Физика с интегральными уравнениями задачи

Решение задач физики и техники с применением интеграла

п.1. От ускорения к скорости и координате

Рассматривая применение производной в физике и технике (см. §51 данного справочника), мы во второй производной от уравнения прямолинейного равномерного движения \(x(t)\) пришли к постоянному ускорению \(a=const\).
С помощью интегрирования можно пройти обратный путь.
Начнем с постоянного ускорения \(a=const\).
Интеграл от ускорения по времени – это скорость: $$ v(t)=\int adt=a\int dt=at+C $$ Физический смысл постоянной интегрирования \(C\) в этом случае – начальная скорость \(v_0\). Получаем: $$ v(t)=at+v_0 $$ Интеграл от скорости по времени – это координата: $$ x(t)=\int v(t)dt=\int (at+v_0)dt=\frac<2>+v_0 t+C $$ Физический смысл постоянной интегрирования \(C\) в этом случае – начальная координата \(x_0\). Получаем: $$ x(t)=\frac<2>+v_0 t+x_0 $$ Таким образом, если нам известны ускорение \(a\), начальная скорость \(v_0\) и начальная координата \(x_0\), мы всегда сможем получить уравнение движения \(x(t)\).

п.2. Физические величины как интегралы других величин

Если \(v(t)\) — скорость некоторого физического процесса, уравнение этого процесса можно найти интегрированием: $$ f(t)=\int v(t)dt $$ Такие величины часто встречаются в различных разделах физики и техники.

Скорость \(v(t)=\int a(t)dt\)

Координата \(x(t)=\int v(t)dt\)

Угловое ускорение \(\beta(t)\)

Угловая скорость \(\omega(t)=\int \beta(t) dt\)

Угловая скорость \(\omega(t)\)

Угол поворота \(\varphi(t)=\int\omega(t)dt\)

Скорость расходования горючего \(u(t)\)

Масса горючего ракеты \(m(t)=\int u(t)dt\)

Заряд \(q(t)=\int I(t)dt\)

Работа \(A(t)=\int N(t)dt\)

ЭДС индукции \(\varepsilon(t)\)

Магнитный поток \(Ф(t)=-\int\varepsilon(t)dt\)

Скорость радиоактивного распада \(I(t)\)

Число атомов радиоактивного вещества \(N(t)=\int I(t)dt\)

Берутся интегралы и по другим переменным. Например, чтобы найти работу переменной силы \(F(x)\), нужно взять интеграл по координате: $$ A=\int_^F(x)dx $$ В трехмерном пространстве интегралы могут браться по всем трем координатам.
При решении уравнений в частных производных интегралы берутся и по времени и по координатам.

В современной физике интеграл по времени берётся также и от самого уравнение движения. Полученная скалярная величина называется действием и носит фундаментальный характер. В простейшем случае: $$ S_0=\int \overrightarrow

\cdot \overrightarrowdt $$ где \(\overrightarrow

\cdot \overrightarrow\) — скалярное произведение векторов импульса и скорости.

п.3. Примеры

Пример 1. Тело движется со скоростью \(v(t)\) (м/с). Найдите путь, пройденный за промежуток времени от \(t_1\) до \(t_2\) (с):
a) \(v(t)=3t+2t^2,\ t_1=0,\ t_2=6\)
Путь: \begin s(t)=\int_^v(t)dt\\ s=\int_<0>^<6>(3t+2t^2)dt=\left(\frac<3t^2><2>+\frac<2t^3><3>\right)|_<0>^<6>=\frac<3\cdot 36><2>+\frac<2\cdot 36\cdot 6><3>-0=\\ =3\cdot 18+4\cdot 36=54+144=198\ \text <(м)>\end
б) \(v(t)=2(t+2)^<5/2>,\ t_1=0,\ t_2=7\) \begin s=\int_<0>^<7>2(t+2)^<5/2>dt =2\cdot\frac<(t+2)^<\frac52+1>><\frac72>|_<0>^<7>=\frac47\cdot 9^<\frac72>-0=\frac47\cdot 3^7\approx 1250\ \text <(м)>\end

Пример 2. . Сила тока в проводнике изменяется по закону \(I(t)=e^<-t>+2t\) (время в секундах, ток в амперах). Какой заряд пройдет через поперечное сечение проводника за время от второй до шестой секунды?
Заряд: \begin Q(t)=\int_^I(t)dt \end По условию: \begin Q=\int_<2>^<6>(e^<-t>+2t)dt=(-e^<-t>+t^2)|_<2>^<6>=-e^<-6>+6^2+e^<-2>-2^2=\frac<1>-\frac<1>+32=\\ =\frac+32\approx 32,1\ \text <(Кл)>\end

Пример 3*. Найдите путь, который пройдет тело от начала движения до возвращения в исходную точку, если его скорость \(v(t)=18t-9t^2\) (время в секундах, скорость в м/с). Движение тела прямолинейное.

Если тело вернулось в исходную точку, оно меняло направление движения.
В момент разворота скорость равна нулю. Решаем уравнение: $$ 18t-9t^2=0\Rightarrow 9t(2-t)=0\Rightarrow \left[ \begin t=0\\ t=2 \end \right. $$ \(t=0\) – начало движения, \(t=2\) — разворот.

Уравнение движения: $$ x(t)=\int(18t-9t^2)dt=9t^2-3t^3+C $$ В начальный момент времени \(x_0=0\Rightarrow C=0\) $$ x(t)=9t^2-3t^3 $$ В точке C(2;12) кривая \(x(t)\) имеет максимум.
Тело двигалось в течение 2 с в одну сторону и прошло 12 м, а затем за 1 с вернулось обратно.

Общий путь: 12+12 = 24 м.

Пример 4*. Найдите работу, которую необходимо совершить, чтобы выкачать воду из полусферического котла радиуса R м.


Найдем работу \(dA\), которую нужно совершить, чтобы выкачать слой воды толщиной \(dH\) с глубины \(H\).
Радиус слоя на глубине \(H:\ r^2=R^2-H^2\) — по теореме Пифагора.
Объем слоя воды: \(dV=\pi r^2 dH=\pi(R^2-H^2)dH\)
Масса слоя воды: \(dm=\rho dV=\pi\rho(R^2-H^2)dH\)
Работа по подъему слоя на высоту \(H\): $$ dA=dm\cdot gH=\pi\rho gH(R^2-H^2)dH $$ Получаем интеграл: \begin A=\int_<0>^dA=\int_<0>^\pi\rho gH(R^2-H^2)dH=\pi\rho g\int_<0>^(HR^2-H^3)dH=\\ =\pi\rho g\left(\frac<2>R^2-\frac<4>\right)|_<0>^=\pi\rho g\left(\frac<2>-\frac<4>-0\right)=\frac\pi 4=\rho gR^4 \end Ответ: \(A=\frac\pi 4=\rho gR^4\)

Пример 5*. Какую работу выполняют при запуске ракеты массой m кг с поверхности планеты на высоту h м, если радиус планеты равен R м и масса планеты равна M кг?
Сравните работу при запуске ракеты с Земли и Луны на высоту одного радиуса небесного тела, если ускорение свободного падения на поверхности Луны \(g_M=1,62\) м/с 2 , радиус Луны \(R_M=1737\) км; для Земли соответственно \(g_E=9,81\) м/с 2 \(R_E=6371\) км.

Ускорение свободного падения на поверхности планеты: \(g_0=G\frac\)
Ускорение свободного падения при подъеме на высоту x: \begin g(x)=G\frac <(R+x)^2>\end Работа по преодолению силы тяжести \(F(x)=mg(x)\) при подъеме ракеты на высоту h: \begin A=\int_<0>^mg(x)dx=m\int_<0>^G\frac<(R+x)^2>dx=GmM\int_<0>^\frac<(R+x^2)>=\\ =GmM\cdot\left(-\frac<1>\right)|_<0>^=GmM\cdot\left(-\frac<1>+\frac1R\right)=GmM\left(\frac1R-\frac<1>\right)=\\ =GmM\frac=GmM\frac \end Также, если выразить работу через ускорение свободного падения на поверхности планеты: $$ A=\frac\frac=mg_0\frac


$$ Работа по запуску на высоту одного радиуса небесного тела \(h=R\): $$ A(R)=mg_0\frac<2R>=\frac <2>$$ Отношение работ по запуску на один радиус на Земле и Луне: $$ \frac=\frac=\frac,\ \ \frac=\frac<9,81\cdot 6371><1,62\cdot 1737>\approx 22,2 $$ На Земле работа в 22,2 раза больше.

Физика с интегральными уравнениями задачи

Примеры решения задач по механике, требующих интегрирования дифференциальных уравнений

(Задачи взяты из задачника: И.В. Мещерский «Сборник задач по теоретической механике», М.: Наука, 1981г., 460с.)

Задача №1. Пример задачи, приводящей к интегрированию дифференциальных уравнений методом разделения переменных.

При движении тела в неоднородной среде сила сопротивления изменяется по закону Н, где v – скорость тела в м/с, а s – пройденный путь в метрах. Определить пройденный путь как функцию времени, если начальная скорость v 0=5 м/с.

Будем считать, что движение происходит вдоль оси 0Х, и что при t =0 тело находилось в начале координат, тогда проекция на ось 0Х силы, действующей на тело, может быть записана в виде

.

С учётом этого выражения, имеем следующее уравнение движения (считая массу тела m =1 кг)

, (1)

которое дополняется начальными условиями

, (2)

Решение уравнения второго порядка (1) можно свести к двум последовательным интегрированиям дифференциальных уравнений первого порядка. Чтобы получить первое уравнение, перепишем (1) в виде:

, (3)

и домножим на dt левую и правую части (3), учитывая при этом, что dx = vxdt , получим:

, или (4)

Это уравнение с разделяющимися переменными (вида (1.5) из Раздела №1 Части I ). Очевидно, что оно, дополняется начальным условием, следующим из (2):

(5)

Разделив переменные в (4), в соответствие с формулой (1.7):

,

вычисляя данные интегралы, получим частный интеграл уравнения (4) (в форме (В.4) из Введения к Части I ):

(6)

Выразив отсюда vx , будем иметь частное решение уравнения (4) (в форме (В.6) из Введения к Части I ):

(7)

Заменяя теперь в (7)

,

мы снова получаем уравнение с разделяющимися переменными (вида (1.1) из Раздела №1 Части I )

(8)

Разделяя в (8) переменные, с учётом начального условия (2), ищем частный интеграл этого уравнения (в виде (1.4) из Раздела №1 Части I ):

(9)

Вычисляя интегралы в (9), получим:

(10)

— частный интеграл уравнения (8) в форме (В.4) из Введения к Части I. Выражая отсюда x , получим частное решение уравнения (8):

, (11)

которое одновременно является и частным решением уравнения движения (1), удовлетворяющим начальным условиям (2), то есть, представляет собой закон движения тела (координата x , (или в данном случае путь), как функция времени). Таким образом, решение исходного уравнения движения второго порядка (1) в процессе решения задачи было сведено к интегрированию двух уравнений первого порядка с разделяющимися переменными (4) и (8).

Задача №2. Пример задачи, приводящей к интегрированию линейного обыкновенного дифференциального уравнения первого порядка.

Тело К, размерами которого можно пренебречь, установлено в верхней точке А шероховатой поверхности неподвижного полуцилиндра радиуса R . Какую начальную горизонтальную скорость , направленную по касательной к цилиндру, нужно сообщить телу К, чтобы оно начав движение, остановилось на поверхности цилиндра, если коэффициенты трения скольжения при движении и покое одинаковы и равны .

Расставляем силы, действующие на тело, и записываем второй закон Ньютона:

Спроектируем данное равенство на направление движения и перпендикулярное ему. Эти направления указаны на рисунке векторами и . Таким образом, для описания движения мы используем естественный способ. В результате получим:

(1)

Здесь учтено, что центростремительное ускорение

,

.

Сделаем в первом уравнении в (1) замену переменной — перейдем от дифференцирования по времени к дифференцированию по углу :

(т.к. )

С учетом этой замены перепишем (1):

(2)

Домножая второе уравнение на , и вычитая из первого, получим:

(3)

Это уравнение типа (2.1) (из Раздела №2 Части I ), в котором независимой переменной вместо t является ; неизвестной функцией вместо ;

; .

Уравнение (3) дополняется начальным условием:

(4)

С учетом указанных обозначений, используя формулу (2.9) (из Раздела №2 Части I ), решение уравнения (3) можно записать в виде:

(5)

Вычисляя с помощью интегрирования по частям интервалы в (5) , окончательно получим:

(6)

По условиям задачи тело должно остановиться на поверхности; т.е. при каком-то угле .

Подставляя вместо в (6) выразим оттуда :

(7)

Значение угла можно выразить через , поскольку ;

то из уравнений (2) получим:

(8)

Отсюда: ;

(9)

;

из (7) будем иметь:

(10)

Следовательно, чтобы тело остановилось на шероховатой поверхности цилиндра, нужно, чтобы его начальная скорость не превосходила значение, определенного в (10).

Задача №3. Пример задачи, приводящей к решению линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами.

Тело массы 5 кг подвешено к концу пружины жёсткости 20 Н/м и помещено в вязкую среду. Период его колебаний в этом случае равен 10 с. Найти постоянную демпфирования, логарифмический декремент колебаний и период свободных колебаний.

Выберем начало координат в положении статического равновесия тела и расставим силы, действующие на тело в процессе колебаний (считаем, что тело в данный момент времени движется вверх). Если АВ обозначает длину нерастянутой пружины, то отрезок ОВ представляет статическое удлинение пружины под действием силы mg . По закону Гука mg = k × ОВ, где k — коэффициент жёсткости пружины. Записываем второй закон Ньютона:

.

Проектируем это равенство на ось ОХ, учитывая, что

, .

В результате получим уравнение колебаний

, или (1)

где , .

Уравнение (1) представляет собой однородное обыкновенное дифференциальное уравнение второго порядка с постоянными коэффициентами (уравнение (1.1) Части II ). Для его решения используем схему, описанную в Разделе №1 Части II .

Составляем характеристическое уравнение:

. (2)

Вычисляем дискриминант уравнения (2):

. (3)

Поскольку в данном случае, в соответствие с условиями задачи движение тела носит колебательный (периодический) характер, то его координата должна изменяться со временем по гармоническому закону, то есть по закону косинуса или синуса. Для того же, чтобы решение уравнения (1) выражалось через данные функции, мы должны считать, что D (4)

где величины и определяются следующим образом:

, (5)

В случае отсутствия затухания (когда n =0), , и тело совершает свободные колебания с периодом с.

Если же n ¹ 0, то период колебаний, с учётом (5),:

.

Выражаем отсюда , и определяем постоянную демпфирования a (коэффициент пропорциональности в формуле для силы сопротивления):

Подставляя данные задачи, получим a =19 .

В соответствие со своим определением, логарифмический декремент затухания есть натуральный логарифм отношения двух последовательных амплитуд, (то есть взятых через половину периода колебания ): . Вычисляя n и подставляя значение Т, получим =9,5.

Задача №4. Пример задачи, приводящей к решению линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.

Для уменьшения действия на тело массы m возмущающей силы устанавливают пружинный амортизатор с жидкостным демпфером. Коэффициент жёсткости пружины k . Считая, что сила сопротивления пропорциональна первой степени скорости ( ), найти максимальное динамическое давление всей системы на фундамент при установившихся колебаниях.

Направим ось 0 X вдоль направления движения, выбрав начало координат в положении статического равновесия тела. При этом считаем, что сила тяжести скомпенсирована силой статического сжатия пружины амортизатора. Записываем второй закон Ньютона:

.

Проектируем это равенство на ось ОХ, учитывая, что

, , .

В результате получим уравнение колебаний

, или , (1)

где обозначено , .

При колебаниях на фундамент действует сила, складывающаяся из силы деформации пружины и силы сопротивления, равная в соответствие с третьим законом Ньютона,

. (2)

Следовательно, для вычисления этой силы нужно знать уравнение движения тела , для чего необходимо решить уравнение (1). Поскольку в задаче рассматриваются уже установившиеся колебания, то есть рассматривается движение тела, установившееся по истечению достаточно большого промежутка времени от момента его начала. При этом тело будет совершать колебания с частотой вынуждающей силы. Поэтому мы должны найти частное решение уравнения (1), соответствующее этим вынужденным колебаниям. Для этого используем метод подбора по правой части. Представим, в соответствие с формулой (2.5) (из Раздела №2 Части II ) решение уравнения (1) в виде

(3)

Обозначим для краткости записи через и подставим (3) в (1):

Приравнивая коэффициенты при и , получим следующую систему уравнений:

Решая данную систему, находим

, (4)

Подставим (4) в (3):

(5)

Данную формулу, обозначая

, (6)

можно переписать в виде:

(7)

Подставим теперь (7) в (2):

(8)

, (9)

формулу (8) можно переписать в виде

(10)

Отсюда следует, что максимальное динамическое давление всей системы на фундамент равно

. (11)

Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003

Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003.

В настоящем учебном пособии авторы предлагают задачи по методам решения интегральных уравнений. В начале каждого раздела книги приводится сводка основных теоретических положений, определений и формул, а также подробно разбирается более 70 типовых примеров. В книге содержится 350 задач и примеров для самостоятельного решения, большинство которых снабжено ответами и указаниями к решению.
Пособие предназначено для студентов технических ВУЗов с математической подготовкой, а также для всех лиц, желающих познакомиться с методами решений основных типов интегральных уравнений.

Основная трудность применения метода последовательных приближений состоит в вычислении интегралов в формулах (7). Как правило, приходится применять формулы приближенного интегрирования. Поэтому и здесь целесообразно заменить данное ядро вырожденным с помощью тейлоровского разложения, а затем уже ввести метод итераций.

Рассмотрим одну задачу, приводящую к интегральному уравнению Вольтерра типа свертки.
Магазин покупает и продает различные товары. Предполагается, что:
1) покупка и продажа суть непрерывные процессы, и купленные товары немедленно поступают в продажу;
2) магазин приобретает каждую новую партию любого товара в таком количестве, какое он может продать в промежуток времени Т, один и тот же для всех покупок;
3) каждая новая партия товара распродается равномерно в течение времени Т.
Магазин начинает продажу новой партии товара, общая стоимость которого равна единице. Требуется найти закон y(t), по которому он должен производить покупки, для того чтобы стоимость наличного товара оставалась постоянной.

ОГЛАВЛЕНИЕ
Предварительные замечания 3
Глава 1. Интегральные уравнения Вольтерра 9
§ 1. Основные понятия 9
§ 2. Связь между линейными дифференциальными уравнениями и интегральными уравнениями Вольтерра 11
§ 3. Резольвента интегрального уравнения Вольтерра. Решение интегрального уравнения с помощью резольвенты 15
§ 4. Эйлеровы интегралы 21
§ 5. Интегральное уравнение Абеля и его обобщения 25
Глава 2. Интегральные уравнения Фредгольма 30
§ 6. Уравнения Фредгольма. Основные понятия 30
§ 7. Метод определителей Фредгольма 34
§ 8. Итерированные ядра. Построение резольвенты с помощью итерированных ядер 39
§ 9. Интегральные уравнения с вырожденным ядром 49
§ 10. Характеристические числа и собственные функции 54
§ 11. Решение однородных интегральных уравнений с вырожденным ядром 72
§ 12. Неоднородные симметричные уравнения 73
§ 13. Альтернатива Фредгольма 79
§ 14. Построение функции Грина для обыкновенных дифференциальных уравнений 88
§ 15. Применение функции Грина для решения краевых задач 98
§ 16. Краевые задачи, содержащие параметр, и сведение их к интегральным уравнениям 101
Глава 3. Применение интегральных преобразований к решению интегральных уравнений 105
§ 17. Применение преобразования Фурье к решению некоторых интегральных уравнений 105
§ 18. Применение преобразования Лапласа к решению некоторых интегральных уравнений 111
1°. Интегральные уравнения Вольтерра типа свертки 111
2°. Системы интегральных уравнений Вольтерра типа свертки 114
3. Интегро-дифференциальные уравнения 116
4°. Интегральные уравнения Вольтерра с пределами (ж, +оо) 118
5°. Обобщенная теорема умножения и некоторые ее применения 120
§ 19. Применение преобразования Меллина к решению некоторых интегральных уравнений 123
Глава 4. Интегральные уравнения 1-го рода 128
§ 20. Интегральные уравнения Вольтерра 1-го рода 128
§ 21. Интегральные уравнения Вольтерра 1-го рода типа свертки 130
§ 22. Интегральные уравнения Фредгольма 1-го рода 136
Глава 5. Приближенные методы решения интегральных уравнений 146
§ 23. Замена ядра интегрального уравнения вырожденным ядром 146
§ 24. Замена интеграла конечной суммой 151
§ 25. Метод последовательных приближений 154
1°. Интегральные уравнения Вольтерра 2-го рода 154
2°. Интегральные уравнения Фредгольма 2-го рода 159
3°. Интегральные уравнения Фредгольма 1-го рода 161
§ 26. Метод Бубнова—Пшёркина 163
§ 27. Приближенные методы отыскания характеристических чисел и собственных функций симметричных ядер 165
1°. Метод Ритца 165
2°. Метод следов 167
3°. Метод Келлога 169
Ответы 174
Приложение. Специальные функции 188.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Интегральные уравнения, Задачи и примеры с подробными решениями, Краснов М.И., Киселев А.И., Макаренко Г.И., 2003 — fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России. Купить эту книгу


источники:

http://tsput.ru/res/fizika/1/DIF_UR_WEB/Primer_mex.htm

http://obuchalka.org/2012080266296/integralnie-uravneniya-zadachi-i-primeri-s-podrobnimi-resheniyami-krasnov-m-i-kiselev-a-i-makarenko-g-i-2003.html