F x ctgx уравнение касательной

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Уравнение прямой касательной к графику функции в заданной точке

Эта математическая программа находит уравнение касательной к графику функции \( f(x) \) в заданной пользователем точке \( x_0 \).

Программа не только выводит уравнение касательной, но и отображает процесс решения задачи.

Этот калькулятор онлайн может быть полезен учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Статью из энциклопедии о касательной прямой вы можете посмотреть здесь (статья из Википедии).

Если вам нужно найти производную функции, то для этого у нас есть задача Найти производную.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
Введите выражение функции \( f(x)\) и число \(x_0\) — абсциссу точки в которой нужно построить касательную Найти уравнение касательной

Немного теории.

Угловой коэффициент прямой

Напомним, что графиком линейной функции \( y=kx+b\) является прямая. Число \(k=tg \alpha \) называют угловым коэффициентом прямой, а угол \( \alpha \) — углом между этой прямой и осью Ox

Уравнение касательной к графику функции

Если точка М(а; f(a)) принадлежит графику функции у = f(x) и если в этой точке к графику функции можно провести касательную, не перпендикулярную оси абсцисс, то из геометрического смысла производной следует, что угловой коэффициент касательной равен f'(a). Далее мы выработаем алгоритм составления уравнения касательной к графику любой функции.

Пусть даны функция у = f(x) и точка М(а; f(a)) на графике этой функции; пусть известно, что существует f'(a). Составим уравнение касательной к графику заданной функции в заданной точке. Это уравнение, как уравнение любой прямой, не параллельной оси ординат, имеет вид y = kx + b, поэтому задача состоит в нахождении значений коэффициентов k и b.

С угловым коэффициентом k все понятно: известно, что k = f'(a). Для вычисления значения b воспользуемся тем, что искомая прямая проходит через точку М(а; f(a)). Это значит, что если подставить координаты точки М в уравнение прямой, получим верное равенство: \(f(a)=ka+b \), т.е. \( b = f(a) — ka \).

Осталось подставить найденные значения коэффициентов k и b в уравнение прямой:

Нами получено уравнение касательной к графику функции \( y = f(x) \) в точке \( x=a \).

Алгоритм нахождения уравнения касательной к графику функции \( y=f(x) \)
1. Обозначить абсциссу точки касания буквой \( a \)
2. Вычислить \( f(a) \)
3. Найти \(f'(x) \) и вычислить \(f'(a) \)
4. Подставить найденные числа \( a, f(a), f'(a) \) в формулу \( y=f(a)+ f'(a)(x-a) \)

Функция y = ctg x, её свойства и график

п.1. Развертка котангенса движения точки по числовой окружности в функцию от угла

При движении точки по числовой окружности на горизонтальной касательной, проведенной через точку (0;1), отображаются значения котангенсов соответствующих углов (см. §3 данного справочника).

Рассмотрим, как изменяется котангенс, если точка описывает полный круг, и угол x изменяется в пределах: 0≤x≤2π и построим график y=ctgx на этом отрезке.

Если мы продолжим движение по окружности для углов x > 2π, кривые продолжатся вправо; если будем обходить числовую окружность в отрицательном направлении (по часовой стрелке) для углов x главной ветвью графика котангенса.

п.2. Свойства функции y=ctgx

1. Область определения \(x\ne\pi k\) — множество действительных чисел, кроме точек, в которых \(sinx=0\) .

2. Функция не ограничена сверху и снизу. Область значений \(y\in\mathbb\)

3. Функция нечётная $$ ctg(-x)=-ctgx $$

4. Функция периодическая с периодом π $$ ctg(x+\pi k)=ctgx $$

5. Функция стремится к \(-\infty\) при приближении слева к точкам \(x=\pi k\) .
Приближение к точке a слева записывается как \(x\rightarrow a-0\) $$ \lim_ ctgx=-\infty $$ Функция стремится к \(+\infty\) при приближении справа к точкам \(x=\pi k\) .
Приближение к точке a справа записывается как \(x\rightarrow a+0\) $$ \lim_ ctgx=+\infty $$ Нули функции \(y_<0>=0\) достигаются в точках \(x_0=\frac\pi2+\pi k\)

6. Функция убывает на всей области определения.

7. Функция имеет разрывы в точках \(x=\pi k\) , через эти точки проходят вертикальные асимптоты. На интервалах между асимптотами \((\pi k;\ \pi+\pi k)\) функция непрерывна.

п.3. Примеры

Пример 1. Найдите наименьшее и наибольшее значение функции y=ctgx на заданном промежутке:

a) \(\left[\frac<2\pi><3>; \pi\right)\) $$ y_=\lim_ctgx=-\infty,\ \ y_=ctg\left(\frac<2\pi><3>\right)=-\frac<1><\sqrt<3>> $$ б) \(\left(0; \frac<\pi><4>\right]\) $$ y_=ctg\left(\frac<\pi><4>\right)=1,\ \ y_=\lim_ctgx=+\infty $$ в) \(\left[\frac<7\pi><6>; \frac<7\pi><4>\right]\) $$ y_=ctg\left(\frac<7\pi><4>\right)=-1,\ \ y_=ctg\left(\frac<7\pi><6>\right)=\sqrt <3>$$

Пример 2. Решите уравнение:
a) \(ctgx=-\sqrt<3>\)
Бесконечное множество решений: \(x=\frac<5\pi><6>+\pi k,\ k\in\mathbb\)

б) \(ctg\left(x+\frac\pi2\right)=0\)
\(x+\frac\pi2=\frac\pi2+\pi k\)
Бесконечное множество решений: \(x=\pi k,\ k\in\mathbb\)

в) \(ctg(2x)=1\)
\(2x=\frac\pi4+\pi k\)
Бесконечное множество решений: \(x=\frac<\pi><8>+\frac<\pi k><2>,\ k\in\mathbb\)

Пример 3. Постройте графики функций: a) \(y(x)=x^2-2tgx\cdot ctgx\)

Произведение \(tgx\cdot ctgx=1\). При этом ограничивается область определения функции \(y(x)\), т.к. \(tgx\) и \(ctgx\) имеют разрывы.
Точки разрыва отмечены на числовой окружности: \(x\ne\frac<\pi k><2>\).

Получаем: $$ \begin x^2-2\\ x\ne\frac<\pi k><2>,\ \ k\in\mathbb \end $$ Строим график параболы и выкалываем точки, не входящие в ОДЗ.

Сумма \(sin^2(tgx)+cos^2(tgx)=1\). При этом ограничивается область определения функции \(y(x)\), т.к. \(tgx\) имеeт разрывы.
Точки разрыва отмечены на числовой окружности: \(x\ne\frac<\pi><2>+\pi k\).

Получаем: $$ \begin 1-x\\ x\ne\frac<\pi><2>+\pi k,\ \ k\in\mathbb \end $$ Строим график прямой и выкалываем точки, не входящие в ОДЗ.

Уравнение касательной к графику функции

Онлайн калькулятор для вычисления уравнения касательной к графику функции.
Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.
Вычисление значения функции y0 в точке x0:y0 = f(x0). Если исходное значение y0
задано, то переходим к п.2.
Нахождение производной y'(x).
Вычисление значения производной при x0.
Запись уравнения касательной к кривой линии в форме: yk = y0 + y'(y0)(x — x0)

Калькулятор поможет составить и решить уравнение касательной к графику функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.


источники:

http://reshator.com/sprav/algebra/10-11-klass/funkcziya-y-ctgx-svojstva-i-grafik/

http://allcalc.ru/node/689