Формулы устного решения квадратных уравнений

Реферат: Способы устного решения квадратных уравнений

Муниципальное образовательное учреждение

Средняя общеобразовательная школа № 6

на тему: Способы устного решения квадратных уравнений.

ученица 8 «В» класса

Шубина Ирина Николаевна.

2. Определение квадратного уравнения, его виды…………………..5

3. Способы решения неполных квадратных уравнений…………….6

4. Решение квадратных уравнений с помощью выделения квадрата двучлена………………………………………………………………..8

5. Решение квадратных уравнений по формуле……………………..9

7. Свойства коэффициентов квадратного уравнения………………13

9. Закономерность коэффициентов………………………………….14

10. Дидактический материал……………………………………. …16

Список использованных источников…………. ………………. …20

Изучить и показать на примерах способы устного решения квадратных уравнений.

1. Проанализировать учебник алгебры для выявления в нем способов решения квадратных уравнений.

2. Показать виды и способы решения неполных квадратных уравнений.

3. Изложить наиболее известные способы решения квадратных уравнений из курса 8 класса.

4. Изучить дополнительный материал.

5. Показать способы устного решения квадратных уравнений.

Практически все, что окружает человека – это все так или иначе связано с математикой. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

При изучении в школе квадратных уравнений, я очень заинтересовалась этой темой. Мне стало интересно узнать, какие же еще бывают способы решения квадратных уравнений.

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования современного человека. Практически все, что окружает человека – это все так или иначе связано с математикой. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

В данной работе я изложила все известные виды и решения квадратных уравнений из школьного курса алгебры. Также в этой работе я показала дополнительный материал, который не изучается в школьном курсе. Устное решение квадратных уравнений намного проще и быстрее, так как при решении уравнений не надо находить дискриминант и вычислять корни по формуле.

1. Историческая справка.

Неполные квадратные уравнения и частные виды полных квадратных уравнений () умели решать вавилоняне (около 2 тыс. лет до н.э.). Об этом свидетельствуют найденные клинописные тексты задач с решениями (в виде рецептов). Некоторые виды квадратных уравнений могли решать древнегреческие математики, сводя их решения к геометрическим построениям. Приёмы решения уравнений без обращения к геометрии даёт Диофант Александрийский (III в.). В дошедших до нас 6 из 13 книг «Арифметика» содержатся задачи с решениями, в которых Диофант объясняет, как надо выбрать неизвестное, чтобы получить решение уравнения вида ах= b или Способ решения полных квадратных уравнений не сохранились.

Правило решения квадратных уравнений, приведённых к виду , где >0, дал индийский учёный Брахмагупта (VII в.). В трактате «Китаб аль-джебр Валь-мукабала» хорезмский математик аль-Хорезми разъясняет приёмы уравнений вида , (буквами а, b и с обозначены лишь положительные числа, так как отрицательных чисел тогда не признавали) и отыскивает только положительные корни.

Общее правило решения квадратных уравнений, приведённых к виду , было сформулировано немецким математиком М.Штифелем (1487-1567). Выводом формулы решения квадратных уравнений общего вида занимался Виет. Однако своё утверждение он высказывал лишь для положительных корней (отрицательных чисел он не признавал). После трудов нидерландского математика А.Жирара (1595-1632), а также Декарта и Ньютона способ решения квадратных уравнений принял современный вид.

Формулы, выражающие зависимость корней уравнения от его коэффициентов, были выведены Виетом в 1591г. Для квадратного уравнения

теорема Виета в современных обозначениях выглядела так:

корнями уравнения (а+ b ) являются числа а и b .

2. Определение квадратного уравнения, его виды.

Определение : Квадратным уравнением называется уравнение вида

где х – переменная, а, b и с – некоторые числа, причем, а ≠ 0.

Числа а, b и с — коэффициенты квадратного уравнения. Число а называют первым коэффициентом, число b – вторым коэффициентом и число c – свободным членом.

В каждом из уравнений вида ax 2 + bx + c = 0, где а ≠ 0, наибольшая степень переменной x – квадрат. Отсюда и название: квадратное уравнение.

Квадратное уравнение, в котором коэффициент при х 2 равен 1, называют приведенным квадратным уравнением .

Если в квадратном уравнении ах 2 + bx + c = 0, один из коэффициентов

b или с равен нулю, то такое уравнение называют неполным квадратным уравнением .

Неполные квадратные уравнения бывают трёх видов:

3 .Способы решения неполных квадратных уравнений.

1.Для решения неполного квадратного уравнения вида ах 2 + с = 0 при с ≠ 0 переносят его свободный член в правую часть и делят обе части уравнения

на а. Получается уравнение

х 2 = –,

равносильное уравнению ах 2 + с = 0.

Так как с ≠ 0, то – ≠ 0.

Если – > 0, то уравнение имеет два корня:

х=и х=.

Если – 2 + 15=0.

Перенесем свободный член в правую часть уравнения и разделим обе части получившегося уравнения на –3:

Отсюда х = или х =

и – являются корнями уравнения –3х 2 + 15= 0.

Пример2. Рассмотрим уравнение 4х 2 + 3 = 0.

Перенесем свободный член в правую часть уравнения и разделим обе части

получившегося уравнения на 4:

х 2 = –.

Так как квадрат числа не может быть отрицательным числом, то получившееся уравнение корней не имеет. Следовательно, равносильное ему уравнение 4х 2 + 3 = 0 не имеет корней.

2.Для решения неполного квадратного уравнения вида ах 2 + bx = 0 при b ≠ 0

раскладывают его левую часть на множители и получают уравнение

Произведение х(ах + b )= 0 равно нулю только тогда, когда хотя бы один из множителей равен нулю:

Решая уравнение ах + b = 0, в котором а ≠ 0, находим

х =.

Следовательно, произведение ах 2 + bx = 0 обращается в нуль при х = 0 и при

х =. Корнями уравнения ах 2 + bx = 0 являются числа 0 и –. Значит, неполное квадратное уравнение вида ах 2 + bx = 0 при b ≠ 0 всегда имеет два корня.

Пример. Рассмотрим уравнение 4х 2 + 9х = 0.

Разложим левую часть уравнения на множители:

Отсюда х = 0 или 4х + 9 = 0.

Решим уравнение 4х + 9 = 0:

х = –2.

Ответ: х= 0, х= –2.

3.Неполное квадратное уравнение вида ах 2 = 0 равносильно уравнению х 2 = 0 и поэтому имеет один единственный корень 0.

4. Решение квадратных уравнений с помощью выделения квадрата двучлена.

Рассмотрим на примере решение квадратного уравнения, в котором оба коэффициента при неизвестных и свободный член отличны от нуля. Такой способ решения квадратного уравнения называют выделением квадрата двучлена.

Пример. Рассмотрим уравнение 7х 2 – 6х – 1= 0.

Разделив обе части этого уравнения на 7, получим равносильное ему приведенное квадратное уравнение

х 2 – х= 0.

Выделим из трехчлена х 2 – хквадрат двучлена. Для этого разность

х 2 – х представим в виде х 2 – 2·х , прибавим к ней выражение и вычтем его. Получим

х 2 – 2·х + = 0.

Отсюда х 2 – 2·х + = + ,

= .

Следовательно, х= – или х= ,

х= – или х= ,

х =или х = 1.

Уравнение имеет два корня: – и 1.

5. Решение квадратных уравнений по формуле.

Решение квадратных уравнений выделением квадрата двучлена часто приводит к громоздким преобразованиям. Поэтому поступают иначе. Решают уравнение в общем виде и в результате получают формулу корней. Затем эту формулу применяют при решении любого квадратного уравнения.

Решим квадратное уравнение

Разделив его обе части на а , получим равносильное ему приведенное квадратное уравнение

х 2 +х += 0.

Выделим из трехчлена х 2 +х + квадрат двучлена. Для этого сумму

х 2 +х представим в виде х 2 +2х∙ , прибавим к ней выражение

и вычтем его. Получим

х 2 +2х∙+ += 0,

х 2 +2х∙+ = ,

= ,

=.

Уравнение = равносильно уравнению ax 2 + bx + c = 0. Число его корней зависит от знака дроби . Так как а ≠ 0, то 4а –положительное число, поэтому знак этой дроби определяется знаком его числителя, т. е. выражения b – 4ас. Это выражение называют дискриминантом квадратного уравнения ax 2 + bx + c = 0. Его обозначают буквой D , т.е.

D = b – 4ас.

Дискриминант квадратного уравнения ax 2 + bx + c = 0 – выражение

b – 4ас= D по знаку которого судят о наличии у этого уравнения действительных корней.

Различные возможные случаи в зависимости от значения D .

1) Если D >0, то уравнение имеет два корня:

х= и х= .

Пример. Рассмотрим уравнение 2x 2 –3x + 1= 0.

D = b – 4ас =(–3)– 4ас = 9–8= 1; 2 корня.

х==== 0,5

х==== 1

2) Если D = 0, то уравнение имеет один корень:

х =.

Пример. Рассмотрим уравнение 9х 2 +6х+ 1= 0.

D = b – 4ас= 6– 4ас =36–36= 0; 1 корень.

х = –== – 0,3

D = b – 4ас= 1– 4ас = 1 – 16= – 15; корней нет.

6. Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета.

Используя теорему Виета, можно выразить сумму и произведение корней произвольного квадратного уравнения через его коэффициенты.

Приведенное квадратное уравнение х 2 – 7х + 10 = 0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. На примере видно, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Необходимо доказать, что любое приведенное квадратное уравнение, имеющее корни, обладает таким свойством.

Теорема : Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Приведенное квадратное уравнение имеет вид:

Обозначим второй коэффициент буквой р , а свободный член буквой q :

Дискриминант этого уравнения D равен p 2 – 4q .

Пусть D > 0. тогда это уравнение имеет два корня:

х= и х=.

Найдем сумму и произведение корней:

х+ х=+==p ;

х∙ х===== q .

х+ х=p , х∙ х= q .

Пример. Рассмотрим уравнение х 2 – 3х + 2 = 0.

По теореме Виета х+ х=p , значит 2 + 1= 3;

х∙ х= q , значит 2 1= 2.

Следовательно х1 = 2 и х2 = 1 являются корнями уравнения х 2 – 3х + 2 = 0.

При D = 0 корни уравнения можно вычислить по формуле

х = и x = .

Квадратное уравнение ax 2 + bx + c = 0 имеет корни х и х . равносильное ему приведенное квадратное уравнение имеет вид

х+ х=, х∙ х= .

Справедливо утверждение, обратное теореме Виета:

Теорема : Если числа m и n таковы, что их сумма равна –p , а произведение

равно q , то эти числа являются корнями уравнения х 2 + px + q = 0.

По условию т + п =p , а т п = q . Значит, уравнение х 2 + px + q = 0 можно записать в виде х 2 – (т + п) х + т п= 0.

Подставив вместо х число т, получим:

Значит, число т является корнем уравнения.

Аналогично можно показать, что число п также является корнем уравнения.

Пример. Рассмотрим уравнение х 2 + 3х – 40=0.

По формуле корней квадратного уравнения получаем

х= ; х=.

Отсюда х= –8; х= 5.

Покажем, что корни уравнения найдены правильно. В уравнении

х 2 + 3х – 40=0 коэффициент р равен 3, а свободный член q равен –40. Сумма найденных чисел –8 и 5 равна –3, а их произведение равно –40. Значит, по теореме, обратной теореме Виета, эти числа являются корнями уравнения х 2 + 3х – 40=0.

Способы устного решения квадратных уравнений.

7.Свойства коэффициентов квадратного уравнения.

1) Если а+ b + c = 0, то х= 1, х=.

Пример. Рассмотрим уравнение х 2 + 4х – 5= 0.

а+ b + c = 0, х= 1, х=. 1+ 4+(–5)= 0.

Значит корнями этого уравнения являются 1 и –5. Проверим это с помощью нахождения дискриминанта:

D = b – 4ас= 4– 4∙1∙(–5)= 36.

х=== – 5.

х=== 1.

Отсюда следует, что если а+ b + c = 0,то х= 1, х=.

2) Если b = а+ c , то х= –1, х=.

Пример. Рассмотрим уравнение 2х 2 + 8х +6 = 0.

Если b = а+ c , то х= –1, х=. 8 =2 +6.

Значит корнями этого уравнения являются –1 и –3. Проверим это с помощью нахождения дискриминанта:

D = b – 4ас= 8– 4∙2∙6= 16.

х=== –3.

х=== –1.

Отсюда следует, что если b = а+ c , то х= –1, х=.

8. Способ переброски.

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а ±b + c ≠0, то используется прием переброски:

х= 10; х= 1. Корни уравнения необходимо поделить на 2.

1) Если в уравнении ax 2 + bx + c = 0 коэффициент b равен (а 2 + 1), а коэффициент с численно равен коэффициенту а , то его корни равны

х=а ; х=.

ax 2 + (а 2 + 1)∙ х+ а= 0

Пример. Рассмотрим уравнение 6х 2 + 37х +6 = 0.

х= –6; х=.

2) Если в уравнении ax 2bx + c = 0 коэффициент b равен (а 2 + 1),а коэффициент с численно равен коэффициенту а, то его корни равны

х= а ; х= .

ax 2 – (а 2 + 1)∙ х+ а= 0

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х= 15; х=.

3) Если в уравнении ax 2 + bxc = 0 коэффициент b равен (а 2 – 1), а коэффициент с численно равен коэффициенту а, то его корни равны

х=а ; х= .

ax 2 + (а 2 – 1)∙ ха= 0

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х= –17; х= .

4) Если в уравнении ax 2bxc = 0 коэффициент b равен (а 2 – 1), а коэффициент с численно равен коэффициенту а, то его корни равны

х= а ; х=.

ax 2 + (а 2 – 1)∙ ха= 0

Пример. Рассмотрим уравнение 10х 2 –99 х – 10 = 0.

х= 10; х=.

10. Дидактический материал.

1. Решение неполных квадратных уравнений:

а) 4х 2 – 100= 0, б) 2х 2 + 10х = 0,

х 2 =25, х = 0 или 2х +10 = 0,

х = –5.

2. Решение квадратных уравнений по формуле:

D = b 2 – 4ас = 7 2 – 4· 4 ·3 = 49 – 48 = 1, D > 0; 2 корня;

х== = ;

х== = –1.

б) 4х 2 – 4х + 1 = 0,

х=

3. Решение квадратных уравнений по теореме Виета:

а) х 2 – 9х + 14 =0. б) х 2 +3х – 28 = 0.

х =2; х = 7.

4. Свойства коэффициентов квадратного уравнения:

а) 4х 2 – 12х +8х = 0. б) х 2 – 6х + 5= 0.

а+ b + c = 0, х= 1, х=. а+ b + c = 0, х= 1, х=.

х= 1, х= 2. х= 1, х= 5.

5. Решение квадратных уравнений способом переброски.

а) 6х 2 – 7х –3= 0.

х=== = –2;

х===

Делим числа 9 и (–2) на 6:

х= х2 =

б) 2х 2 – 11х +15= 0,

х==

х==

Делим числа 5 и 6 на 2:

х= х2 = 3.

6. Закономерность коэффициентов:

а) 5х 2 + 26х + 5= 0. б) 7х 2 + 48х –7 = 0.

х= –5; х=х= –7; х=

Эффективное решение квадратных уравнений. Приемы устного решения.
методическая разработка по алгебре (8 класс) на тему

Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, иррациональных уравнений и неравенств. В школьном курсе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. В работе представлены устные приёмы, которые позволяют очень быстро и рационально решать квадратные уравнения: свойства коэффициентов и способ «переброски» старшего коэффициента. Овладение приемами поможет обучающимся экономить время, эффективно решать уравнения, развить математические, интеллектуальные способности, навыки исследовательской работы. Данный материал можно использовать на уроках, факультативных занятиях.

Скачать:

Название: Способы устного решения квадратных уравнений
Раздел: Остальные рефераты
Тип: реферат Добавлен 01:30:00 06 сентября 2011 Похожие работы
Просмотров: 2480 Комментариев: 14 Оценило: 4 человек Средний балл: 4 Оценка: неизвестно Скачать
ВложениеРазмер
Эффективное решение квадратных уравнений. Приемы устного решения.1.55 МБ

Предварительный просмотр:

Федеральное государственное казенное

«Средняя общеобразовательная школа №151»

Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, иррациональных уравнений и неравенств.

Одна из основных целей изучения школьного курса математики заключается в овладении способами решения алгебраических уравнений второй степени и приводимых к ним уравнений. В школьном курсе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие приёмы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. Желательно научить ребят решать квадратные уравнения несколькими способами. Впоследствии при решении других видов уравнений, сводящихся к квадратным, рационально использовать те способы, которые позволяют находить корни квадратных уравнений устно: свойства коэффициентов и способ «переброски» старшего коэффициента.

Данные приемы устного решения квадратных уравнений заслуживают внимания, поскольку не отражены в школьном учебнике математики. Овладение приемами поможет обучающимся экономить время, эффективно решать уравнения, развить математические, интеллектуальные способности, навыки исследовательской работы.

Рассмотрим некоторые приемы устного решения квадратных уравнений.

  1. Приведенные квадратные уравнения.

Наиболее распространенное устное решение приведенных квадратных уравнений, но и оно у многих учеников вызывает затруднение, особенно в случаях, когда корни имеют разные знаки.

Напомним, что приведенное квадратное уравнение это уравнение вида

Корни х 1 и х 2 удовлетворяют теореме Виета

Определить знаки корней без решения уравнения (при условии, D • 0)

Как решать квадратные уравнения

О чем эта статья:

Понятие квадратного уравнения

Уравнение — это равенство, содержащее переменную, значение которой нужно найти.

Например, х + 8 = 12 — это уравнение, которое содержит переменную х.

Корень уравнения — это такое значение переменной, которое при подстановке в уравнение обращает его в верное числовое равенство.

Например, если х = 5, то при подстановке в уравнение мы получим 5 + 8 = 12. 13 = 12 — противоречие. Значит, х = 5 не является корнем уравнения.

А вот если х = 4, то при подстановке в уравнение мы получим 4 + 8 = 12. 12 = 12 — верное равенство. Значит, х = 4 является корнем уравнения.

Решить уравнение — значит найти все его корни или доказать, что их не существует.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Квадратные уравнения могут иметь два корня, один корень или не иметь корней.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b 2 − 4ac. А вот свойства дискриминанта:

  • если D 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Разобраться в теме еще быстрее с помощью опытного преподавателя можно на курсах по математике в онлайн-школе Skysmart.

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент отличается от единицы.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x 2 — 2x + 6 = 0
  • x 2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x 2 ), а значит уравнение называется приведенным.

  • 2x 2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Пример 1. Превратим неприведенное уравнение: 8x 2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x 2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax 2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято называть неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax 2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:


    источники:

    http://nsportal.ru/shkola/algebra/library/2015/02/08/effektivnoe-reshenie-kvadratnykh-uravneniy-priemy-ustnogo

    http://skysmart.ru/articles/mathematic/kak-reshat-kvadratnye-uravneniya