Фиктивные переменные включаются в уравнения

Оценка параметров линейных уравнений регрессии

Спецификация модели

+наука, которая дает количественное выражение взаимосвязей экономических явлений и процессов

-раздел экономической теории, связанный с анализом статистической информации

-специальный раздел математики, посвященный анализу экономической информации

-наука, которая осуществляет качественный анализ взаимосвязей экономических явлений и процессов

#Основной задачей эконометрики является…

+исследование взаимосвязей экономических явлений и процессов

-отражение особенностей социального развития общества

-установление связей между различными процессами в обществе и технических процессом

— анализ технического прогресса на примере социально–экономических показателей

#При выборе спецификации модели парная регрессия используется в случае, когда …

+среди множества факторов, влияющих на результат можно выделить доминирующий фактор

-среди множества факторов, влияющих на результат нельзя выделить доминирующий фактор

-среди множества факторов, влияющих на результат можно выделить несколько факторов

-среди множества факторов, влияющих на результат можно выделить лишь случайные факторы

#Объем выборки должен превышать число рассчитываемых параметров при исследуемых факторах …

#К ошибкам спецификации относится …

+неправильный выбор той или иной математической функции

-однородность выбранной совокупности

-учет в модели случайных факторов

— учет в модели существенных факторов

#Относительно формы зависимости различают …

+линейную и нелинейную регрессии

-простую и множественную регрессии

-непосредственную и косвенную регрессии

-положительную и отрицательную регрессии

#Относительно количества факторов, включенных в уравнение регрессии различают …

+простую и множественную регрессии

-линейную и нелинейную регрессии

-непосредственную и косвенную регрессии

— множественную и многофакторную регрессии

#Простая линейная регрессия предполагает …

+наличие одного фактора и линейность уравнения регрессии

-наличие двух и более факторов и линейность уравнения регрессии

-наличие одного фактора и нелинейность уравнения регрессии

-наличие двух и более факторов и нелинейность уравнения регрессии

#Объем выборки определяется …

+числом параметров при независимых переменных

-числом результативных переменных

-объемом генеральной совокупности

-числовыми значениями переменных отбираемых в выборку

#Дано уравнение регрессии . Определите спецификацию модели.

+линейное уравнение множественной регрессии

-линейное уравнение простой регрессии

-полиномиальное уравнение множественной регрессии

— полиномиальное уравнение парной регрессии

#Выбор формы зависимости экономических показателей и определение количества факторов в модели называется _____________ эконометрической модели.

#Коэффициент парной корреляции характеризует …

+тесноту линейной связи между двумя переменными

-тесноту нелинейной связи между двумя переменными

-тесноту линейной связи между несколькими переменными

-тесноту нелинейной связи между несколькими переменными

#Мультиколлинеарность факторов эконометрической модели подразумевает …

+наличие линейной зависимости между более чем двумя факторами

-наличие линейной зависимости между двумя факторами

-отсутствие зависимости между факторами

-наличие нелинейной зависимости между двумя факторами

#Взаимодействие факторов эконометрической модели означает, что …

+факторы дублируют влияние друг друга на результат

-влияние одного из факторов на результирующий признак не зависит от значений другого фактора

-влияние факторов на результирующий признак усиливается, начиная с определенного уровня значений факторов

— влияние факторов на результирующий признак зависит от значений другого неколлинеарного им фактора

#Отбор факторов в модель множественной регрессии при помощи метода включения основан на сравнении значений …

+остаточной дисперсии до и после включения фактора в модель

-общей дисперсии до и после включения фактора в модель

-дисперсии до и после включения результата в модель

-остаточной дисперсии до и после включения случайных факторов в модель

#Величина остаточной дисперсии при включении существенного фактора в модель …

— будет равна нулю

#В матрице парных коэффициентов корреляции отображены значения парных коэффициентов линейной корреляции между …

-параметрами и переменными

-переменными и случайными факторами

#Матрица парных коэффициентов корреляции строится для выявления коллинеарных и мультиколлинеарных …

#Факторы эконометрической модели являются коллинеарными, если коэффициент …

+корреляции между ними по модулю больше 0,7

-детерминации между ними по модулю больше 0,7

-корреляции между ними по модулю меньше 0,7

-детерминации между ними по модулю меньше 0,7

#Из пары коллинеарных факторов в эконометрическую модель включается тот фактор …

+который при достаточно тесной связи с результатом имеет меньшую связь с другими факторами

-который при который при отсутствии связи с результатом имеет меньшую связь с другими факторами

-который при отсутствии связи с результатом имеет максимальную связь с другими факторами

-который при достаточно тесной связи с результатом имеет наибольшую связь с другими факторами

#Величина коэффициента детерминации при включении существенного фактора в эконометрическую модель …

-существенно не изменится

— будет равна нулю

#Основным требованием к факторам, включаемым в модель множественной регрессии, является …

+отсутствие взаимосвязи между факторами

-наличие тесной взаимосвязи между факторами

-отсутствие взаимосвязи между результатом и фактором

-отсутствие линейной взаимосвязи между факторами

#Фиктивными переменными в уравнении множественной регрессии являются …

+качественные переменные, преобразованные в количественные

-дополнительные количественные переменные, улучшающие решение

-комбинации из включенных в уравнение регрессии факторов, повышающие адекватность модели

-переменные, представляющие простейшие функции от уже включенных в модель переменных

#В качестве фиктивных переменных в модель множественной регрессии включаются факторы, …

+не имеющие количественных значений

-имеющие количественные значения

-не имеющие качественных значений

— имеющие вероятностные значения

#При включении фиктивных переменных в модель им присваиваются …

#Исходные значения фиктивных переменных предполагают значения …

#Проводится исследование зависимости выработки работника предприятия от ряда факторов. Примером фиктивной переменной в данной модели будет являться ____________ работника

#Строится модель зависимости спроса от ряда факторов. Фиктивной переменной в данном уравнении множественной регрессии не является __________ потребителя

#Факторные переменные уравнения множественной регрессии, преобразованные из качественных в количественные называются …

#Фиктивные переменные включаются в уравнение множественной регрессии для учета действия на результат признаков …

#Фиктивные переменные включаются в уравнения __________ регрессии

#Одним из методов присвоения числовых значений фиктивным переменным является …

-нахождение среднего значения

-выравнивание числовых значений по убыванию

-выравнивание числовых значений по возрастанию

#Методом присвоения числовых значений фиктивным переменным не является

+нахождение среднего значения

-присвоение цифровых меток

-присвоение количественных значений

#Величина коэффициента регрессии показывает …

+среднее изменение результата при изменении фактора на одну единицу

-характер связи между фактором и результатом

-тесноту связи между фактором и результатом

-тесноту связи между исследуемыми факторами

#Величина параметра a в уравнении парной линейной регрессии характеризует значение…

+результирующей переменной при нулевом значении фактора

-факторной переменной при нулевом значении результата

-результирующей переменной при нулевом значении случайной величины

-факторной переменной при нулевом значении случайного фактора

#Уравнение регрессии, которое связывает результирующий признак с одним из факторов при зафиксированном на среднем уровне значении других переменных называется …

#В линейном уравнении парной регрессии коэффициентом регрессии является значение…

#Линейное уравнение множественной регрессии имеет вид . Определите какой из факторов или оказывает более сильное влияние на у.

+по этому уравнению нельзя ответить на поставленный вопрос, так как коэффициенты регрессии несравнимы между собой

, так как 2,5 > -3,7

, так как 3,7 > 2,5

-оказывают одинаковое влияние

#В стандартизованном уравнении множественной регрессии ; . Определите какой из факторов х1 или х2 оказывает более сильное влияние на у.

+ , так как 2,1 > 0,3

, так как 0,3 > -2,1

-по этому уравнению нельзя ответить на поставленный вопрос, так как стандартизованные коэффициенты регрессии несравнимы между собой

-по этому уравнению нельзя ответить на поставленный вопрос, так как неизвестны значения «чистых» коэффициентов регрессии

#Построена модель парной регрессии зависимости предложения от цены . Влияние случайных факторов на величину предложения в этой модели учтено посредством …

+случайной величины ε

-посредством константы ε

-случайной величины x

-посредством параметра b

#Для модели зависимости дохода населения (р.) от объема производства (млн. р.) получено уравнение у = 0,003х + 1200 + ε. При изменении объема производства на 1 млн. р. доход в среднем изменится на …

#В стандартизованном уравнении множественной регрессии переменными являются …

-средние значения исходных переменных

#Показатель, характеризующий на сколько сигм изменится в среднем результат при изменении соответствующего фактора на одну сигму, при неизменном уровне других факторов называется __________ коэффициентом регрессии

#В стандартизованном уравнении свободный член …

-равен коэффициенту множественной корреляции

-равен коэффициенту множественной детерминации

Оценка параметров линейных уравнений регрессии

#Метод наименьших квадратов используется для оценивания …

+параметров линейной регрессии

-величины коэффициента корреляции

-величины коэффициента детерминации

-средней ошибки аппроксимации

#Метод наименьших квадратов не применимдля …

+уравнений нелинейных по оцениваемым параметрам

-линейных уравнений множественной регрессии

-линейных уравнений парной регрессии

-полиномиальных уравнений множественной регрессии

#В основе метода наименьших квадратов лежит …

+минимизация суммы квадратов отклонений фактических значений результативного признака от его теоретических значений

-равенство нулю суммы квадратов отклонений фактических значений результативного признака от его теоретических значений

-максимизация суммы квадратов отклонений фактических значений результативного признака от его теоретических значений

-минимизация суммы квадратов отклонений фактических значений результативного признака от его средних значений

#Систему МНК, построенную для оценки параметров линейного уравнения множественной регрессии можно решить …

-методом первых разностей

-методом скользящего среднего

#В исходном соотношении МНК сумма квадратов отклонений фактических значений результативного признака от его теоретических значений …

-приравнивается к нулю

-приравнивается к системе нормальных уравнений

#Метод наименьших квадратов позволяет оценить _____________ уравнений регрессии

-параметры и переменные

-переменные и случайные величины

#Оценки параметров уравнений регрессии при помощи метода наименьших квадратов находятся на основании решения …

+решения системы нормальных уравнений

-решения двойственной задачи

-решения уравнения регрессии

-решения системы нормальных неравенств

#Оценки параметров линейного уравнения множественной регрессии можно найти при помощи метода …

+метода наименьших квадратов

-метода наибольших квадратов

-метода средних квадратов

-метода нормальных квадратов

#Метод наименьших квадратов применяется для оценки …

+параметров линейных уравнений регрессии

-качества линейных уравнений регрессии

-уравнений регрессии, нелинейных по параметрам

-качества уравнений, нелинейных по параметрам

#Система нормальных уравнений метода наименьших квадратов строится на основании …

+таблицы исходных данных

-предсказанных значений результативного признака

-отклонений фактических значений результативного признака от его теоретических значений

-отклонений фактических значений объясняющей переменной от ее теоретических значений

#Требованием к уравнениям регрессии, параметры которых можно найти при помощи МНК является …

-равенство нулю средних значений результативной переменной

-равенство нулю средних значений факторного признака

#Несмещенность оценки характеризует …

+равенство нулю математического ожидания остатков

-наименьшую дисперсию остатков

-увеличение точности ее вычисления с увеличением объема выборки

-ее зависимость от объема выборки

#Если оценка параметра эффективна, то это означает …

+наименьшую дисперсию остатков

-равенство нулю математического ожидания остатков

-максимальную дисперсию остатков

-уменьшение точности с увеличением объема выборки

#Состоятельность оценки характеризуется .

+увеличением ее точности с увеличением объема выборки

-независимостью от объема выборки значения математического ожидания остатков

-уменьшением ее точности с увеличением объема выборки

-зависимостью от объема выборки значения математического ожидания остатков

#Несмещенность оценки на практике означает …

+что при большом числе выборочных оцениваний остатки не будут накапливаться

-что найденное значение коэффициента регрессии нельзя рассматривать как среднее значение из возможного большого количества несмещенных оценок

-невозможность перехода от точечного оценивания к интервальному

-уменьшение точности с увеличением объема выборки

#Эффективность оценки на практике характеризуется …

+возможностью перехода от точечного оценивания к интервальному

-отсутствием накапливания значений остатков при большом числе выборочных оцениваний

-невозможностью перехода от точечного оценивания к интервальному

-уменьшением точности с увеличением объема выборки

#Свойствами оценок МНК являются …

+эффективность, состоятельность и несмещенность

-эффективность, состоятельность и смещенность

-эффективность, несостоятельность и смещенность

-эффективность, несостоятельность и несмещенность

#Увеличение точности оценок с увеличением объема выборки описывает свойство _______ оценки.

#Математическое ожидание остатков равно нулю, если оценки параметров обладают свойством …

#Минимальная дисперсия остатков характерна для оценок, обладающих свойством …

#Переход от точечного оценивания к интервальному возможен, если оценки являются …

+ эффективными и несмещенными

-эффективными и несостоятельными

-неэффективными и состоятельными

-состоятельными и смещенными

#При примени метода наименьших квадратов исследуются свойства …

+оценок параметров уравнения регрессии

-оценок переменных уравнения регрессии

-оценок случайных величин уравнения регрессии

-оценок переменных и параметров уравнения регрессии

+одинаковую дисперсию остатков при каждом значении фактора

-рост дисперсии остатков с увеличением значения фактора

-уменьшение дисперсии остаток с уменьшением значения фактора

-максимальную дисперсию остатков при средних значениях фактора

#Предпосылкой метода наименьших квадратов является то, что…

+остаточные величины имеют случайный характер

-остаточные величины имеют неслучайный характер

-при увеличении моделируемых значений результативного признака значение остатка увеличивается

-при уменьшении моделируемых значений результативного признака значение остатка уменьшается

+зависимость дисперсии остатков от значения фактора

-постоянство дисперсии остатков независимо от значения фактора

-независимость математического ожидания остатков от значения фактора

-зависимость математического ожидания остатков от значения фактора

#Предпосылкой метода наименьших квадратов является то, что остатки…

+подчиняются закону нормального распределения

-не подчиняются закону нормального распределения

-подчиняются закону больших чисел

-не подчиняются закону больших чисел

#Предпосылки метода наименьших квадратов исследуют поведение …

-параметров уравнения регрессии

-переменных уравнения регрессии

#Предпосылкой метода наименьших квадратов является …

+отсутствие автокорреляции в остатках

-присутствие автокорреляции в остатках

-отсутствие корреляции между результатом и фактором

-присутствие автокорреляции между результатом и фактором

#Предпосылкой метода наименьших квадратов не является условие …

+неслучайного характера остатков

-отсутствия автокорреляции в остатках

-случайного характера остатков

#Случайный характер остатков предполагает …

+независимость остатков от величины предсказанных по модели значений результативного признака

-зависимость остатков от величины предсказанных по модели значений результативного признака

-зависимость предсказанных по модели значений результативного признака от значений факторного признака

-независимость предсказанных по модели значений результативного признака от значений факторного признака

#Отсутствие автокорреляции в остатках предполагает, что значения ______ не зависят друг от друга

#Оценки параметров, найденные при помощи метода наименьших квадратов обладают свойствами эффективности, состоятельности и несмещенности, если предпосылки метода наименьших квадратов …

-можно не учитывать

#Если предпосылки метода наименьших квадратов нарушены, то …

+оценки параметров могут не обладать свойствами эффективности, состоятельности и несмещенности

-коэффициент регрессии является несущественным

-коэффициент корреляции является несущественным

-полученное уравнение статистически незначимо

#Обобщенный метод наименьших квадратов применяется в случае…

#Обобщенный метод наименьших квадратов используется для корректировки…

+гетероскедастичности остатков в уравнении регрессии

-автокорреляции между независимыми переменными

-параметров нелинейного уравнения регрессии

-точности определения коэффициента множественной корреляции

#Обобщенный метод наименьших квадратов подразумевает …

-линеаризацию уравнения регрессии

-двухэтапное применение метода наименьших квадратов

-переход от множественной регрессии к парной

#Обобщенный метод наименьших квадратов рекомендуется применять в случае …

-нормально распределенных остатков

-автокорреляции результативного признака

#При применении метода наименьших остатков уменьшить гетероскедастичность остатков удается путем …

-введения дополнительных факторов в модель

-введения дополнительных результатов в модель

#На основании преобразования переменных при помощи обобщенного метода наименьших квадратов получаем новое уравнение регрессии, которое представляет собой …

+взвешенную регрессию, в которой переменные взяты с весами

-нелинейную регрессию, в которой переменные взяты с весами

-взвешенную регрессию, в которой переменные взяты с весами

-нелинейную регрессию, в которой переменные взяты с весами

#Обобщенный метод наименьших квадратов не используется для моделей с _______ остатками

-автокоррелярованными и гетероскедастичными

#Что преобразуется при применении обобщенного метода наименьших квадратов?

+исходные уровни переменных

-дисперсия результативного признака

-дисперсия факторного признака

-стандартизованные коэффициенты регрессии

#Обобщенный метод наименьших квадратов отличается от обычного МНК тем, что при применении ОМНК…

+преобразуются исходные уровни переменных

-уменьшается количество наблюдений

-остатки приравниваются к нулю

-остатки не изменяются

#После применения обобщенного метода наименьших квадратов удается избежать ______ остатков

-равенства нулю суммы

#Метод оценки параметров моделей с гетероскедастичными остатками называется …методом наименьших квадратов

Фиктивные переменные в регрессионной модели 1 страница

В линейную модель множественной регрессии, как правило, включаются количественные факторы X1, X2, …, Xp, принимающие значения из некоторого интервала, непрерывного либо дискретного. Однако может возникнуть необходимость учесть влияние на зависимую переменную Y и факторов, не измеряемых в числовой шкале (например, формы собственности предприятия, сезонности, региона, климатических условий, пола работника, его уровня образования и т.п.). Такие качественные факторы могут иметь два и более атрибута (градации). Чтобы ввести качественный фактор в регрессионную модель, его необходимо преобразовать в количественную переменную, т.е. присвоить каждому атрибуту те или иные числовые значения. Эту преобразованную переменную называют фиктивной (условной), а модель регрессии, включающую в себя хотя бы одну фиктивную переменную, называют моделью с переменной структурой. Основной целью построения такой модели является учет влияния неоднородности качественной структуры исследуемой совокупности.

В качестве фиктивных обычно используют бинарные переменные, принимающие только два значения (уровня): «0» или «1». Такие переменные также называются двоичными, дихотомическими, альтернативными, или булевыми. К примеру, если необходимо изучить зависимость общей рентабельностипредприятия Y не только от количественных факторов X1, X2, …, Xp, но и от фактора «форма собственности», то в модель вводят фиктивную переменную Z1, принимающую значения: z1=1 — если предприятие негосударственное и z1=0 — если предприятие государственное.

Регрессионная модель рентабельности, в этом случае, примет вид:

.(3.58)

Параметр регрессии g1 при фиктивной переменной Z1 показывает, на сколько в среднем рентабельность негосударственных предприятий в исследуемой совокупности выше, чем государственных при неизменных значениях остальных факторов X1, X2, …, Xp. Если не учитывать различия, связанные с формой собственности, то они могут либо уйти в остаточную вариацию результата Y, ухудшив модель, либо смешаться с влиянием тех или иных количественных факторов, искажая меру их влияния на Y.

В модель множественной регрессии можно одновременно ввести несколько фиктивных переменных Z1, Z2, …, Zu:

.(3.59)

Обычно значение, равное единице, присваивают фиктивной переменной для той группы исследуемых объектов, у которых значение результата Y предположительно в среднем выше, чем у объектов альтернативной группы. Положительный знак коэффициента уравнения регрессии при фиктивной переменной и его статистическая значимость в дальнейшем подтверждают это предположение. При отрицательном знаке следует сделать обратный вывод.

Применение фиктивной переменной с другими значениями или с большим числом уровней затрудняет содержательную экономическую интерпретацию соответствующего коэффициента уравнения регрессии. Например, если число k уровней качественного признакаболее двух ( ), то в принципе в регрессионную модель можно было бы ввести дискретную переменную, принимающую такое же количество значений. Так, если расширить трактовку фактора «форма собственности» до трех групп: государственные, кооперативные и частные предприятия, то при построении модели рентабельности можно рассматривать три значения (k=3) фиктивной переменной Z1, например: z1=1 — если предприятие государственное, z1=2 — если кооперативное, и z1=3 — если частное. Однако содержательная интерпретация коэффициента уравнения регрессии при Z1 тогда будет невозможна. Вместо этого в модель следует ввести бинарных переменных и для учета влияния формы собственности включают бинарные переменные — Z11 и Z12:

,(3.60)

где z11=1 — если предприятие частное, z11=0 — во всех остальных случаях; z12=1 — если предприятие кооперативное, z12=0 — во всех остальных случаях.

Третьей бинарной переменной, очевидно, не требуется: еслипредприятие государственное, то это будет отражено парой значений z11=0 и z12=0. Более того, вводить третью бинарную переменную Z13 со значениями z13=1, если предприятие государственное и z13=0 — в остальных случаях, нельзя, так как это приведет к невозможности получения оценок параметров модели при фиктивных переменных методом наименьших квадратов.

Параметры модели при Z11 и Z12 интерпретируются следующим образом. Параметр g11 показывает, на сколько средняя рентабельность частных предприятий при прочих равных условиях выше средней рентабельности государственных предприятий, которые приняты за базу для сравнения. Аналогично параметр g12 показывает превышение средней рентабельности кооперативных предприятий над этим показателем у государственных предприятий.

Модели регрессии (3.58) — (3.60) называются моделями без ограничений. Если значения каких-либо фиктивных переменных равны нулю, то получаются частные модели регрессии. Так, если в модели (3.60) все значения фиктивных переменных равны нулю: z11=0 и z12=0, то получается модель (3.2), которая в этом случае называется базисной моделью, или моделью регрессии с ограничениями. Данная модель является частной моделью государственного предприятия. Частная модель регрессии частного предприятия (z11=1, z12=0) образуется путем добавления параметра g11 к свободному коэффициенту b0:

.(3.61)

Аналогично частная модель кооперативного предприятия (z11=0, z12=1):

.(3.62)

На практике могут использоваться регрессионные модели только с фиктивными переменными-факторами. Пусть, например, изучаются различия в средней стоимости квадратного метра общей площади квартиры (переменная Y), в зависимости от района города, типа дома и этажа (фиктивные переменные Z1, Z2 и Z3 соответственно). Модель регрессии в этом случае может иметь вид:

,(3.63)

где z1=1 — если дом расположен в центральном районе города, z1=0 — если дом расположен в периферийном районе; z2=1 — если дом кирпичный, z2=0 — если дом панельный; z3=1 — если квартира расположена на средних этажах, z3=0 — если квартира расположена на крайних этажах.

Базисной моделью здесь является модель средней стоимости квадратного метра квартиры на крайних этажах (z3=0) в панельном доме (z2=0), расположенном в периферийном районе города (z1=0). Параметр g0 модели (3.63) и показывает среднюю стоимость квадратного метра такой квартиры. Параметр g1 характеризует разницу в средней стоимости квадратного метра квартир, расположенных в центральном и периферийном районах города, параметр g2 — эту разницу в зависимости от типа дома, параметр g3 — в зависимости от этажа.

Параметры модели с фиктивными переменными оцениваются по исходным данным обычным методом наименьших квадратов. Предварительно следует провести проверку на коллинеарность, причем как фиктивных переменных между собой, так и фиктивных переменных с количественными факторами (см. § 3.4).

Уравнение регрессии модели (3.59) выглядит следующим образом:

,(3.64)

После построения уравнения регрессии проверяется его статистическая значимость в целом и значимость отдельных коэффициентов соответственно по критериям Фишера и Стьюдента. Значимость коэффициента при фиктивной переменной на принятом уровне значимости a свидетельствует о существенном (значимом) различии между значениями результата Y для разных уровней фиктивной переменной и, соответственно, групп исследуемых объектов.

Если значимость коэффициентапри фиктивной переменной не установлена, то разница между градациями соответствующего качественного фактора признается несущественной. Если значение t-статистики при этом превышает по абсолютной величине единицу, то фиктивная переменная все же может считаться в какой-то степени информативной. Однако, если t-статистика по абсолютной величине меньше единицы, то соответствующую фиктивную переменную следует исключить из модели и заново построить уравнение регрессии уже без нее. Следует, однако, учитывать, что незначимость коэффициента при фиктивной переменной может быть вызвана и недостаточным объемом выборки.

Возвратимся к рассмотренным выше примерам. Пусть строится модель с одной фиктивной переменной (3.58) и уравнение регрессии будет иметь вид:

.(3.65)

Если коэффициент g1 признается статистически значимым на принятом уровне a, то это означает, что разница между рентабельностью частных и государственных предприятий в исследуемой совокупности признается существенной, а фиктивная переменная Z1 введена в модель обоснованно.

Пусть, к примеру, исследуется зависимость рентабельности однородных предприятий (зависимая переменная Y, %) от стоимости основных фондов (фактор X1, млн. руб.) и формы собственности (фиктивная переменная Z1: z1=1— если предприятие негосударственное, z1=0 — если предприятие государственное), и по имеющимся данным было получено уравнение регрессии

.

Базисной моделью здесь является модель рентабельности государственного предприятия (z1=0), уравнение регрессии которой

.

Предположим, что коэффициент при фиктивной переменной Z1 оказался статистически значимым на принятом уровне a=0,05. Тогда можно утверждать, что рентабельность негосударственных предприятий в среднем на 4,34 % выше, чем государственных. Коэффициент регрессии при переменной X1 показывает, что рост стоимости основных фондов на 1 млн. руб. приводит в среднем к снижению рентабельности на 0,032 % как государственных, так и негосударственных предприятий.

Уравнение регрессии модели (3.60) выглядит следующим образом:

.(3.66)

Пусть, к примеру, коэффициент g11 оказался статистически значимым, а коэффициент g12 — незначимым. Тогда разница между рентабельностью частных и государственных предприятий признается существенной, а разница между рентабельностью кооперативных и государственных предприятий — несущественной. Если t-статистика коэффициента g12 при этом по абсолютной величине меньше единицы, то фиктивную переменную Z12 следует исключить из модели и перейти к построению модели с одной фиктивной переменной (3.58).

Допустим, исследуется зависимость рентабельности однородных предприятий (зависимая переменная Y, %) от стоимости основных фондов (переменная X1, млн. руб.) и формы собственности (бинарные переменные Z11 и Z12: z11=1 — если предприятие частное, z11=0 — во всех остальных случаях; z12=1 — если предприятие кооперативное, z12=0 — во всех остальных случаях), и было построено уравнение регрессии

.

Видно, что рост стоимости основных фондов на 1 млн. руб. приводит к снижению рентабельности всех предприятий в среднем на 0,028 %.

Базисной моделью здесь является модель рентабельности государственного предприятия (z11=0, z12=0), для которой уравнение регрессии

.

Пусть коэффициенты при фиктивных переменных Z11 и Z12 оказались статистически значимыми на принятом уровне a=0,05. Уравнение регрессии частной модели рентабельности частного предприятия (z11=1, z12=0) примет вид:

.

Таким образом, средняя рентабельность частных предприятий при одинаковой стоимости основных фондов на 2,76 % выше средней рентабельности государственных предприятий.

Аналогично для кооперативных предприятий (z11=0, z12=1) уравнение регрессии частной модели

.

Видно, что рентабельность кооперативных предприятий оказалась в среднем на 1,98 % выше рентабельности государственных предприятий.

Разница между коэффициентами при фиктивных переменных Z11 и Z12%, показывает, на сколько в среднем рентабельность частных предприятий выше рентабельности кооперативных предприятий.

Уравнение регрессии модели только с фиктивными переменными (3.63) будет иметь вид:

.(3.67)

Пусть, например, по имеющимся данным было получено уравнение регрессии модели средней стоимости квадратного метра квартиры

,

и все коэффициенты при фиктивных переменныхоказались статистически значимыми на принятом уровне a. Эти коэффициенты интерпретируются следующим образом: средняя стоимость квадратного метра квартиры на крайних этажах (z3=0) в панельном доме (z2=0), расположенном в периферийном районе города (z1=0), составляет 532,1 у.е.; если дом располагается в центральном районе, то средняя стоимость квадратного метра возрастает на 187,6 у.е.; кирпичный дом дополнительно повышает среднюю стоимость квадратного метра на 142,4 у.е., а расположение квартиры на средних этажах — на 92,3 у.е.

Следует иметь в виду, что надежные оценки параметров модели (3.63) могут быть получены только при построении уравнения регрессии по достаточно большому числу наблюдений. Обычно при построении такой модели объем выборки должен превышать число факторов в шесть и более раз.

Решение типовых задач

Пример 3.1

Изучается зависимость чистой годовой прибылистраховой компании (зависимая переменная Y, тыс. руб.) от следующих факторов:

· X1 — годовой размер собственных средств (тыс. руб.);

· X2 — годовой размер страховых резервов (тыс. руб.);

· X3 — годовой размер страховых премий (тыс. руб.);

· X4 — годовой размер страховых выплат (тыс. руб.);

· X5 — численность страховых агентов;

· X6 — форма собственности (0 — государственная, 1 — частная):

КомпанияYX1X2X3X4X5X6
1. А
2. Б
3. В
4. Г
5. Д
6. Е
7. Ж
8. З
9. И
10. К
11. Л
12. М
13. Н
14. О
15. П
16. Р
17. С
18. Т
19. У
20. Ф
21. Х
22. Ц
23. Ч
24. Ш
25. Щ
26. Ю
27. Я

1. Составить матрицу парных коэффициентов корреляции между всеми исследуемыми переменными и выявить коллинеарные факторы.

2. Построить уравнение линейной регрессии с полным перечнем факторов. Оценить статистическую значимость уравнения и его коэффициентов с помощью критериев Фишера и Стьюдента.

3. Построить уравнение регрессии, не содержащее коллинеарных факторов. Проверить статистическую значимость уравнения и его коэффициентов.

4. Построить уравнение регрессии, содержащее только информативные факторы. Проверить статистическую значимость уравнения и его коэффициентов.

Пункты 5 — 9 относятся к уравнению регрессии, построенному при выполнении пункта 4.

5. Оценить качество и точность уравнения регрессии.

6. Дать экономическую интерпретацию коэффициентам уравнения регрессии и сравнительную оценку силы связи факторов с результатом.

7. Построить график остатков и проверить выполнение предпосылок обычного метода наименьших квадратов.

8. Рассчитать прогнозное значение годовой прибыли Y, если прогнозные значения факторов составят 75 % от своих максимальных значений.

9. Построить доверительный интервал прогноза фактического значения годовой прибыли Y c надежностью 80 %.

Для решения задачи используем табличный процессор EXCEL.

1. С помощью надстройки «Анализ данных… Корреляция» (см. § 5.2) строим матрицу парных коэффициентов корреляции между всеми исследуемыми переменными (табл. 3.3).

Таблица3.3
Матрица парных коэффициентов корреляции
YX1X2X3X4X5X6
Y
X10,519
X2-0,2730,030
X30,6100,813-0,116
X4-0,572-0,013-0,022-0,091
X50,2970,043-0,4610,120-0,359
X60,118-0,366-0,061-0,329-0,100-0,290

Анализ значений коэффициентов корреляции между парами факторов Х1, Х2, …, Х6 показывает, что только коэффициент корреляции между факторами Х1 и Х3 превышает по абсолютной величине 0,8 (выделен в таблице заливкой). Факторы Х1 и Х3 являются, таким образом, коллинеарными.

2. С помощью надстройки «Анализ данных… Регрессия» (см. § 5.3) строим уравнение линейной регрессии с полным перечнем факторов. Результаты регрессионного анализа в EXCEL приведены в табл. 3.4. Уравнение регрессии с полным перечнем факторов имеет вид:

.

Таблица3.4
Результаты регрессионного анализа модели с полным перечнем факторов
Регрессионная статистика
Множественный R0,887
R-квадрат0,787
Нормированный R-квадрат0,723
Стандартная ошибка230,3
Наблюдения
Дисперсионный анализ
dfSSMSFЗначимость F
Регрессия3921843,8653640,612,338,20E-06
Остаток1060461,153023,1
Итого4982305,0
Уравнение регрессии
КоэффициентыСтандартная ошибкаt-статистикаP-Значение
Y-пересечение541,8610,40,8880,385
X10,06800,03781,8010,087
X2-0,05610,0359-1,5620,134
X30,06060,03041,9920,060
X4-0,09980,0250-3,9890,001
X52,6746,0110,4450,661
X6275,0108,42,5360,020

Проверим статистическую значимость уравнения регрессии. Табличное значение F-критерия Фишера можно определить с помощью встроенной функции EXCEL «FРАСПОБР» (см. § 5.4). Для уровня значимости a=0,05 и чисел степеней свободы числителя (регрессии) (где p=6 — число факторов в модели) и знаменателя (остатка) табличное оно составляет Fтаб=2,60.

Видно, что расчетное значение F-статистики Фишера

превышает табличное (см. «F» втабл. 3.4), что свидетельствует о статистической значимости уравнения регрессии в целом. На этот же факт указывает и то, что вероятность случайного формирования уравнения регрессии в том виде, в котором оно имеется, составляет 8,20×10 -6 (см. «Значимость F» втабл. 3.4), что ниже допустимого уровня значимости a=0,05.

Проверим статистическую значимость коэффициентов уравнения регрессии при факторах Х1, Х2, …, Х6 с помощью t-критерия Стьюдента:

.

Табличное значение t-критерия Стьюдента можно определить с помощью встроенной функции EXCEL «СТЬЮДРАСПОБР» (см. § 5.4). Для уровня значимости a=0,05 и числа степеней свободы остатка df=dfост=20 оно составляет tтаб=2,086. Анализ данных в табл. 3.4показывает, что табличное значение t‑критерия Стьюдента превышают по абсолютной величине t-статистики коэффициентов при факторах Х4, Х6, и эти коэффициенты признаются статистически значимыми. На тот же самый факт указывают и значения вероятности случайного формирования коэффициентов, которые ниже допустимого уровня значимости a=0,05 (см. «P-Значение»втабл. 3.4).

Что касается факторов Х1, Х2, Х3 и Х5 (выделены в табл. 3.4 заливкой), то t‑статистики их коэффициентов меньше по абсолютной величине табличного значения t-критерия Стьюдента, а «P-Значение» выше уровня a=0,05. Данные коэффициенты не признаются статистически значимыми.

Построение регрессионных моделей с фиктивными переменными

ПОСТРОЕНИЕ РЕГРЕССИОННЫХ МОДЕЛЕЙ С ФИКТИВНЫМИ ПЕРЕМЕННЫМИ

В регрессионных моделях в качестве объясняющих переменных часто приходится использовать не только количественные (определяемые численно), но и качественные переменные. Например, спрос на какое-либо благо может определяться как количественными переменными (цена данного блага), так и качественными (вкусы потребителей). Качественные показатели в численном виде представить нельзя. Возникает проблема отражения в модели влияния таких переменных на исследуемую величину.

Обычно в моделях влияние качественного фактора выражается в виде фиктивной (искусственной) переменной, которая отражает два противоположных состояния качественного фактора. В этом случае фиктивная переменная может выражаться в двоичной форме:

Переменная D называется фиктивной (искусственной, двоичной) переменной (индикатором).

Регрессионные модели, содержащие лишь качественные объясняющие переменные, называются моделями дисперсионного анализа (ANOVA-моделями).

Тогда зависимость можно выразить моделью парной регрессии:

.

Коэффициент определяет среднюю начальную заработную плату при отсутствии высшего образования. Коэффициент указывает, на какую величину отличаются средние начальные заработные платы при наличии и при отсутствии высшего образования у претендента. Проверяя статическую значимость коэффициента с помощью t-статистики, либо значимость коэффициента детерминации или F-статистики, можно определить, влияет или нет наличие высшего образования на начальную заработную плату.

Модели, в которых объясняющие переменные носят как количественный, так и качественный характер, называются моделями ковариационного анализа (ANCOVA-моделями).

Существует несколько разновидностей моделей ковариационного анализа.

1. Модели ковариационного анализа при наличии у фиктивной переменной двух альтернатив.

Рассмотрим простейшую модель с одной количественной и одной качественной переменными, имеющую два альтернативных состояния:

.

Пусть, например, Y – заработная плата сотрудника фирмы, х – стаж сотрудника, D – пол сотрудника, т. е.

Тогда ожидаемое значение заработной платы сотрудников при х годах трудового стажа будет:

Заработная плата в данном случае является линейной функцией от стажа работы.

При составлении моделей с фиктивными переменными необходимо руководствоваться следующим правилом моделирования: если качественная переменная имеет k альтернативных значений, то при моделировании используется (k – 1) фиктивных переменных. Таким образом, если переменная имеет два альтернативных значения (например, пол), то в модель можно ввести только одну фиктивную переменную.

Если не следовать данному правилу, то при моделировании исследователь попадает в ситуацию совершенной мультиколлинеарности или так называемую ловушку фиктивной переменной.

Значение качественной переменной, для которого принимается D = 0, называется базовым или сравнительным. Выбор базового значения обычно диктуется целями исследования, но может быть и произвольным.

Коэффициент в модели иногда называется дифференциальным коэффициентом свободного члена, так как он показывает, на какую величину отличается свободный член модели при значении фиктивной переменной, равном единице, от свободного члена модели при базовом значении фиктивной переменной.

2. Модели ковариационного анализа при наличии у качественных переменных более двух альтернатив.

Рассмотрим модель с двумя объясняющими переменными, одна из которых количественная, а другая – качественная. Причем качественная переменная имеет три альтернативы. Например, расходы на содержание ребенка могут быть связаны с доходами домохозяйства и возрастом ребенка: дошкольный, младший школьный и старший школьный. Так как качественная переменная имеет три альтернативы, то по общему правилу моделирования необходимо использовать две фиктивные переменные. Таким образом, модель может быть представлена в виде:

,

где Y – расходы, x – доходы домохозяйств.

Образуются следующие зависимости:

1. Средний расход на дошкольника:

(1)

2. Средний расход на младшего школьника:

(2)

3. Средний расход на старшего школьника:

(3)

Здесь γ1, γ2 – дифференциальные свободные члены. Базовым значением качественной переменной является значение «дошкольник». После вычисления коэффициентов уравнений регрессии (1) – (3) определяется статистическая значимость коэффициентов γ1и γ2 на основе обычной t-статистики.

Если коэффициенты γ1 и γ2 оказываются статистически незначимыми, то можно сделать вывод, что возраст ребенка не оказывает влияния на расходы по его содержанию.

3. Регрессия с одной количественной и двумя качественными переменными.

Техника фиктивных переменных может быть распространена на произвольное число качественных факторов. Рассмотрим ситуацию с двумя качественными переменными.

Пусть Y –заработная плата сотрудников фирмы, x – стаж работы, D1 – наличие высшего образования, D2 – пол сотрудника:

Таким образом, получим следующую модель:

.

Из этой модели выводятся следующие регрессионные модели:

1. Средняя зарплата женщины без высшего образования:

2. Средняя зарплата женщины с высшим образованием:

3. Средняя зарплата у мужчины без высшего образования:

4. Средняя зарплата мужчины с высшим образованием:

Очевидно, что все регрессии отличаются только свободными членами. Дальнейшее определение статистической значимости коэффициентов γ1 и γ2 позволяет убедиться, влияют ли образование и пол сотрудника на его заработную плату.

Исследуется зависимость между заработной платой рабочего за месяц у ($), х ‑ возрастом рабочего (лет) и фиктивной переменной D пол рабочего.

1. Необходимо построить модель с фиктивной переменной D, которая принимает два значения: 1 ‑ если пол рабочего мужской; 0 ‑ если пол женский.

2. Проверить статистическую значимость коэффициентов. Сделать выводы.

На предприятии используются станки трех фирм (А, В, С). Исследуется надежность станков. При этом учитывается возраст станка (х, мес.) и время безаварийной работы до последней поломки (y, час). Выборка из 40 станков дала результаты, представленные в таблице.


источники:

http://lektsii.org/3-35817.html

http://pandia.ru/text/78/067/3654.php