Фотоэффект уравнение эйнштейна для фотоэффекта применение фотоэффекта

Физика. 11 класс

Конспект урока

Физика, 11 класс

Урок 22. Фотоэффект

Перечень вопросов, рассматриваемых на уроке:

  • предмет и задачи квантовой физики;
  • гипотеза М. Планка о квантах;
  • опыты А.Г. Столетова;
  • определение фотоэффекта, кванта, тока насыщения, задерживающего напряжения, работы выхода, красной границы фотоэффекта;
  • уравнение Эйнштейна для фотоэффекта;
  • законы фотоэффекта.

Глоссарий по теме:

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Фотоэффект – это вырывание электронов из вещества под действием света.

Квант — (от лат. quantum — «сколько») — неделимая порция какой-либо величины в физике.

Ток насыщения — некоторое предельное значение силы фототока.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл. которую нужно сообщить электрону, для того чтобы он мог преодолеть силы, удерживающие его внутри металла.

Красная граница фотоэффекта – это минимальная частота или максимальная длина волны света излучения, при которой еще возможен внешний фотоэффект.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 11 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 259 – 267.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. – С. 153 – 158.

3. Элементарный учебник физики. Учебное пособие в 3 т./под редакцией академика Ландсберга Г. С.: Т.3. Колебания и волны. Оптика. Атомная и ядерная физика. – 12-е изд. – М.: ФИЗМАТЛИТ, 2001. С. 422 – 429.

4. Тульчинский М. Е. Качественные задачи по физике в средней школе. Пособие для учителей. Изд. 4-е, переработ. и доп. М. «Просвещение», 1972. С. 157.

Теоретический материал для самостоятельного изучения

В начале 20-го века в физике произошла величайшая революция. Попытки объяснить наблюдаемые на опытах закономерности распределения энергии в спектрах теплового излучения оказались несостоятельными. Законы электромагнетизма Максвелла неожиданно «забастовали». Противоречия между опытом и практикой были разрешены немецким физиком Максом Планком.

Гипотеза Макса Планка: атомы испускают электромагнитную энергию не непрерывно, а отдельными порциями – квантами. Энергия Е каждой порции прямо пропорциональна частоте ν излучения света: E = hν.

Коэффициент пропорциональности получил название постоянной Планка, и она равна:

h = 6,63 ∙ 10 -34 Дж∙с.

После открытия Планка начала развиваться самая современная и глубокая физическая теория – квантовая физика.

Квантовая физика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения.

Поведение всех микрочастиц подчиняется квантовым законам. Но впервые квантовые свойства материи были обнаружены именно при исследовании излучения и поглощения света.

В 1886 году немецкий физик Густав Людвиг Герц обнаружил явление электризации металлов при их освещении.

Явление вырывания электронов из вещества под действием света называется внешним фотоэлектрическим эффектом.

Законы фотоэффекта были установлены в 1888 году профессором московского университета Александром Григорьевичем Столетовым.

Схема установки для изучения законов фотоэффекта

Первый закон фотоэффекта: фототок насыщения — максимальное число фотоэлектронов, вырываемых из вещества за единицу времени, — прямо пропорционален интенсивности падающего излучения.

Зависимость силы тока от приложенного напряжения

Увеличение интенсивности света означает увеличение числа падающих фотонов, которые выбивают с поверхности металла больше электронов.

Второй закон фотоэффекта: максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего излучения и линейно возрастает с увеличением частоты падающего излучения.

Третий закон фотоэффекта: для каждого вещества существует граничная частота такая, что излучение меньшей частоты не вызывает фотоэффекта, какой бы ни была интенсивность падающего излучения. Эта минимальная частота излучения называется красной границей фотоэффекта.

где Ав – работа выхода электронов;

h – постоянная Планка;

νmin — частота излучения, соответствующая красной границе фотоэффекта;

с – скорость света;

λкр – длина волны, соответствующая красной границе.

Фотоэффект практически безынерционен: фототок возникает одновременно с освещением катода с точностью до одной миллиардной доли секунды.

Работа выхода – это минимальная энергия, которую надо сообщить электрону, чтобы он покинул металл.

Для большинства веществ фотоэффект возникает только под действием ультрафиолетового облучения. Однако некоторые металлы, например, литий, натрий и калий, испускают электроны и при облучении видимым светом.

Известно, что фототоком можно управлять, подавая на металлические пластины различные напряжения. Если на систему подать небольшое напряжение обратной полярности, «затрудняющее» вылет электронов, то ток уменьшится, так как фотоэлектронам, кроме работы выхода, придется совершать дополнительную работу против сил электрического поля.

Задерживающее напряжение — минимальное обратное напряжение между анодом и катодом, при котором фототок равен нулю.

Максимальная кинетическая энергия электронов выражается через задерживающее напряжение:

где — максимальная кинетическая энергия электронов;

Е – заряд электрона;

– задерживающее напряжение.

Теорию фотоэффекта разработал Альберт Эйнштейн. На основе квантовых представлений Эйнштейн объяснил фотоэффект. Электрон внутри металла после поглощения одного фотона получает порцию энергии и стремится вылететь за пределы кристаллической решетки, т.е. покинуть поверхность твердого тела. При этом часть полученной энергии он израсходует на совершение работы по преодолению сил, удерживающих его внутри вещества. Остаток энергии будет равен кинетической энергии:

В 1921 году Альберт Эйнштейн стал обладателем Нобелевской премии, которая, согласно официальной формулировке, была вручена «за заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».

Если фотоэффект сопровождается вылетом электронов с поверхности вещества, то его называют внешним фотоэффектом или фотоэлектронной эмиссией, а вылетающие электроны — фотоэлектронами. Если фотоэффект не сопровождается вылетом электронов с поверхности вещества, то его называют внутренним.

Примеры и разбор решения заданий

1. Монохроматический свет с длиной волны λ падает на поверхность металла, вызывая фотоэффект. Фотоэлектроны тормозятся электрическим полем. Как изменятся работа выхода электронов с поверхности металла и запирающее напряжение, если уменьшить длину волны падающего света?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Работа выхода — это характеристика металла, следовательно, работа выхода не изменится при изменении длины волны падающего света.

Запирающее напряжение — это такое минимальное напряжение, при котором фотоэлектроны перестают вылетать из металла. Оно определяется из уравнения:

Следовательно, при уменьшении длины волны падающего света, запирающее напряжение увеличивается.

2. Красная граница фотоэффекта для вещества фотокатода λ0 = 290 нм. При облучении катода светом с длиной волны λ фототок прекращается при напряжении между анодом и катодом U = 1,5 В. Определите длину волны λ.

Запишем уравнение для фотоэффекта через длину волны:

Условие связи красной границы фотоэффекта и работы выхода:

Запишем выражение для запирающего напряжения – условие равенства максимальной кинетической энергии электрона и изменения его потенциальной энергии при перемещении в электростатическом поле:

Решая систему уравнений (1), (2), (3), получаем формулу для вычисления длины волны λ:

Подставляя численные значения, получаем: λ ≈ 215 нм.

Фотоэффект — уравнение и формула Эйнштейна, применение

Открытие эффекта

Открытие фотоэффекта позволило лучше понять природу света. Предпосылками для понимания световых процессов стала корпускулярная теория света, выдвинутая Исааком Ньютоном. Он сделал предположение, что свет представляет собой электромагнитное излучение, состоящее из корпускул — элементарных частиц. Теория объясняла способность светового луча отражаться и преломляться.

В первой половине XIX века учёный из Англии провёл ряд экспериментов с монохроматическим пучком, установив волновые свойства света. Это послужило фундаментом для формулировки теории магнетизма Джеймсом Максвеллом. В своих выкладках он объединил явления магнитного и электрического характера.

Открытие же эффекта началось с опытов Герца над открытым резонатором. В 1887 году зарядив два металлических шара с помощью катушки Румкорфа, он наблюдал между ними искровой разряд, создающий волну, способствующую новому пробою. Второй разряд был настолько слабым, что для его изучения Герц начал проводить эксперименты в тёмной комнате. В итоге им было обнаружен необъяснимый для него эффект: искра в темноте была слабее, чем при дополнительном освещении.

Разобраться в сути эффекта стало возможным лишь в 1905 году. Немецкий физик Альберт Энштейн, основываясь на идеях Макса Планка и Столетова, опубликовал статью под названием «Об эвристическом анализе зрения, касающегося возникновения и преобразования света», в которой дал исчерпывающее объяснение явлению и вывел уравнение фотоэффекта.

Общепринятые положения, описывающие фотоэлектрический эффект, состоят в следующем:

  • интенсивность света и вызванный фототок связаны прямой пропорциональностью;
  • если частота потока ниже определённого порогового значения, то эффект не наблюдается (красная граница);
  • кинетическая энергия освобождённого электрона, выбитого фотоном, зависит от частоты света;
  • при воздействии дополнительного источника излучения эффект усиливается.

Под фотоэффектом понимается явление испускания электронов при воздействии световой энергии, при этом процесс возникает сразу же после освещения. Другими словами, при поглощении веществом электромагнитного излучения в теле возникают свободные носители заряда.

Понятие и свойства фотона

Неотъемлемой частью эффекта является фотон. Это материальная частица, распространяющаяся в виде электромагнитного излучения. Её кинетическая энергия описывается уравнением:

  • m — масса фотона;
  • c — скорость света.

Импульс кванта совпадает с направлением светового потока и равен произведению массы на скорость. Открыть существование импульса стало возможным лишь после изучения светового давления (сила воздействия электромагнитного излучения). За импульс фотона была принята частица, способная существовать и иметь массу, только перемещаясь со скоростью света.

Исходя из этого, можно сделать вывод — остановить фотон нельзя. Он может существовать только в движении, иначе его попросту нет. Следовательно, масса покоя частицы равна нулю.

Уравнение Эйнштейна

Под лучистой энергией понимают электромагнитное излучение в широком диапазоне частот. Каждый фотон несёт определённую энергию, которую он может передать частице при столкновении, в частности, электронам. При ударе носители мгновенно приобретают кинетическую энергию. Предположения Планка о способности тела излучать часть поглощённой энергии и распространять его квантами единичной энергии было описано уравнением E = hv, где:

  • Е — энергия, переносимая единичным квантом;
  • h — постоянная Планка, рассчитанная экспериментально и равная 6,626 x 10 -34 Дж·с ;
  • v — частота излучения, определяемая отношением скорости света к длине волны.

Эйнштейн, основываясь на идее Планка, доказал, что свет представляет собой дискретные пучки энергии, названные им впоследствии фотонами. При этом они обладают дуализмом. Кроме распространения подобно волнам, при столкновении с электронами фотон ведёт себя как частица, выбивающая его из кристаллической решётки.

На основании этих предположений физик изменил уравнение до вида:

где фи обозначает минимальную энергию, необходимую для выбивания электрона из атома.

Максимальная же кинетическая энергия фотоэлектрона определяется отношением (mu 2 )/2. При вылете электрона энергия частички уменьшается на определённое значение — работу выхода (Авых). То есть это энергия, которая затрачивается для эмиссии электрона. Поэтому формулу Планка можно переписать как hv = Aвых + (m*u 2 )/2. Это выражение и получило название уравнения Эйнштейна.

Если к телу приложить напряжение обратной полярности, препятствующее вылету электронов, то работа выхода увеличится, так как частицам придётся преодолевать ещё и силу электрического тока. Наибольшая же кинетическая энергия выражается формулой: Емах = e*U, где U — задерживающее напряжение, а e — элементарный заряд.

Наименьшую энергию назвали красной границей. Согласно определению эффекта, она зависит лишь от работы выхода. Из уравнения Эйнштейна можно получить предельное значение длины волны, которая прямо пропорциональна произведению c*h и обратно пропорциональна работе выхода. При длинах, расположенных возле красной границы, фотоэффект не возникает.

Виды явления

Использование формулы Эйнштейна для фотоэффекта позволило рассчитать и создать различные фотоэлектрические приборы — другими словами, устройства, способные преобразовывать свет. Формула учёного дала возможность объяснить внешний фотоэффект — испускание элементарной частицы с поверхности вещества при воздействии света.

Наблюдается явление не только в твёрдых телах, например, металлах, но и в газах (фотоионизация) на определённых молекулах. На этом эффекте построена работа электровакуумных приборов, электронных и газоразрядных элементов, фотоэлектронных умножителей.

Кроме внешнего фотоэффекта, существует ещё три его вида:

  1. Внутренний — наблюдаемый в диэлектриках или полупроводниках при воздействии на них электромагнитных излучений, не приводящих к выходу электронов наружу. В итоге концентрация свободных носителей увеличивается, повышается электропроводность или возникает электродвижущая сила (ЭДС).
  2. Вентильный — характеризуется возникновением ЭДС при попадании света на границу контакта двух разных материалов, например, полупроводников или металла и полупроводника. Энергия света преобразуется в электричество. Используется в основе построения солнечных батарей.
  3. Многофотонный — возникающий при большой интенсивности света, например, воздействии лазера. При этом электрон может поглотить энергию не от одного фотона, а сразу от нескольких.

Вольт-амперная характеристика

Зависимость тока от напряжения, пожалуй, самая важная характеристика для любого радиоэлемента. Не исключение и устройства, работающие на фотоэффекте. На графике изображается изменение тока насыщения от запирающего напряжения. То есть, глядя на него, можно легко проследить, как будет расти напряжение при увеличении фототока.

Увеличение тока, возникшего при воздействии света, связано с числом достигших анода электронов. Зависимость на этом участке обычно плавная, без резких скачков. В определённый момент наступает такое состояние, что ток становится постоянным, несмотря на увеличение напряжения. Точка перехода характеристики в пологое состояние называется фототоком насыщения.

Значение этой точки определяется таким напряжением, при котором все электроны, выбитые со своих мест, достигают анода. Это условие записывается в виде выражения: Iнас = e*n, где за n принято число частиц, выбитых из катода за единицу времени (одну секунду).

Изучая характеристику, можно отметить, что если напряжение начинает падать и в какой-то момент становится равным нулю, то фототок всё равно не исчезает. Значит, вылетевшие электроны имеют начальную скорость и могут достигнуть второго электрода даже без внешнего воздействия. В то же время, если приложить обратное напряжение (задерживающее), фототок не появится. Поэтому электрон, получивший даже наибольшую скорость, не сможет достигнуть анода.

Используя уравнение Эйнштейна для фотоэффекта, можно будет записать уравнение:

m*v 2 /2 = e*U0, где: U0 — задерживающее напряжение. Исходя из этого можно сформулировать второй закон: на задерживающее напряжение не влияет величина освещения, но потенциал зависит от частоты светового потока, при увеличении которого он возрастает.

Полезность этого открытия будет заключаться в том, что, зная задерживающее напряжение, можно определить максимальную скорость кинетической энергии выбитых электронов. То есть в квантовой теории фотоэффекта просматривается ряд зависимостей:

  • фототок определяется интенсивностью;
  • запирающее напряжение зависит от кинетической энергии испускаемых частиц;
  • величина энергии связана с частотой света.

Применение фотоэффекта

На фотоэффекте основано действие фотоприборов, получивших разнообразное использование в науки и техники. Самым первым устройством был вакуумный фотоэлемент. Это стеклянный баллон с откачанным воздухом, покрытый слоем фоточувствительного элемента, кроме небольшого участка.

В центре баллона находится сетка, являющаяся анодом. При попадании света на свободный от фотоэлемента участок возникает ЭДС. В зависимости от вида регистрируемого света катод изготавливается из различных материалов. Так, для инфракрасного излучения используется кислородно-цезиевый катод, для ультрафиолетового — сурьмяно-цезиевый.

Элементы вакуумного типа безынерционные, поэтому для них характерна пропорциональность силы фототока от интенсивности светового потока. Эти свойства используются в фотометрии. С их помощью можно не только фиксировать возникновение излучения, но и измерять освещённость. Для увеличения чувствительности баллон наполняется инертным газом. Такие устройства называют газоразрядными фотоэлементами.

Чтобы регистрировать слабый ток, применяют фотоэлектронные умножители, использующие вторичную эмиссию электронов. Элементы с внутренним фотоэффектом называются фоторезисторы. Они более чувствительны, чем газоразрядные. При изготовлении применяются различные полупроводники, такие как PЬS, CdS, PbSе. Их использование позволяет регистрировать излучения даже в далёкой инфракрасной области и рентгеновского излучения. Фоторезисторы изготавливаются небольших размеров, но обладают инерционностью. Поэтому регистрировать быстроизменяющийся свет они не могут.

Вентильные фотоэлементы, работающие на одноимённом эффекте, используются при построении солнечных батарей, источников питания малой мощности. Они непосредственно преобразуют световую энергию в ток, а изготавливают их из германия, кремния, селена. Элемент, в котором преобразуется свет в электрический заряд на p-n переходе, называется фотодиодом. Работать он может как с подключением дополнительного источника питания, так и без него. Принцип действия элемента основан на лавинном пробое, возникающим за счёт ионизации носителей заряда.

Фотосопротивление применяется в охранных и телевизионных системах, радиовещании. На эффекте основана работа электронно-оптического преобразователя, усиливающего рентгеновское изображение. В радиоэлектроники элементы используются в обратных связях и при создании гальванической развязки.

Фотоэффект в физике и его применение — формулы и определение с примерами

Содержание:

Фотоэффект:

Рассмотрим фотоэффект с точки зрения классической электродинамики.

На основе волновой теории света можно предположить, что:

  • – свет любой длины волны должен вырывать электроны из металла;
  • – на вырывание электрона из металла требуется определенное время;
  • – число вырванных электронов и их энергия должны быть пропорциональны интенсивности света.

Александр Григорьевич Столетов (1839–1896) – русский физик. Исследовал внешний фотоэффект, открыл первый закон фотоэффекта. Исследовал газовый разряд, критическое состояние, получил кривую намагничивания железа.

Современная установка для исследования фотоэффекта

Современная установка для изучения фотоэффекта представляет собой два электрода, помещенных в стеклянный баллон, из которого выкачан воздух (рис. 210). На один из электродов через кварцевое «окошко» падает свет. В отличие от обычного стекла кварц пропускает ультрафиолетовое излучение. На электроды подается напряжение, которое можно менять с помощью потенциометра R и измерять вольтметром V. К освещаемому электроду К − катоду подсоединяют отрицательный полюс батареи. Под действием света катод испускает электроны, которые направляются электрическим полем к аноду, создается электрический ток. Значение силы тока фиксируется миллиамперметром.

Законы фотоэффекта Столетова

Исследования, проведенные русским ученым А.Г. Столетовым и немецким ученым Ф. Ленардом, показали, что законы фотоэффекта не соответствуют классическим представлениям.

На рисунке 211 представлена вольтамперная характеристика, полученная в результате измерений при различных значениях напряжения между электродами.

Из графика следует, что:

1. Сила фототока не зависит от напряжения, если оно достигает некоторого значения

Максимальное значение силы тока называют током насыщения.

Сила тока насыщения − это максимальный заряд, переносимый фотоэлектронами за единицу времени:

где n − число фотоэлектронов, вылетающих с поверхности освещаемого металла за 1 с, е − заряд электрона.

2. Сила фототока отлична от нуля при нулевом значении напряжения.

3. Если изменить направление электрического поля, соединив катод с положительным полюсом источника тока, а анод − с отрицательным, то скорость фотоэлектронов уменьшится, об этом можно судить по показаниям миллиамперметра: сила тока уменьшается при увеличении отрицательного значения напряжения. При некотором значении напряжения который называют задерживающим напряжением, фототок прекращается. Согласно теореме об изменении кинетической энергии, работа задерживающего электрического поля равна изменению кинетической энергии фотоэлектронов:

При известном значении можно найти максимальную кинетическую энергию фотоэлектронов.

Исследование фотоэффекта при освещении катода световыми потоками равной частоты, но различной интенсивности дал результат, представленный вольтамперными характеристиками, изображенными на рисунке 212.

Сила фототока насыщения увеличивается с увеличением интенсивности падающего света.

Вспомните! Фотоэффект – это испускание электронов веществом под действием света или любого другого электромагнитного излучения.

Величина запирающего напряжения от интенсивности света не зависит, для всех потоков она имеет одно и то же значение.

Освещение катода светом одной и той же интенсивности, но разной частоты дало серию вольтамперных характеристик, представленных на рисунке 213. Как следует из графиков, величина задерживающего напряжения увеличивается с увеличением частоты падающего света, при уменьшении частоты падающего света уменьшается, и при некоторой частоте задерживающее напряжение равно нулю: При меньших частотах фотоэффект не наблюдается.

Минимальную частоту падающего света , при которой еще возможен фотоэффект, называют красной границей фотоэффекта.

На основании экспериментальных данных Столетовым были сформулированы законы фотоэффекта:

  1. Сила фототока прямо пропорциональна интенсивности светового потока.
  2. Максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от интенсивности.
  3. Для каждого вещества существует красная граница фотоэффекта, т.е. минимальная частота света (максимальная длина ), при которой возможен фотоэффект, если то фотоэффект не происходит.
  • Заказать решение задач по физике

Квантовая теория фотоэффекта

Теоретическое обоснование фотоэффекта было дано в 1905 г. А. Эйнштейном. Он предположил, что свет не только излучается квантами, как утверждал М. Планк, но и распространяется и поглощается порциями, представляет собой поток частиц − фотонов, энергия которых равна

Сам фотоэффект состоит в том, что световые частицы, сталкиваясь с электронами металла, передают им свою энергию и импульс и сами при этом исчезают. Если энергия квантов падающего света больше той работы, которую электрон должен совершить против сил притяжения к положительно заряженным частицам вещества, то электрон вылетает из металла. Становится понятным смысл красной границы фотоэффекта: для вырывания электрона из металла энергия квантов должна быть не меньше, чем Эта энергия и равна работе выхода электрона из данного металла. В случае, когда энергия падающих квантов больше работы выхода, максимальная кинетическая энергия электронов равна разности энергии фотона и работы выхода:

Это и есть формула Эйнштейна для фотоэффекта. Обычно ее пишут в виде:

Зависимость силы фототока от интенсивности света Эйнштейн объяснил следующим образом: число вылетающих в единицу времени электронов пропорционально интенсивности света, поскольку интенсивность определяется числом квантов, испускаемых источником в единицу времени. Мощная лампа испускает больше квантов, следовательно, число вырванных электронов светом такой лампы будет больше, чем светом менее мощной лампы.

Энергия вылетающих электронов зависит не от силы света лампы, а от того, какой частоты свет она испускает, от этого зависит энергия фотона и кинетическая энергия фотоэлектрона.

Фотоны, энергия, масса и импульс фотона

Фотон – это частица света. Он не делится на части: испускается, отражается, преломляется и поглощается целым квантом. У него нет массы покоя, неподвижных фотонов не существует.

Энергия фотона

− постоянная Планка, циклическая частота.

Масса фотона

Массу фотона определяют, исходя из закона о взаимосвязи массы и энергии:

Измерить массу фотона невозможно, ее следует рассматривать как полевую массу, обусловленную тем, что электромагнитное поле обладает энергией.

Импульс фотона

Фотон – частица света, следовательно, ее импульс равен:

Применение фотоэффекта в технике

Фотоэлементы:

Приборы, принцип действия которых основан на явлении фотоэффекта, называют фотоэлементами. Устройство фотоэлемента изображено на рисунке 214. Внутренняя поверхность К (катод) стеклянного баллона, из которого выкачан воздух, покрыта светочувствительным слоем с небольшим прозрачным для света участком для доступа света внутрь баллона. В центре баллона находится металлическое кольцо А (анод). От электродов сделаны выводы для подключения фотоэлемента к электрической цепи. В качестве светочувствительного слоя обычно используют напыленные покрытия из щелочных металлов, имеющих малую работу выхода, т.е. чувствительных к видимому свету.

Фотоэлементы используют для автоматического управления электрическими цепями с помощью световых пучков.

Фотореле:

Фотоэлектрическое реле срабатывает при прерывании светового потока, падающего на фотоэлемент (рис. 215). Фотореле состоит из фотоэлемента Ф, усилителя фототока, в качестве которого используют полупроводниковый триод, и электромагнитного реле, включенного в цепь коллектора транзистора. Напряжение на фотоэлемент подают от источника тока а на транзистор − от источника тока Между базой и эмиттером транзистора включен нагрузочный резистор R.

Когда фотоэлемент освещен, в его цепи, содержащей резистор R, идет слабый ток, потенциал базы транзистора выше потенциала эмиттера, и ток в коллекторной цепи транзистора отсутствует.

Если же поток света, падающий на фотоэлемент, прерывается, ток в его цепи сразу прекращается, переход эмиттер – база открывается для основных носителей, и через обмотку реле, включенного в цепь коллектора, пойдет ток. Реле срабатывает, и его контакты замыкают исполнительную цепь. Ее функциями могут быть остановка пресса, в зону действия которого попала рука человека, выдвигание преграды в турникете метро, автоматическое включение освещения на улицах.

Пример решения задачи

Определите постоянную Планка h, если известно, что электроны, вырываемые из металла светом с частотой Гц, полностью задерживаются разностью потенциалов а вырываемые светом с частотой − разностью потенциалов

Дано:

Решение: Запишем уравнение Эйнштейна для электрона, вырванного из металла светом с частотами соответственно: Вычитая первое равенство из второго, получим откуда

Выполним расчеты:

Ответ: h = 6,6 · 10 –34 Дж · с.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Оптические явления в природе по физике
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Разложение белого света на цвета и образование цветов
  • Давление света в физике
  • Химическое действие света
  • Корпускулярно-волновая природа света

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://nauka.club/fizika/fotoeffekt.html

http://www.evkova.org/fotoeffekt-v-fizike