Фазовая и групповая скорости волновое уравнение

Связь групповой и фазовой скорости.

Лекция 5: Механические волны

План:

1. Длина волны и волновое число.

2. Вывод уравнения плоской бегущей волны.

3. Уравнение плоской бегущей волны в комплексном виде.

4. Разность фаз колебаний.

6. Фазовая и скорость.

7. Групповая скорость.

8. Связь фазовой и групповой скорости.

9. Нахождение групповой скорости методом Эренфеста.

10. Уравнение сферической волны.

11. Вывод уравнения стоячей волны.

12. Координаты узлов и пучностей.

13. Энергия волн.

Длина волны и волновое число

Длиной волны – называют расстояние между ближайшими точками, колеблющимися в одинаковой фазе.

Формулы длины волны легко получить из аналогии по формуле пути:

(1)

(2)

Если период равен , (3)

то (4)

Если из (2) выразить период и приравнять его к (3), получим:

получим (5)

Или (6)

Физический смысл отношения заключается в том, что оно показывает сколько длин волн умещается в единицах длины. Отношение обозначается и называется волновым числом, т.е.

(7)

Вывод уравнения плоской бегущей волны

Бегущие волны – волны, которые переносят в пространстве энергию.

Плоские волны – волны, волновые поверхности которых – есть совокупность параллельных плоскостей, перпендикулярных направлению распространения волны.

Лучи в этом случае – параллельные прямые, совпадающие с направлением скорости распространения волны.

Пусть плоская бегущая волна распространяется вдоль оси X, т.е. вдоль одного направления из точки А в точку В как показано на рисунке:

Пусть источник колебаний в начальный момент времени находится в точке О.

Запишем уравнение колебания:

(8)

Рассмотрим распространение волны от точки М до точки В. Из рисунка видно, что время , затраченное на этот путь равно , где — это время, за которое волна распространилась от источника колебаний до точки М.

Перейдем от уравнения колебаний к уравнению плоской бегущей волны:

(9)

(10)

Т.к. за время волна распространилась на расстояние , тогда

(11)

(12)

(13)

Будем считать начальную фазу .

Тогда согласно уравнению (6), получаем: (14)

Если в уравнении (14) , а , то получим четвертый вид уравнения плоской бегущей волны (при ):

первый вид уравненияплоской бегущей волны
второй вид уравненияплоской бегущей волны
третий вид уравненияплоской бегущей волны
четвертый вид уравненияплоской бегущей волны

— смещение точек среды с координатой x в момент времени t.

Уравнение плоской бегущей волны в комплексном виде.

Уравнение плоской бегущей волны можно представить в комплексном виде, используя формулу Эйлера:

(15)

Если , то

(16)

Т.к. физический смысл имеет только реальная часть, получаем:

, (17)

Получаем уравнение плоской бегущей волны комплексном виде:

(18)

— уравнения плоскойбегущей волны в комплексном виде

Разность фаз колебаний

Фаза рассчитывается из определения углового перемещения:

(19)

(20)

(21)

Виды волн

Основное свойство всех волн – перенос частицами среды энергии без переноса вещества.

Различают продольные и поперечные волны.

Волны, в которых частицы среды колеблются вдоль их распространения, называются продольными.

Волны, в которых частицы среды колеблются в плоскостях, перпендикулярных к направлению распространения волны, называются поперечными.

Продольные волны распространяются в жидкостях и газах

В твердой среде возникают как продольные, так и поперечные

Фазовая скорость

Пусть в волновом процессе фаза = const, т.е.

(22)

(23)

После дифференцирования, получим:

(24)

или (25)

Вывод: скорость распространения волны есть скорость перемещения фазы волны, поэтому ее называют фазовой скоростью и обозначают: :

Т.к. , отсюда (26)

Дисперсией называется зависимость фазовой скорости в среде от частоты распространение волн (дисперсия всегда связана с поглощением энергии средой)

Групповая скорость

Рассмотрим простейшую группу волн, которая получается при наложении двух плоских волн с одинаковыми амплитудами и близкими частотами и близкими волновыми числами :

(27)

Это волна отличается от гармонической тем, что ее амплитуда есть медленно изменяющаяся функция координаты от времени, т.е. является негармонической.

(28)

— амплитуда группы волн

Групповая скорость– скорость распространения группы волн,

Групповая скорость– скорость максимума огибающей группы волн или скорость движения центра волнового пакета.

Из условия (29)

получим: (30)

(31)

— групповая скорость

Связь групповой и фазовой скорости.

Групповая скорость определяется выражением:

(32)

Определим отдельно выражения для и :

1) — ?

Из выражения выразим угловую скорость: (33)

Продифференцируем это выражение по k: (34)

2) — ?

Выражения продифференцируем по :

или (35)

Подставим выражения (34) и (35) в выражение для групповой скорости (32), получим:

(36)

(37)

(38)

— связь фазовой и групповой скорости

Из (38) следует, что может быть как больше, так и меньше фазовой в зависимости от знака .

Если в среде не наблюдается дисперсия волн, то , тогда фазовая и групповая скорости совпадают .

Понятие групповой скорости очень значимо, т.к. именно она фигурирует при измерении дальности радиолокации, в управлении космическими объектами.

Но , а для ограничений нет.

9. Нахождение групповой скорости методом Эренфеста

Зависимость групповой скорости от длины волны позволяет определить значение групповой скорости.

Для этого нужно провести касательную к точке с координатами и . Можно найти отрезок, отсекаемый касательной на оси ординат, равный значению групповой скорости.

Лекция №10. Механические волны

6.5. Волновой перенос энергии и его характеристики: поток, плотность потока, интенсивность

Пусть в некоторой среде распространяется в направлении оси 0х плоская продольная волна $$S=Acos(ωt-kx+φ)$$ . Выделим в среде элементарный объем ΔV , настолько малый, чтобы скорость движения и деформацию во всех точках этого объема можно было считать одинаковыми и равными. Выделенный объем обладает кинетической энергией $$K=<1 \over 2>mv^2$$ . Если масса $$m=ρΔV$$ , а $$v=<∂S \over ∂t>$$ , то

Потенциальная энергия упругой деформации рассматриваемого объема

где $$k=$$ ; $$l_0$$ − первоначальная длина рассматриваемого объема; $$ε=<Δl \over l_0>$$ − относительная деформация объема; $$ΔV=$$ − первоначальный объем. Используя формулу (6.4.8) и, учитывая, что $$ε=<∂S \over ∂x>$$ , получим

Тогда полная энергия упругой волны

Определим плотность энергии, разделив (6.5.4) на объем ΔV

Продифференцируем уравнение плоской продольной волны (6.2.8) по времени t и по координате х и подставим выражения в формулу (6.5.5) учтя, что $$k^2υ^2=ω^2$$

Среднее значение квадрата синуса равно 1/2. Соответственно среднее по времени значение плотности энергии в каждой точке среды равно

Таким образом, плотность энергии и среднее значение плотности энергии пропорциональны плотности среды ρ , квадрату частоты ω и квадрату амплитуды волны А .

Количество энергии, переносимое волной через некоторую поверхность в единицу времени, называется потоком энергии через эту поверхность. Поток энергии Ф через данную поверхность равен энергии dW переносимой за время dt

Ф измеряется в ваттах.

Для характеристики распространения энергии в разных точках пространства вводится векторная величина, называема плотностью потока энергии. Плотность потока энергии численно равна потоку энергии через единичную площадку ΔS , помещенную в данной точке перпендикулярно к направлению, в котором переносится энергия. Направление вектора плотности потока энергии совпадает с направлением переноса энергии.

Если через площадку ΔS , перпендикулярную к направлению распространения волны, переносится энергия ΔW за время Δt , то плотность потока энергии равна

Рассмотрим объем цилиндра с основанием ΔS и высотой υΔt ( υ − фазовая скорость волны). В случае малого объема цилиндра, плотность энергии во всех точках цилиндра можно было считать одинаковой и поэтому энергию можно найти как произведение плотности энергии ω на объем ΔV=ΔSυΔt

Подставив выражение (6.5.10) в последнее выражение, получим

где j − вектор плотности потока энергии, называемый вектором Умова.

Интенсивность волны равна

Данное выражение справедливо для волны любого вида.

Определим поток энергии через поверхность S . Для этого разобьем поверхность на элементарные участки dS . За время dt через площадку dS пройдет энергия dW . Объем цилиндра, где вычисляется энергия, равен $$dV = υdtdScosϕ$$ . Тогда в этом объеме содержится энергия

где d S = n dS ; n − единичный вектор нормали к поверхности dS .

Поток энергии через элементарную поверхность dS

Поток энергии через поверхность S равен

6.6. Фазовая и групповая скорости волн

Скорость распространения волны есть скорость перемещения фазы и называется фазовой скоростью. Фазовая скорость равна

Если в среде распространяется одновременно несколько волн, то колебания частиц среды оказываются геометрической суммой колебаний, которые совершали бы частицы при распространении каждой из волн в отдельности, и к ним применим принцип суперпозиции волн: при распространении в линейной среде (т. е. среде снеизменяющимися свойствами) нескольких волн, каждая из них распространяется так, как будто другие волны отсутствуют, а результирующее смещение частицы среды равно геометрической сумме смещений, которые получают частицы, участвуя в каждом из слагающих волновых процессов.

Используя принципа суперпозиции, любая волна может быть представлена в виде волнового пакета. Волновым пакетом называется суперпозиция волн, мало отличающихся друг от друга по частоте, занимающая в каждый момент времени ограниченную область пространства. Простейший волновой пакет двух распространяющихся вдоль положительного направления оси Х гармонических волн с одинаковыми амплитудами, близкими частотами и волновыми числами, причем

Эта волна отличается от гармонической тем, что ее амплитуда

медленно изменяющаяся функция координаты х и времени t .

За скорость распространения волнового пакета принимают скорость перемещения максимума амплитуды волны. При условии, что $$tdω-xdk=const$$ , получим

где υгр – групповая скорость. Рассмотрим связь между групповой и фазовой скоростями. Учитывая, что волновое число $$k=<2π \over λ>$$ и $$dk=-<2π \over λ^2>dλ=-dλ$$ , получим

В теории относительности доказывается, что групповая скорость υгр ≤ c , в то время как для фазовой скорости ограничений не существует.

6.7. Интерференция упругих волн

Для того чтобы рассмотреть интерференцию волн, введем понятие когерентности . Согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов связано с понятием когерентности. Волны называются когерентными , если разность их фаз остается постоянной во времени. При наложении в пространстве двух или нескольких когерентных волн в разных его точках получается усиление или ослабление результирующей волны в зависимости от соотношения между фазами этих волн. Это явление называется интерференцией волн, и заключается в том, что колебания в одних точках усиливают, а в других ослабляют друг друга.

Рассмотрим наложение двух когерентных сферических волн, возбуждаемых точечными источниками $$S_1$$ и $$S_2$$ , колеблющимися с одинаковыми амплитудой, частотой, нулевой начальной фазой и постоянной разностью фаз. Запишем уравнения колебаний:

где $$r_1$$ и $$r_2$$ − расстояния от источников волн до рассматриваемой точки.

Амплитуда результирующей волны равна (сложение одинаково направленных колебаний)

Так как разность начальных фаз $$(ϕ_1-ϕ_2)=<2π \over λ>(r_2-r_1)=<2π \over λ>Δ=const$$ , то результат наложения двух волн в различных точках зависит от величины $$Δ=r_2-r_1$$ , называемой разностью хода волн.

В точках, где выполняется условие

Так как квадрат амплитуды колебаний пропорционален интенсивности волны, то получаем

То есть наблюдается усиление интенсивности (увеличение амплитуду) результирующей волны или интерференционный максимум.

2) В точках, где выполняется условие

То есть наблюдается ослабление интенсивности (уменьшение амплитуды) результирующей волны или интерференционный минимум.

Таким образом, в результате наложения двух когерентных волн в среде возникают колебания, амплитуда которых различна в разных точках среды, при этом в каждой точке среды получается или максимум амплитуды, или минимум амплитуды, или ее промежуточное значение − в зависимости от значения разности расстояний точки до когерентных источников. Интерференция света приводит к перераспределению энергии волны между соседними областями, хотя в среднем для больших областей энергия остается неизменной.

6.8. Стоячие волны

Рассмотрим интерференцию стоячих волн. Стоячие волны − это волны, образующиеся при наложении двух бегущих волн, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами.

Запишем уравнение двух плоских волн, распространяющихся вдоль оси Х в противоположных направлениях

Сложив вместе эти уравнения и преобразовав результат по формуле для суммы косинусов, получим уравнение стоячей волны

Из данного уравнения видно, что в каждой точке стоячей волны происходят колебания той же частоты, что и у встречных волн, причем амплитуда зависит от координаты х

Точки, в которых амплитуда колебаний достигает максимального значения и координаты которых удовлетворяют условию

где m = 0, 1, 2, … называются пучностями стоячей волны.

Точки, в которых амплитуда колебаний обращается в нуль и координаты которых удовлетворяют условию

где m = 0, 1, 2, … называются узлами стоячей волны.

Волновой пакет. Фазовая и групповая скорость электромагнитной волны

Всякая реальная электромагнитная волна представляет собой суперпозицию (наложение) волн, частоты которых заключены в некотором интервале Dw. Суперпозиция волн, мало отличающихся по частоте (или длине волн), называется волновым пакетом (или группой волн). Уравнение группы волн имеет вид:

. (2.5.1)

Волны, образующие пакет, отличаются друг от друга по l, а, следовательно, и по . В некоторый момент времени t отличие по фазе складываемых волн для разных х будет различным, так как в одних точках волны усиливают друг друга больше, а в других меньше (рис.2.5.1).

В том месте, где в данный момент волны больше всего усиливают друг друга, будет наблюдаться максимум. С течением времени максимум будет перемещаться с некоторой скоростью — называемой групповой. Получим выражение для групповой скорости на примере наложения двух плоских волн с одинаковыми амплитудами и близкими частотами:

Будем считать, что Dw

Дата добавления: 2015-07-22 ; просмотров: 2837 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


источники:

http://physics.belstu.by/mechanics_lk/mechanics_lk10.html

http://helpiks.org/4-19747.html