Фосфат аммония гидроксид натрия уравнение

Фосфат аммония + гидроксид натрия — &gt ; ?

Химия | 5 — 9 классы

Фосфат аммония + гидроксид натрия — &gt ; ?

Выделится аммиак, в растворах такая реакция практически не идет!

(NH4)3PO4 + 3NaOH (t) = Na3PO4 + 3NH3.

Составьте формулы?

1) нитрат калия 2) фосфат аммония 3) гидрофосфат калия 4) гидроксид аммония 5) аммиак.

Сульфат аммония + гидроксид натрия?

Сульфат аммония + гидроксид натрия.

Сульфат аммония + гидроксид натрия = сульфат натрия + вода + аммиак?

Сульфат аммония + гидроксид натрия = сульфат натрия + вода + аммиак.

Фосфорная кислота + гидроксид натрия — &gt ; фосфат натрия + вода?

Фосфорная кислота + гидроксид натрия — &gt ; фосфат натрия + вода.

Написать диссоциации : Фосфат аммония Уксусная кислота силикат натрия?

Написать диссоциации : Фосфат аммония Уксусная кислота силикат натрия.

Сульфит аммония + гидроксид натрия — &gt ; ?

Сульфит аммония + гидроксид натрия — &gt ; ?

Фосфат аммония + гидроксид стронция =?

Фосфат аммония + гидроксид стронция =.

С раствором карбоната аммония реагирует 1)соляная кислота 2)нитрат натрия 3)фосфат кальция 4)гидроксид железа(2)?

С раствором карбоната аммония реагирует 1)соляная кислота 2)нитрат натрия 3)фосфат кальция 4)гидроксид железа(2).

Как при помощи хлорида аммония, гидроксида натрия, гидроксида калия, азотной кислоты, нитрата натрия получить в две стадии нитрат аммония, используя вещества только из этого списка?

Как при помощи хлорида аммония, гидроксида натрия, гидроксида калия, азотной кислоты, нитрата натрия получить в две стадии нитрат аммония, используя вещества только из этого списка.

Гидросульфат аммония + гидроксид натрия?

Гидросульфат аммония + гидроксид натрия.

На этой странице сайта вы найдете ответы на вопрос Фосфат аммония + гидроксид натрия — &gt ; ?, относящийся к категории Химия. Сложность вопроса соответствует базовым знаниям учеников 5 — 9 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

Ar(Na) = 23 Ar(Mg) = 24 Ar(C) = 12 Ar(S) = 32 Ar(Cr) = 52 Ar(Se) = 79 Ar(Sn) = 119 Ar(Hg) = 201.

V(C₃H₆) = 50 л v — объем воздуха объемная доля кислорода в воздухе w(O) = 0, 2095 2C₃H₆ + 9O₂ = 6CO₂ + 6H₂O по уравнению реакции v(O₂) / 9 = v(C₃H₆) / 2 объем кислорода в воздухе v(O₂) = vw(O) v(O₂) = 9v(C₃H₆) / 2 = vw(O) объем воздуха v = 9v(C₃H₈) /..

2Al + 6H2O + Ba(OH)2 = Ba3 [Al (OH)6]2 + 3H2 реакция идет таким образом. А остальные части решения просто пропорция.

1. а) 4 метил пропин — 2 б) 2, 3 диметил бутен — 1 в) бутин — 1 г) 1, 4 дихлор бутен — 2 д) тетраметилметан е) 1, 2, 3, 4 тетрабром бутан 2. Дано W(C) = 90% = 0. 9 D(N2) = 1. 25 — — — — — — — — — — — — — — — — — — — — — — — — — M(CxHy) — ? M(CxHy..

Это лёгкая задача : ).

А). 3 — метил пентан б). Бутен — 2 в). Гексин — 2 г). 3, 4 — диметилгептанол — 4 д). 2 — метилуксусная кислота(или 2 — метилбутановая кислота).

Формула 1 моль железа является Fe, в ней 1 атом. Вычислим число атомов на 1 моль . Число Авагадро = 6. 02•10 ^ 23 N = 1•Na = 1•6, 02•10 ^ 23 = 6, 02•10 ^ 23 Значит в 1 моль 6, 02•10 ^ 23 атомов А в 5 моль получится х Составим пропорцию Получим х =..

Для того чтобы была ионная связь разница межде электроотрицательносями дожна быть 2. 1 и более мы можем частично сказать что это ионная связь но правильней если ковалентная N берет у Li 3 электрона.

Ответ есть на фотографии.

(140 — 110) / 10 = 3 Значит берем кубический корень из 27 и получаем 3 — коэффициент Вант — Гоффа.

Соли аммония: получение и химические свойства

Соли аммония

Соли аммония – это соли, состоящие из катиона аммония и аниона кислотного остатка .

Способы получения солей аммония

1. Соли аммония можно получить взаимодействием аммиака с кислотами . Реакции подробно описаны выше.

2. Соли аммония также получают в обменных реакциях между солями аммония и другими солями.

Например , хлорид аммония реагирует с нитратом серебра:

3. Средние соли аммония можно получить из кислых солей аммония . При добавлении аммиака кислая соль переходит в среднюю.

Например , гидрокарбонат аммония реагирует с аммиаком с образованием карбоната аммония:

Химические свойства солей аммония

1. Все соли аммония – сильные электролиты , почти полностью диссоциируют на ионы в водных растворах:

NH4Cl ⇄ NH4 + + Cl –

2. Соли аммония проявляют свойства обычных растворимых солей –вступают в реакции обмена с щелочами, кислотами и растворимыми солями , если в продуктах образуется газ, осадок или образуется слабый электролит.

Например , карбонат аммония реагирует с соляной кислотой. При этом выделяется углекислый газ:

Соли аммония реагируют с щелочами с образованием аммиака.

Например , хлорид аммония реагирует с гидроксидом калия:

NH4Cl + KOH → KCl + NH3 + H2O

Взаимодействие с щелочами — качественная реакция на ионы аммония. Выделяющийся аммиак можно обнаружить по характерному резкому запаху и посинению лакмусовой бумажки.

3. Соли аммония подвергаются гидролизу по катиону , т.к. гидроксид аммония — слабое основание:

4. При нагревании соли аммония разлагаются . При этом если соль не содержит анион-окислителя, то разложение проходит без изменения степени окисления атома азота. Так разлагаются хлорид, карбонат, сульфат, сульфид и фосфат аммония:

Если соль содержит анион-окислитель, то разложение сопровождается изменением степени окисления атома азота иона аммония. Так протекает разложение нитрата, нитрита и дихромата аммония:

При температуре 250 – 300°C:

При температуре выше 300°C:

Разложение бихромата аммония («вулканчик»). Оранжевые кристаллы дихромата аммония под действием горящей лучинки бурно реагируют. Дихромат аммония – особенная соль, в ее составе – окислитель и восстановитель. Поэтому «внутри» этой соли может пройти окислительно-восстановительная реакция (внутримолекулярная ОВР):

Окислительхром (VI) превращается в хром (III), образуется зеленый оксид хрома. Восстановитель – азот, входящий в состав иона аммония, превращается в газообразный азот. Итак, дихромат аммония превращается в зеленый оксид хрома, газообразный азот и воду. Реакция начинается от горящей лучинки, но не прекращается, если лучинку убрать, а становится еще интенсивней, так как в процессе реакции выделяется теплота, и, начавшись от лучинки, процесс лавинообразно развивается. Оксид хрома (III) – очень твердое, тугоплавкое вещество зеленого цвета, его используют как абразив. Температура плавления – почти 2300 градусов. Оксид хрома – очень устойчивое вещество, не растворяется даже в кислотах. Благодаря устойчивости и интенсивной окраске окись хрома используется при изготовлении масляных красок.

Видеоопыт разложения дихромата аммония можно посмотреть здесь.

Особенности взаимодействия кислых солей со щелочами.

Достаточно часто возникают затруднения при записи реакций кислых солей со щелочами. Ниже рассмотрим основные закономерности подобных взаимодействий. Под кислыми солями подразумеваем соли, в которых остались атомы водорода, способные к замещению на катионы металлов или аммония. Отсюда первый вывод: при добавлении щелочи водород в составе «кислого» аниона будет замещаться с образованием среднего аниона. По такой схеме будут идти простейшие примеры 1) и 2):

2) LiHS + LiOH = Li2S + H2O
Li + + HS − + Li + + OH − = 2Li + + S 2- + H2O
HS − + OH − = S 2- + H2O

При рассмотрении солей фосфорной кислоты будут возникать дополнительные варианты за счет образования двух видов кислых солей: гидрофосфатов и дигидрофосфатов. Тут следует обращать внимание на избыток/недостаток соли, либо щелочи. Сравните примеры 3) и 4):

Щелочи в примере 3) мало, не хватает для полного замещения атомов водорода в кислой соли.

В примере 4) щелочи много, заместит все возможные атомы водорода в кислой соли.

Значительно больше сложностей возникает при взаимодействии кислой соли и щелочи с разными катионами. Здесь все так же сперва происходит превращение кислого аниона в средний, а далее возможен обмен катионами. Влиять на такой обмен будет природа катионов, растворимость соответствующих средних солей, а также избыток/недостаток соли, либо щелочи. Рассмотрим возможные комбинации для солей двухосновной кислоты, например, угольной:

В описании задания случай 5) можно охарактеризовать фразой «в образовавшемся растворе практически отсутствовали гидроксид-ионы», что вполне понятно из ионного уравнения.

Для случая 6) можно записать «в образовавшемся растворе практически отсутствовали карбонат-ионы», что вполне понятно, поскольку они полностью перешли в состав осадка карбоната бария.

Различие в примерах 5) и 6) легко понять, если представить, что карбонат калия, образовавшийся на первой стадии, может далее вступить в обмен с избытком гидроксида бария.

Теперь давайте поменяем местами исходные катионы и убедимся, что тогда реакция может пойти единственным образом:

Почему невозможен вариант с получением гидроксида бария по аналогии со случаем 6)? Потому что карбонат бария уже является осадком и в дальнейшее взаимодействие с гидроксидом калия не вступает:

BaCO3 + KOH – нет реакции

Схожие рассуждения можно применить и для реакций с участием трехосновной фосфорной кислоты. Там так же будет больше вариантов протекания, если исходим из соли щелочного металла и щелочи, содержащей щелочноземельный металл:

Вариант 8) с образованием двух солей, по формулировке «в образовавшемся растворе практически отсутствовали гидроксид-ионы». Гидроксида кальция добавили мало, связать все фосфат-ионы в осадок не смог.

Вариант 9) с образованием соли и щелочи, по формулировке «в образовавшемся растворе практически отсутствовали фосфат-ионы». Гидроксида кальция взяли много, все фосфат-ионы перешли в осадок.

Если взять изначально соль щелочноземельного металла и гидроксид щелочного, то вариант будет только один:

Причина отсутствия гидроксида кальция в продуктах по аналогии с пунктом 7) – нерастворимость промежуточно образовавшегося фосфата кальция и отсутствие обмена с ним:

Реакции с дигидрофосфатами будут идти по аналогичным схемам и приводить к двум солям, либо соли и щелочи. Рассмотрим два примера из числа возможных:

Весь фосфат перешел в осадок.

Часть фосфата перешла в осадок, новый гидроксид образоваться не может.


источники:

http://chemege.ru/soli-ammoniya/

http://scienceforyou.ru/teorija-dlja-podgotovki-k-egje/vzaimodeystvie-kislyh-soley-so-schelochami