Формула корней уравнения для синуса

Тригонометрические уравнения — формулы, решения, примеры

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшие тригонометрические уравнения

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:Для косинуса:Для тангенса и котангенса:Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью тригонометрических формул преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

Решение. Используя формулы приведения, имеем:

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя формулы двойного угла, преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt `:

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a>=cos \varphi`, ` \frac b> =sin \varphi`, `\frac c>=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt <3^2+4^2>`, получим:

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac <1+cos x>=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Как репетитор по математике поясняет формулу корней уравнения SinX=a

Известно, что большинство школьных учебников по математике далеко от методического совершенства, к которому так стремятся их авторы. На мой взгляд, многие из них предлагают туманные или совсем точные объяснения сложных теоретических вопросов. Обычно, если репетитор по математике в совершенстве владеет искусством объяснений, то либо меняет логику учебника полностью, либо дополняет тексты адаптированными для детского восприятия комментариями. Я уже давно пересмотрел подходы к изучению многих тем школьной программы по математике, являющиеся классическими. Невнятная логика переходов от одного факта к другому (от формулы к формуле), сухая схематичность выкладок и обилие математических терминов, — далеко не полный список проблем в построении классических объяснений.

Можно ли как-то исправить недосмотры и переписать учебники с учетом этих замечаний? Думаю, что нельзя. Почему? Если аккуратно подходить к каждому проблемному участку и менять «скупую математику» на «живую» и понятную, то размеры учебников возрастут в несколько раз. Почему? Очень трудно передать коротко те мысли, которые помогают прояснить сложные математические процессы. На некоторые из них придется потратить по 0,5-1,5 страниц печатного текста. Если так править каждый параграф, то и без того увесистые портфели учеников можно будет использовать для занятий тяжелой атлетикой.

Поэтому репетитор по математике как всегда «принимает огонь на себя». Отмечу, что индивидуальные занятия с преподавателем создают наилучшие условия для проникновения в глубины предмета, ибо в переполненном классе сложнее настроить ученика на серьезную вдумчивую работую. Репетитору же, как правило, удается донести до его сознания разного рода тонкости.

Толковое подробное объяснение сложного вопроса может отнять весь урок. И даже это не гарантирует 100%-го понимания темы всеми учащимися. Очень трудно удерживать внимание целой аудитории на детальном рассмотрении важных «мелочей». Особенно если оно долгое. Отдельно взятый ученик может в любой момент отвлечься от доски и полностью выключится из процесса. Преподаватель замеввший его потерянный взгляд и повторяющий часть объяснения заново, рискует запутает других учеников, ибо теряется последовательность изложения логических выводов. Сильному ученику станет скучно и он, скорее всего, потеряет концентрацию.

Неравномерность скорости восприятия информации (даже в классе с приблизительно равным уровнем знаний и способностей) делает аккуратные объяснения тем малоэффективными. Поэтому и здесь индивидуальный репетитор по математике оказывается в более выгодных условиях по сравнению со школьным преподавателем. В тихой и спокойной обстановке при полном контроле за пониманием и вниманием ученика репетитору удается объяснить теорему так, как это не удается сделать в классе.

Какую коррекцию проводит репетитор по математике?

Предлагаю вашему вниманию пример одного из моих объяснений при работе с темой «решение простейших тригонометрических уравнений». Напомню, что подготовка к ЕГЭ по математике включает в себя разбор формул для понимания решений задач типа С1. Что предлагает нам базовый учебник математики А.Н. Колмогорова 10-11 класс? Откроем пункт №9.2, стр.72 (17-е издание). В нем описывается построение формулы корней уравнения вида . Сделан рисунок круга и даны вполне нормальные объяснения формулам для левой и правой точек – концов соответствующей хорды.
где
Далее следует текст (цитирую): Удобно эти решения уравнения записывать не двумя, а одной формулой:
Нетрудно убедиться, что при четных k=2n из формулы (6) находим все решения, записанные формулой (4), а при нечетных k=2n+1 – решения, записываемые формулой (5).

Ну как Вам, понятно? Можно ли считать переход доказанным? Достаточно ли репетитору по математике повторить этот текст на уроке? Думаю, что нет. И вряд ли поможет прямая подстановка выражений 2n и 2n+1, ибо она точного доказательства не даст. Меня всегда возмущала тактика ухода от рассмотрения тонких вопросов. Как только автор с ним сталкивается, он сразу же прибегает к фразе «нетрудно убедиться» или «нетрудно доказать». Давайте разберемся, что именно здесь требуется вообще доказать и какие пояснения репетитору по математике следует предоставить ученику.

Пояснения репетитора к выводу формулы

Лучше строить рассуждения от обратного. Не подставлять 2n и 2n+1, а выделять их в 4-ой и 5-ой формулах. Некоторым ученикам 10 класса репетитор по математике должен объяснить принцип работы самих формул: для каждого целого числа, подставленного вместо буквы n (я использую всегда самые доступные фразы и термины) каждая формула вычисляет соответствующий ему угол. Подставляя в n все целые знания можно вычислить все множество углов (корней уравнения). Естественно, что запись формул может быть совершенно произвольной, когда множество сохраняется. Если замена на 6-ю формулу не приведет ни к потере, ни к приобретению лишних углов, то эта замена будет корректной. Согласно всем математическим правилам репетитору требуется просто показать совпадение множеств. Как это сделать? Лучше всего подготовить (преобразовать) формулы (4) и (5) к виду, максимально близкому к виду (6).

Понятно, что если вместо коэффициента «единица» перед арксинусом в формуле (4) поставить степень , то это не изменит результата при вычислении каждого угла, поскольку 2n – четно. В пятой формуле репетитор по математике переставляет слагаемое в конец выражения и выносит его за скобку. Это тождественное преобразование, также не меняющее результата при любом n. Затем вместо коэффициента -1 перед вторым арксинусом репетитор вставляет степень . И в этом случае результат сохранится, ибо при любом целом n значение 2n+1 будет нечетным, а при возведении 2n+1 в нечетную степень получим ту же самую «минус единицу».

Итак, репетитор по математике преобразует формулы к следующему виду:

Множители в последнем слагаемом специально переставляются, дабы обеспечить максимально точное расположение выражений 2n и 2n+1 для формулы (6) к моменту из замены на k. Лучше всего их выделить разным цветом.

Далее – самое важное. Текст репетитора (дословно):
Докажем, что каждый угол, вычисляемый по (4) формуле, можно вычислить по формуле (6). Почему? Допустим, в формулу (4) вставилось какое-нибудь целое число, например n=7. Тогда в зеленой рамке получится 14. Если вставить 14 вместо переменной k в формулу (6), то получим те же действия, что и в (4) и, следовательно, совпадут результаты. Очевидность этого совпадения обеспечивает максимально близкий вид 4-ой формулы к 6-ой. Поэтому ни один угол формулы (4) не будет потерян. Аналогичные рассуждения репетитор по математике проводит с формулой (5). Итак, мы гарантируем, что все углы формул (4) и (5) можно вычислить по формуле (6).

И наоборот, любой угол формулы (6) можно получить или по (4) или по (5). Почему? Допустим, что при каком-нибудь значении мы нашли угол по (6). Если k – четно, например k=10, то вставляя в 4-ю формулу n=5, мы вычислим тот же угол. Если k — нечетно, например (и здесь репетитору по математике лучше использовать примеры с конкретными значениями n), то подставляя n=6 в (5) снова увидим повторение набора действий и, как следствие, ответа. И так для любого числа k. Поэтому ни один угол формулы (6) не будет посторонним а оба множества (4)+(5) и (6) совпадут.

Если проводится подготовка к ЕГЭ по математике, то репетитору следует помнить о том, что в С1 наибольшую частоту появления имеют задачи на отбор корней. В этом случае общая формула, о которой идет речь в статье, не используется вовсе. Абитуриент отмечает точки на круге, удовлетворяющие условию SinX=a, отсекает лишнюю и только после этого записывает ответ. Думаю, что в условиях экспресс подготовки к ЕГЭ по математике не стоит тратить время на отработку навыков работы с «минус единицей в степени эн» и ограничиться сериями (4) и (5). Если абитуриент на ЕГЭ запишет ответ в С1 отдельными формулами, вместо общей, то это не приведет к снижению оценки (балла) за все задание.

Колпаков А.Н. Репетитор по математике Москва. Автор подхода.

Разумно, но какие-такие «математические правила» не убеждают, что общая формула есть объединение для четных и нечетных и наоборот? И уж очень длинное обсуждение совершенно очевидного факта!
А честно «доказать», что (-1)*(-1)=1, учителя и большинство репетиторов не сумеют, да еще будут отмазываться тупым возражением — «по определению»…

Речь шла о самых обычных правилах доказательства совпадения двух множеств. А совпадает с В, если любой элемент из А лежит в В и, наоборот, любой элемент из В лежит в А. Теперь по поводу очевидности. Надо понимать, что очевидный для репетитора (или для сильного десятиклассника) факт, далеко всегда очевиден слабому ученику, о подаче материала которому как раз и идет речь в статье. По уму — вообще вся школьная математика состоит из «совершенно очевидных фактов». Только почему-то дети воспринимают их по-разному. Рад за то, что Ва очевидны формулы. Но это Вам очевидно. А другому человеку? Репетитор должен уметь смотреть на математику глазами школьника, моделируя у себя в голове его мысли. Математик и репетитор — несколько разные профессии. Вы смотрите на триг. формулы глазами математика, а мне приходится смотреть на них глазами репетитора. Методика — это наука о том, как добиться наилучших результатов в понимании и закреплении материала большей части класса, в которой, как правило, процент сильных детей невысок. На практике репетитору довольно часто приходится разжевывать простейшее, иначе не добиться понимания фактов у определенной категории учащихся.

Мне кажется ученикам не понятно когда в ходе объяснения используется числовая окружность, не проще использовать график функции. А если кто-то не понимает что за корень с -1 в степени н, то можно просто ответ записывать в виде двух корней. Потом поймут что это одно и то же.

Во-первых, на графике не видна причина периодичности синуса и косинуса. Слишком он оторван от определения, которое формулируется на координатах ТОЧЕК КРУГА. Во-вторых, репетитору по математике будет сложнее объяснить и, соответственно, научить использовать длину периода. В-третьих, на графике практически невозможно показывать пересечения корней разных уравнений (если это потребуется). Его преимущество состоит только в лучшей демонстрации бесконечности множества корней изучаемых уравнений.


источники:

http://ya-znau.ru/znaniya/zn/280

http://ankolpakov.ru/kak-repetitor-po-matematike-poyasnyaet-formulu-kornej-uravneniya-sinxa/