а вторая — магнитостатическое (по­ле постоянных токов). Из уравнений следует, что электростати­ческое поле потенциальное, а магнитостатическое — вихревое.

Важной характеристикой электростатического поля является потенциал, характеризующий потенциальную энергию заряда, находящегося в поле. Пусть заряд помещен в некоторую точку электростатического поля. Тогда потенциалом φ называется отно­шение потенциальной энергии U этого заряда к величине заряда:

На заряд действует со стороны поля сила, стремящаяся уменьшить его потенциальную энергию: . С другой стороны, . Приравнивая правые части выражений для , получим:

Формула (2.14) описывает связь напряженности и потенциала для электростатического поля.

Сила , перемещая заряд q, совершает работу. При элемен­тарном перемещении работа равна.

Работа сил поля на некотором участке траектории L опреде­ляется интегралом

Из свойств интеграла (МП 3.2) следует, что интеграл от гpaдиента потенциала на некотором участке траектории 1-2 равен разности значений потенциала на концах участка, т. е.

Здесь , радиус-векторы начала и конца участка траек­тории (рис. 2.3). Тогда работа А12 равна произведению заряда на разность потенциалов

Важно, что работа не зависит от вида траектории, а опреде­ляется только положением начала и конца последней. С выраже­нием (2.15) связана широко используемая в атомной физике и физике элементарных частиц внесистемная единица энергии — электровольт (эВ). 1 эВ — энергия, приобретаемая одним эле­ментарным зарядом (е) при прохождении им разности потен­циалов 1 В. Из (2.15) непосредственно следует, что работа сил потенциального поля при перемещении заряда по замкнутому контуру равна нулю, так как в этом случае .

Вернемся к выражению элементарной работы . Так как работа по замкнутому контуру равна нулю , то равна нулю и циркуляция вектора по этому контуру (МП 5.3)

Выражение (2.16) дает необходимое и достаточное условие потенциальности поля. В противоположность электростатичес­кому магнитостатическое поле является вихревым и характери­зуется не скалярным, а векторным потенциалом.

Рассмотрим вывод из уравнений Максвелла некоторых законов электромагнетизма, полученных эмпирически.

Поле точечного заряда. Закон Кулона. Этот закон определяет силу взаимодействия двух неподвиж­ных точечных зарядов в вакууме.

Окружим точечный заряд q1, нап­ример, положительный, сферой радиуса r (рис. 2.4).

Линии напряженности (силовые линии) поля, создаваемого этим зарядом, радиальны, поле обладает центральной симметрией. На поверхности сферы значение .

Воспользуемся ‘ первым уравнением Максвелла (2.5) —теоремой Гаусса

которое при выбранных условиях преобразуется к простому виду

Направление вектора в каждой точке сферы совпадает с нап­равлением соответствующего радиуса вектора , тогда

Полученная формула определяет напряженность электричес­кого поля точечного заряда в точках, удаленных от него на расстояние r. Поместим в любую точку на поверхности сферы другой точечный заряд q2, например, отрицательный. По опре­делению напряженности, на него будет действовать сила притяжения — кулоновская сила.

Если в наших рассуждениях заряды поменять местами, получим, что на заряд q1 со стороны q2, действует сила . Следовательно, силовое взаимодействие зарядов подчиняется третьему закону Ньютона. Теорема Гаусса существенно облегчает расчет полей в случаях симметричных систем зарядов.

Магнитное ноле прямого тока. Из четвертого уравнения Максвелла (2.8) следует, что магнитное поле порождается, в част­ности, электрическим током. Получим выражение для магнитной индукции поля в простом Случае так называемого прямого тока — тока в бесконечно длинном линейном проводнике. Линии маг­нитной индукции в силу осевой симметрии задачи являются концен­трическими окружностями, располо­женными в плоскостях, перпендику­лярных проводнику. Одна из таких плоскостей изображена на рис. 2.5.

Направление силовых линий свя­зано с направлением тока правилом правою винта. Предположим, что переменное электрическое поле отсутствует, тоща уравнение (2.8) упростится:

Выберем одну из силовых линий радиуса r. Тогда в выражении (2.18)

и получим, что откуда

Эта формула определяет модуль вектора магнитной индукции магнитного поля, создаваемого током I в точках, отстоящих от проводника на расстояние r.

Дата добавления: 2017-11-21 ; просмотров: 2191 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://www.trinitas.ru/rus/doc/0016/001b/00161290.htm

http://poznayka.org/s102888t1.html