F на тему уравнения и функции

По математике на тему «Функциональный метод решения уравнений и неравенств»(10 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Функциональный метод решения уравнений и неравенств

Использование понятия области определения функции 2

Использование понятия области значений функции 3

Использование свойства монотонности функции 6

Использование свойств четности или нечетности функций 8

Использование свойства периодичности функции 9

Метод функциональной подстановки 10

Функциональный метод решения уравнений и неравенств.

Одним из методов решения уравнений и неравенств является функциональный, основанный на использова­нии свойств функций. В отличие от графического метода, знание свойств функций позволяет находить точные корни уравнения (неравенства), при этом не требуется построения графиков функ­ций. Использование свойств функций способствует рационализа­ции решений уравнений и неравенств.

Рассмотрим использование некоторых свойств функций при решении уравнений и неравенств.

Использование понятия области определения функции

Областью определения функции у = f ( x ) называется множест­во значений переменной х, при которых функция имеет смысл.

Пусть дано уравнение f ( x ) = g ( x ), где f ( x ) и g ( x ) — элементарные функции, определенные на множествах D 1, D 2. Тогда областью D допустимых значений уравнения будет множество, состоящее из тех значений х, которые принадлежат обоим множествам, то есть D = D 1 D 2. Ясно, что когда множество D пустое ( D = Ø), то урав­нение решений не имеет.

Пусть требуется решить неравенство f ( x ) > 0. D ( f ) — область определения функции f ( x ). Если удается доказать, что для всех х из области определения выполняется неравенство f ( x ) > 0, то D ( f ) представляет собой решение данного неравенства.

1) Решите уравнение: + =5

ОДЗ: 1- x 0, x 1, решений нет.

x -3 0 x 3

2) Решите уравнение: arcsin ( x +2) + = x — 2

ОДЗ: -1 x +21, -3 x -1, -3 x -1, решений нет

2 x — x 0 x (2- x ) 0 0 x 2

3) Решите уравнение: + = x — 1

Решение.

ОДЗ: x -1 0, x =1

1- x 0

ОДЗ состоит из одной точки x =1. Остается проверить, является ли x =1 корнем уравнения.

x =1 + =1-1, 0=0. Верно.

4) Решите уравнение: arccos (6 x — x -10)=

ОДЗ: 6 x — x -10 -1, x =3, x =3

6 x — x -101 3-2 x 3+2

ОДЗ состоит из одной точки x =3. Остается проверить, является ли x =3 корнем уравнения. x =3 arccos (6*3-3-10)= , arcos (-1)= , = . Верно .

5) Решите неравенство: + 1

1.Область определения левой части: 1.

2.Для любого x из области определения выполняется неравенство + 1

Ответ: x (- ;-1][1;+ ).

Использование понятия области значений функции

Областью значений функции у = f ( x ) называется множество зна­чений переменной у, при допустимых значениях переменной х.

Функция у = f ( x ) называется ограниченной на данном про­межутке (содержащемся в области ее определения), если су­ществует такое число N > 0, что при всех значениях аргумента, принадлежащих данному промежутку, имеет место неравенство N .

Пусть дано уравнение f ( x ) = g ( x ), где f ( x ) и g ( x ) — элементарные функции, определенные на множествах D 1 , D 2. Обозначим область значений этих функций соответственно Е1 и Е2. Если х1 является решением уравнения, то будет выполняться числовое равенство f ( x 1) = g ( x 1), где f ( x 1) — значение функции f ( x ) при х = х1, a g ( x 1) — значение функции g ( x ) при х = х1. Значит, если уравнение имеет решение, то области значений функций f ( x ) и g ( x ) имеют общие элементы 1 ∩ Е2 Ø). Если же таких общих элементов множества Е1 и Е2 не содержат, то уравнение решений не имеет.

1) Решите уравнение: cos 2 x = x -8 x +17

cos2 x = (x-4)+1

ОДЗ :

-1 cos2 x 1; (x-4)+11

Равенство достигается, если cos 2 x =1, x =4

(x-4)+1 = 1

2) Решите уравнение: + =2

ОДЗ: x 0 , x 0

x +9 0

0, 3 + 3, решений нет.

3) Решите уравнение:

ОДЗ:

0 для допустимых значений x

03

3 для допустимых значений x

Равенство достигается, если =3

=3

Решим первое уравнение системы:

=

При x =0 второе уравнение обращается в верное равенство, следовательно, решением системы и уравнения является x =0.

4) Решите уравнение:

ОДЗ:

Равенство достигается, если

Из второго уравнения системы имеем х = 3. Подстановкой во второе уравнение системы убеждаемся, что х = 3 является решением системы.

3 — корень уравнения.

5) Решите уравнение:

ОДЗ:

, .

Равенство достигается, если

Если , то

6) Решите уравнение:

Поскольку , то или .

, или

Решением первой системы является , . Вторая система решений не имеет.

Ответ: , .

7) Решите неравенство: .

На ОДЗ правая часть неравенства неположительна, а левая — положительная.

8) Решите неравенство: >2

ОДЗ: ,.

При любом из области определения >0, следовательно, .

Так как , то >2 на всей области определения.

Ответ: .

9) Решите неравенство:

ОДЗ:

Так как при любом x справедливы неравенства и , то данное неравенство выполняется тогда и только тогда, когда

, т.е. при x =0.

10) Решите уравнение:

Сумма коэффициентов перед тригонометрическими функциями в левой части равна 6, что меньше 7. Это наталкивает на мысль о решении уравнения методом оценки. Действительно, , , . Следовательно, левая часть не превосходит 6 при любом x , поэтому уравнение не имеет действительных решений.

Использование свойства монотонности функции.

Функция f ( x ) называется возрастающей (убывающей) на дан­ном числовом промежутке X , если большему значению аргумента х X соответствует большее (меньшее) значение функции f ( x ), то есть для любых х1 и х2 из промежутка X таких, что х2 > х1 выпол­нено неравенство f ( x 2) > f ( x 1) ( f ( x 2) f ( x 1)).

Функция, только возрастающая или только убывающая на дан­ном числовом промежутке, называется монотонной на этом про­межутке.

Рассмотрим несколько свойств монотонных функций, исполь­зуемых для установления характера монотонности функций и ле­жащих в основе утверждений об уравнениях и неравенствах.

Теорема 1. Монотонная на промежутке X функция каждое свое значение принимает лишь при одном значении аргумента из этого промежутка.

Теорема 2. Если функция f ( x ) возрастает (убывает) на проме­жутке X и функция g ( x ) возрастает (убывает) на промежутке X , то функция h (х) = f ( x ) + g ( x ) + С также возрастает (убывает) на проме­жутке X — произвольная постоянная).

Теорема 3. Если функция f ( x ) неотрицательна и возрастает (убы­ вает) на промежутке X , функция g ( x ) неотрицательна и возрастает (убывает) на промежутке X , С > 0, то функция h (х) = Сf ( x )g ( x ) также возрастает (убывает) на промежутке X .

Теорема 4. Если функция f ( x ) возрастает (убывает) на промежутке X , то функция – f ( x ) убывает (возрастает) на этом промежутке.

Теорема 5. Если функция f ( x ) монотонна на промежутке X и со­храняет на этом множестве знак, то функция на промежутке X имеет противоположный характер монотонности.

Теорема 6. Если обе функции f ( x ) и g ( x ) возрастающие или обе убывающие, то функция h (х) = f ( g ( x )) — возрастающая функция. Если одна из функций возрастающая, а другая убывающая, то h (х) = f ( g ( x )) — убывающая функция.

Теоремы об уравнениях и неравенствах.

Теорема 7. Если функция f ( x ) монотонна на промежутке X , то уравнение f ( x ) = С имеет на промежутке X не более одного корня.

Аналогичное свойство имеет место и для нестрогих нера­венств.

Теорема 10. Если функция f ( x ) возрастает на промежутке X , а g ( x ) убывает на промежутке X , то уравнение f ( x ) = g ( x ) имеет на промежутке X не более одного корня.

Теорема 11. Если функция f ( x ) возрастает на промежутке X , то урав­нение f ( f ( x )) = х равносильно на промежутке X уравнению f ( x ) = х

1) Решите уравнение:

ОДЗ:

Функция х 2 + убывает на промежутке (- ;-0], а — постоянная функция.

Подбором находим, что x =- — 4. В силу теоремы 7, найденный корень единственный.

2) Решите уравнение:

— функция убывает на ;

— функция возрастает.

Подбором находим, что .

В силу теоремы 10 утверждаем, что единственный корень уравнения.

3) Решите уравнение:

Функция возрастает на ; функция убывает на этом отрезке.

Подбором находим, что

В силу теоремы 10 утверждаем, что единственный корень уравнения.

4) Решите уравнение: x 3 + 33 = — 2х

ОДЗ уравнения: х є R .

Функция у(х) = x 3 + 33 — возрастает на R ,

Функция g (х) = — 2х — убывает на R .

Значит уравнение имеет не более одного корня.

5) Решите уравнение: x 5 + x 3 + х = — 42

Функция у(х) = x 5 + x 3 + х — возрастает на R ,

Функция g (х) = — 42 постоянна на R .

Значит уравнение имеет не более одного корня.

6) Решите уравнение: = 8 -2х

ОДЗ: х — 1.

Левая часть уравнения задает возрастающая, а правая убывающая функции.

Значит, это уравнение имеет не более одного корня.

7) Решите систему уравнений

Рассмотрим функцию Z = f ( t ) = 2 t — sin t , тогда систему можно записать в виде

Так как f = 2 — sin t , то функция f -возрастающая, и

поэтому каждое своё значение принимает только при одном значении

Следовательно уравнение равносильно уравнению x = y , а данная система равносильна системе

Полученная система имеет единственное решение x = y =3.

Использование свойств четности или нечетности функций

Функция f ( x ) называется четной, если для любого значения х, взятого из области определения функции, значение —х также при­надлежит области определения и выполняется равенство f (- x ) = f ( x ).

Функция f ( x ) называется нечетной, если для любого значения х, взятого из области определения функции, значение —х также принад­лежит области определения и выполняется равенство f (- x ) = — f ( x ).

Из определений следует, что области определения четной и нечетной функций симметричны относительно нуля (необходимое условие).

Для любых двух симметричных значений аргумента из области определения четная функция принимает равные числовые значе­ния, а нечетная — равные по абсолютной величине, но противопо­ложного знака.

Теорема 1. Сумма, разность, произведение и частное двух чет­ных функций являются четными функциями.

Теорема 2. Произведение и частное двух нечетных функций представляют собой четные функции.

Пусть имеем уравнение или неравенство F (х) = 0, F (х) > 0, ( F (х) F (х) — четная или нечетная функция.

а) Чтобы решить уравнение F (х) = 0, где F (х) — четная или не­четная функция, достаточно найти положительные (или отрица­тельные) корни, после чего записываются отрицательные (или по­ложительные) корни, симметричные полученным, и для нечетной функции корнем будет х = 0, если это значение входит в область определения F (х). Для четной функции значение х = 0 проверяет­ся непосредственной подстановкой в уравнение.

б) Чтобы решить неравенство F (х) > 0 ( F (х) F (х) — чет­ная функция, достаточно найти его решения для х 0 (или х 0). Действительно, если решением данного неравенства является про­межуток (х1; х2), где х1, х2 — числа одного знака или одно из них равно нулю, то его решением будет и промежуток (-х2; -х1).

в) Чтобы решить неравенство F (х) > 0 ( F (х) F (х) — не­четная функция, достаточно найти решения для х > 0 (или х F (х) для х > 0 (или х 0).

1) Может ли при каком-нибудь значении a уравнение иметь 2 x -3 ax +4 x ax =5 пять корней?

Число 0 не является корнем данного уравнения. Так как левая часть уравнения – четная функция, то вместе с каждым ненулевым корнем уравнение имеет противоположный корень, и следовательно, число его корней при любом a четно. Поэтому пяти корней оно иметь не может.

2) Решите уравнение: x +5-24=0

ОДЗ: xR

Функция f ( x )= x +5-24 – четная, x =0 – не является корнем уравнения, поэтому достаточно найти решения для x >0

x >0 , x >0 , x =3

x +5-24=0 x =3

Тогда x = -3 так же является корнем уравнения.

Использование свойства периодичности функции

Функция у = f ( x ) называется периодической, если существует такое число Т 0, что для любого значения х, взятого из области определения, значения х + Т, х — Т, также принадлежат области определения и выполняется равенство f ( x ) = f ( x + Т) = f ( x ) = f ( xТ). Число Т называется периодом функции. Всякая периодическая функция имеет бесконечное количество периодов. При решении уравнений и неравенств будем использовать наименьший положи­тельный период функции.

Если функция F (х) — периодическая, то решение уравнения F ) = 0 или неравенства F (х) > 0 ( F (х)

1) Решите неравенство:

Рассмотрим функцию f (х) = cos 12х — cos 4х.

. Следовательно, решение неравенства достаточно найти на промежутке равном по длине периоду функции. За такой промежуток возьмем . Так как функция чётная, решение найдём на промежутке [0;]. Функция на данном промежутке имеет два корня: 0; — которые разбивают промежуток [0;] на два интервала знакопостоянства: (0; ); ( ; ). Неравенство выполняется для всех

х є ( ; ). Но тогда оно будет выполняться и для всех ( ; ).

Учитывая периодичность: +

Ответ: +

Метод функциональной подстановки

Частным случаем функционального метода является метод функциональной подстановки – самый, пожалуй, распространенный метод решения сложных задач математики. Суть метода состоит в введении новой переменной y =ƒ(x), применение которой приводит к более простому выражению. Отдельным случаем функциональной подстановки является тригонометрическая подстановка.

1) Решите уравнение: tgx + ctgx + tg ² x + ctg ² x + tg ³ x + ctg ³ x = 6

Данное уравнение рационально решать методом функциональной подстановки.

Пусть y = tgx + ctgx, тогда tg²x + ctg²x = y² – 2, tg³x + ctg³x = y³ – 3y

y³ — 8 + y² — 2y =0, (у – 2)(у 2 + 2у +4) + у(у – 2) = 0, (у – 2)(у 2 + 2у +4 + у) = 0, (у – 2)(у 2 + 3у +4) = 0,

Так как tgx + ctgx = 2, то tgx + = 2. Отсюда следует, что tgx = 1 и x = + π n , .

Ответ: + π n , .

Построение графиков функций

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

У нас есть отличные курсы по математике для учеников с 1 по 11 классы!

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Упростим формулу функции:

при х ≠ -1.

График функции — прямая y = x — 1 с выколотой точкой M (-1; -2).

Задача 2. Построим график функции

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

Вспомним, как параметры a, b и c определяют положение параболы.

Ветви вниз, следовательно, a 0.

Точка пересечения с осью Oy — c = 0.

Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

Ветви вниз, следовательно, a 0.

Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b

xy
0-1
12

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

xy
02
11

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

xy
00
12

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

б)

г)

д)

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

Сдвигаем график вверх на 1:

б)

Преобразование в одно действие типа f(x — a).

Сдвигаем график вправо на 1:

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

Сдвигаем график вправо на 1:

Сдвигаем график вверх на 2:

г)

Преобразование в одно действие типа

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

д)

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.



Сжимаем график в два раза вдоль оси абсцисс:


Сдвигаем график влево на 1/2 вдоль оси абсцисс:


Отражаем график симметрично относительно оси абсцисс:

F на тему уравнения и функции

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует. Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

График линейной функции

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k 0, в функции y = ax 2 + bx + c, то ветви параболы направлены вверх;
если же a 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией называют функцию, заданную формулой:

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота — это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x| выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x). Если функция f(x) является периодической с периодом T, то функция:

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Большинство примеров периодических функций — это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой:

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Как успешно подготовиться к ЦТ по физике и математике?

Для того чтобы успешно подготовиться к ЦТ по физике и математике, среди прочего, необходимо выполнить три важнейших условия:

  1. Изучить все темы и выполнить все тесты и задания приведенные в учебных материалах на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.
  2. Выучить все формулы и законы в физике, и формулы и методы в математике. На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  3. Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.

Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов, позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

Нашли ошибку?

Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (адрес электронной почты здесь). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

ЗАПРЕЩЕНО использование представленных на сайте материалов или их частей в любых коммерческих целях, а также их копирование, перепечатка, повторная публикация или воспроизведение в любой форме. Нарушение прав правообладателей преследуется по закону. Подробнее.


источники:

http://skysmart.ru/articles/mathematic/postroenie-grafikov-funkcij

http://educon.by/index.php/materials/math/funkcii