Формула решения уравнения с тремя неизвестными

Система линейных уравнений с тремя переменными

Линейное уравнение с тремя переменными и его решение

Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; \frac<1> <2>x-8y-5z = 7$

Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

Решение системы линейных уравнений с тремя переменными методом подстановки

Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

Например: решить систему

$$ <\left\< \begin 3x+2y-z = 8 \\ x-y+z = -2 \\ 2x-3y-5z = 1 \end \right.> \Rightarrow <\left\< \begin 3(y-z-2)+2y-z = 8 \\ x = y-z-2 \\ 2(y-z-2)-3y-5z = 1 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = y-z-2 \\ 5y-4z = 14 \\ -y-7z = 5 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ 5(-7z-5)-4z = 14 \end \right.> \Rightarrow <\left\< \begin x = y-z-2 \\ y = -7z-5 \\ -39z = 39 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = 2-(-1)-2 = 1 \\ y = -7\cdot(-1)-5 = 2 \\ z = -1 \end \right.> \Rightarrow <\left\< \begin x = 1 \\ y = 2 \\ z = -1 \end \right.> $$

Решение системы линейных уравнений с тремя переменными методом Крамера

Для системы с 3-мя переменными действуем по аналогии.

Дана система 3-х линейных уравнений с 3-мя переменными:

$$ <\left\< \begin a_1 x+b_1 y+c_1 z = d_1 \\ a_2 x+b_2 y+c_2 z = d_2 \\ a_3 x+b_3 y+c_3 z = d_3 \end \right.> $$

Определим главный определитель системы:

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end $$

и вспомогательные определители :

$$ \Delta_x = \begin d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end, \Delta_y = \begin a_1 & d_1 & c_1 \\ a_2 & d_2 & c_2 \\ a_3 & d_3 & c_3 \end, \Delta_z = \begin a_1 & b_1 & d_1 \\ a_2 & b_2 & d_2 \\ a_3 & b_3 & d_3 \end $$

Тогда решение системы:

Соотношение значений определителей, расположения плоскостей и количества решений:

Три плоскости пересекаются в одной точке

Три плоскости параллельны

Две или три плоскости совпадают или пересекаются по прямой

Бесконечное множество решений

Осталось определить правило вычисления определителя 3-го порядка.

Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

$$ \Delta = \begin a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end = a_1 = \begin b_2 & c_2 \\ b_3 & c_3 \end — b_1 = \begin a_2 & c_2 \\ a_3 & c_3 \end + c_1 = \begin a_2 & b_2 \\ a_3 & b_3 \end = $$

$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

Примеры

Пример 1. Найдите решение системы уравнений методом подстановки:

$$<\left\< \begin z = 3x+2y-13 \\ 2x-y+3(3x+2y-13) = -2 \\ x+2y-(3x+2y-13) = 9 \end \right.> \Rightarrow <\left\< \begin z = 3x+2y-13 \\ 11x+5y = 37 \\ -2x = -4 \end \right.> \Rightarrow $$

$$\Rightarrow <\left\< \begin z = 3\cdot2+2\cdot3-13 = -1 \\ y = \frac<37-11\cdot2> <5>= 3 \\ x = 2 \end \right.> \Rightarrow <\left\< \begin x = 2 \\ y = 3 \\ z = -1 \end \right.> $$

$$ <\left\< \begin x = -y-3z+6 \\ 2(-y-3z+6)-5y-z = 5\\ (-y-3z+6)+2y-5z = -11 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ -7y-7z = -7 |:(-7) \\ y-8z = -17 \end \right.> \Rightarrow $$

$$ \Rightarrow <\left\< \begin x = -y-3z+6 \\ y+z = 1 \\ y-8z = -17 \end \right.> \Rightarrow <\left\< \begin x = -y-3z+6 \\ 9z = 18 \\ y = 1-z \end \right.> \Rightarrow <\left\< \begin x = 1-6+6 = 1 \\ z = 2 \\ y = 1-2 = -1 \end \right.> \Rightarrow$$

Пример 2. Найдите решение системы уравнений методом Крамера:

$$ \Delta = \begin 3 & 2 & -1 \\ 2 & -1 & 3\\ 1 & 2 & -1 \end = 3 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 13 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & -1 \\ \end = 13 = \begin -1 & 3 \\ 2 & -1 \\ \end — 2 = \begin -2 & 3 \\ 9 & -1 \\ \end — 1 = \begin -2 & -1 \\ 9 & 2 \\ \end = $$

$$ \Delta_y = \begin 3 & 13 & -1 \\ 2 & -2 & 3 \\ 1 & 9 & -1 \\ \end = 3 = \begin -2 & 3 \\ 9 & -1 \\ \end — 13 = \begin 2 & 3 \\ 1 & -1 \\ \end — 1 = \begin 2 & -2 \\ 1 & 9 \\ \end = $$

$$ \Delta_z = \begin 3 & 2 & 13 \\ 2 & -1 & -2 \\ 1 & 2 & 9 \\ \end = 3 = \begin -1 & -2 \\ 2 & 9 \\ \end — 2 = \begin 2 & -2 \\ 1 & 9 \\ \end + 13 = \begin 2 & -1 \\ 1 & 2 \\ \end = $$

$$ \Delta = \begin 1 & 1 & 3 \\ 2 & -5 & -1\\ 1 & 2 & -5 \end = 1 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

$$ \Delta_x = \begin 6 & 1 & 3 \\ 5 & -5 & -1 \\ -11 & 2 & -5 \\ \end = 6 = \begin -5 & -1 \\ 2 & -5 \\ \end — 1 = \begin 5 & -1 \\ -11 & -5 \\ \end + 3 = \begin 5 & -5 \\ -11 & 2 \\ \end = $$

$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

$$ \Delta_y = \begin 1 & 16 & 3 \\ 2 & 5 & -1 \\ 1 & -11 & -5 \\ \end = 1 = \begin 5 & -1 \\ -11 & -5 \\ \end — 6 = \begin 2 & -1 \\ 1 & -5 \\ \end + 3 = \begin 2 & 5 \\ 1 & -11 \\ \end = $$

$$ \Delta_z = \begin 1 & 1 & 6 \\ 2 & -5 & 5 \\ 1 & 2 & -11 \\ \end = 1 = \begin -5 & 5 \\ 2 & -11 \\ \end — 1 = \begin 2 & 5 \\ 1 & -11 \\ \end + 6 = \begin 2 & -5 \\ 1 & 2 \\ \end = $$

Пример 3*. Решите систему уравнений относительно x,y,и z:

$$ a \neq b, b \neq c, a \neq c $$

Решаем методом замены:

$$ <\left\< \begin z = -(a^3+a^2 x+ay)\\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \\ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 \end \right.> \Rightarrow <\left\< \beginz = -(a^3+a^2 x+ay)\\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \\ (c^2-a^2 )x+(c-a)y = a^3-c^3 \end \right.> $$

Т.к. $ a \neq b$ второе уравнение можно сократить на $(a-b) \neq 0$

Т.к.$ a \neq c$ третье уравнение можно сократить на $(a-с) \neq 0 $. В третьем уравнении после сокращения поменяем знаки:

Из второго уравнения получаем:

Т.к. $b \neq c$ можно сократить на $(b-c) \neq 0$:

$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$

Математика

62. Одно уравнение с тремя неизвестными . Пусть имеем уравнение

На это уравнение можно смотреть, как на запись задачи: найти числовые значения для x, y и z, чтобы трехчлен 3x + 4y – 2z оказался равен числу 11. Таким образом это уравнение является уравнением с тремя неизвестными. Так как мы можем решить одно уравнение с одним неизвестным, то уже с первого взгляда возникает мысль, что 2 неизвестных здесь являются как бы лишними, и им можно давать произвольные значения. И действительно, если, например, взять для y число 3 и для z число 5, то получим уравнение с одним неизвестным:

Возьмем другие числа для y и z. Например, пусть

Тогда получим уравнение:

Продолжая эту работу дальше, мы придем к заключению:

Одно уравнение с тремя неизвестными имеет бесконечно много решений, и для получения их надо двум неизвестным давать произвольные значения.

Результаты этой работы можно записать в таблице (мы, кроме двух уже найденных решений, записали в ней еще одно, которое получится, если положить y = –1 и z = –2):

Так как для y и для z мы берем произвольные значения, то они являются независимыми переменными, а x является зависимым (от них) переменным. Другими словами: x является функциею от y и z.

Чтобы удобнее получать решения этого уравнения, можно определить из него x через y и z. Получим:

3x + 4y – 2z = 11; 3x = 11 – 4y + 2z;
x = (11 – 4y + 2z) / 3.

Дадим, напр., значения: y = 5 и z = 1; получим: x = (11 – 20 + 2) / 3 = –2(1/3) и т. д.

Возьмем еще уравнение

Примем x и y за независимые переменные, а z — за зависимое и определим z через x и y

–2z = 7 – 3x + 5y; 2z = 3x – 5y – 7; z = (3x – 5y – 7) / 2

Формула решения уравнения с тремя неизвестными

После выполнения преобразований, уравнение первой степени с тремя неизвестными х, у, z примет вид

где a, b, с, d — данные числа или буквенные выражения. Одно такое уравнение, отдельно взятое, или система двух таких уравнений имеет бесчисленное множество решений. Система тpex уравнений 1-й степени с тремя неизвестными имеет в общем случае одну систему решения. В исключительных случаях (см. ниже) она может иметь бесчисленное множество или вовсе не иметь решений.

Решение системы трех уравнений с тремя неизвестными основывается на тех же приемах, что и решение системы двух уравнений с двумя неизвестными, как видно из следующего примера.

Пример. Решить систему уравнений

3x — 2y + 5z=7,(1)
7x + 4y — 8z = 3,(2)
5x – 3y — 4z = -12(3)

Возьмем два уравнения этой системы, например (1) и (2), и будем исходить из предположения, что одно из неизвестных, например z, уже найдено, т. е. является известной величиной. Решая взятую систему относительно неизвестных х и у, найдем:

; . (4)

Подставив эти выражения х, у в уравнение (3), получим уравнение с одним неизвестным

Решив это уравнение, найдем z = 2. Подставив это значение в выражения (4), найдем x = 1; у = 3.

Общие формулы для решения системы

ax + by + cz = d,
a1x + b1y + c1z = d,(5)
a2x + b2y + c2z = d2

можно получить тем же приемом. Решение будет иметь сложный и трудно запоминаемый вид, если его записать в развернутом виде, но ему можно придать легко запоминаемый и удобный для вычисления вид, если предварительно ввести понятие об определителе третьего порядка.

Определитель третьего порядка, сокращенно обозначаемый

(6)

есть не что иное, как выражение

Это выражение не нужно запоминать, так как оно легко изучается из своего схематического обозначения (6) следующим образом: перепишем табличку (6), приписав к ней справа еще раз две первые ее колонны; таблица примет (8).

Проведем диагональные линии, отмеченные на схеме (8) пунктиром, и выпишем произведения букв, стоящих на каждой из шести диагональных линий. Со знаком + возьмем те три произведения, которые принадлежат диагоналям, опускающимся вправо; со знаком — остальные три произведения. Написав теперь эти произведения подряд, получим выражение (7).

Пример 1. Вычислить определитель третьего порядка

(9)

Схема (8) примет вид (8′)

Определитель (9) равен

3*4*(-4) + (-2)*(-8)*5 + 5*7*(-3) — 5*4*5 – 3*(-8)*(-3) – (- 2)*7*(-4) = -48 + 80 — 105 — 100 -72 — 56 = — 301.

С помощью определителей решение системы (5) можно подставить в виде

(10)

т.е. каждое из неизвестных равно дроби, знаменатель которой есть определитель, составленный из коэффициентов при неизвестных, а числитель получается из этого определителя заменой коэффициентов при соответствующей неизвестном на свободные члены.

Пример 2. Решить систему уравнений

3x – 2y + 5z = 7, 7x + 4y – 8z =3, 5x – 3y – 4z = -12

Общий знаменатель формул (10) вычислен в примере; он равен — 301. Числитель первой из формул (10) получаете, из (9) заменой первого его столбца столбцом свободныx членов.

(10)

Вычисляя его по схеме (8), получим — 301. Таким образом, получаем:

Система уравнений (5) имеет единственное решение если определитель, составленный из коэффициентов при неизвестных, не равен нулю. Тогда формулы (10), в знаменателях которых стоит упомянутый определитель, решение системы (5). Если определитель, составленный из коэффициентов, равен нулю, то формулы (10) становятся непригодными для вычисления. В этом случае система (5) либо имеет бесчисленное множество решений, либо совсем их не имеет. Бесчисленное множество решений она имеет в том случае, если не только определитель, стоящий в знаменателях, но и определители, стоящие в числителях формул (10), обращаются в нуль; важно отметить, что если определитель, стоящий в знаменателях, и один из определителей, стоящих в числителях, равны нулю, то два других определителя в числителях непременно равны нулю. Наличие бесчисленного множества решений обусловливается тем, что одно из трех уравнений (5) является следствием двух других [или даже два из уравнений (5) являются каждое следствием третьего], так что фактически мы имеем несмотря лишь два (или даже одно) уравнение с тремя неизвестными.

Пример 3. В системе уравнений

(11)

определитель из коэффициентов есть

=0

[см. схему (8)]. Взяв один из определителей, стоящих в числителях формул (10), например определитель

входящий в первую из формул (10), найдем, что он также равен нулю. Остальные два определителя, входящие во вторую и третью формулы (10), не нужно вычислять: они заведомо равны нулю. Система (11) имеет бесчисленное множество решений: одно из ее уравнений (любое) является следствием двух других. Например, если помножить второе уравнение на 2, первое на — 3 и сложить полученные уравнения, получим третье уравнение.

Система (5) вовсе не имеет решений, если определитель, стоящий в знаменателях формул (10), равен нулю, но ни один определителей, стоящих в числителях, не равен нулю. При этом достаточно убедиться, что не равен нулю один из числителей; тогда два других непременно будут не равны нулю. Отсутствие решений обусловливается тем, что одно из уравнений противоречит двум остальным (или даже каждому из них в отдельности).

Пример 4. Возьмем систему уравнений

(12)

которая отличается от системы (11) только значением свободного члена в последнем уравнении. Поэтому определитель из коэффициентов остается тем же: он равен нулю. Но определители, входящие в числители, будут иными. Например, числитель первой из формул (10) будет

=-135

Он не равен нулю. Остальные два числителя заведомо не равны нулю. Система (12) не имеет решений. Она противоречива, ибо из первых двух уравнений вытекает как следствие уравнение 2х + 21у – 15z = =8, (см. пример 3); между тем третье уравнение системы (12) имеет вид 2х + 21у – 15z = 3, так что одно и то же выражение оказывается: равным и 3 и 8, что невозможно.


источники:

http://maths-public.ru/algebra1/equation-three-vars

http://www.maths.yfa1.ru/algebra.php?id=24